KR100872806B1 - Apparatus of manufacturing silicon single crystal ingot - Google Patents

Apparatus of manufacturing silicon single crystal ingot Download PDF

Info

Publication number
KR100872806B1
KR100872806B1 KR1020070098628A KR20070098628A KR100872806B1 KR 100872806 B1 KR100872806 B1 KR 100872806B1 KR 1020070098628 A KR1020070098628 A KR 1020070098628A KR 20070098628 A KR20070098628 A KR 20070098628A KR 100872806 B1 KR100872806 B1 KR 100872806B1
Authority
KR
South Korea
Prior art keywords
window member
single crystal
silicon single
crystal ingot
case
Prior art date
Application number
KR1020070098628A
Other languages
Korean (ko)
Inventor
이의석
최상우
최윤환
Original Assignee
주식회사 실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 실트론 filed Critical 주식회사 실트론
Priority to KR1020070098628A priority Critical patent/KR100872806B1/en
Application granted granted Critical
Publication of KR100872806B1 publication Critical patent/KR100872806B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/208Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy using liquid deposition

Abstract

The silicon epitaxial ingot production equipment is provided to reduce the amount of the antimony oxide deposited in the window member and to produce the silicon epitaxial ingot of the excellent quality. The silicon epitaxial ingot production equipment(100) comprises the crucible(130), the heater(150), the cable(170), the window member(120), the case(110), the assisted window member(121). The crucible stores the silicon solution. The heater heats up the silicon solution stored in the crucible. The cable is connected to the seed crystal for forming the silicon epitaxial ingot. The cable is installed in the upper of crucible to ascend and descend. The window member is made of the optical transmission material. The case has the receiving part for installing the crucible, the heater and the cable. The assisted window member is combined with the case to face the window member and to reduce the heat flowed out the outside of the case through the window member. The assisted window member is made of the optical transmission material.

Description

실리콘 단결정 잉곳 생산장치{Apparatus of manufacturing silicon single crystal ingot}Silicon single crystal ingot production equipment {Apparatus of manufacturing silicon single crystal ingot}

본 발명은 실리콘 단결정 잉곳 생산장치에 관한 것으로서, 보다 상세하게는 쵸크랄스키(CZ) 방법에 의하여 도가니 안에서 용융된 실리콘 융액으로부터 실리콘 단결정 잉곳을 성장시키는 실리콘 단결정 잉곳 생산장치에 관한 것이다. The present invention relates to a silicon single crystal ingot production apparatus, and more particularly, to a silicon single crystal ingot production apparatus for growing a silicon single crystal ingot from a molten silicon melt in a crucible by the Czochralski (CZ) method.

일반적으로 실리콘 웨이퍼용 실리콘 단결정 잉곳을 생산하는 방법으로 쵸크랄스키 방법을 이용한다. 도 1에는 쵸크랄스키 방법을 이용하여 실리콘 단결정 잉곳을 생산하는 실리콘 단결정 잉곳 생산장치의 일례가 도시되어 있다.In general, the Czochralski method is used to produce silicon single crystal ingots for silicon wafers. Figure 1 shows an example of a silicon single crystal ingot production apparatus for producing a silicon single crystal ingot using the Czochralski method.

도 1을 참조하면, 실리콘 단결정 잉곳 생산장치(1)는 수용부(11)를 가지는 케이스(10)와, 실리콘 융액이 저장되는 석영 도가니(20)와, 석영 도가니(20)에 저장된 실리콘 융액을 가열하는 히터(30)와, 종결정(Seed)(41) 및 종결정(41)에 연결된 케이블(40)과, 케이스(10)에 관통 형성되는 뷰포트(12)에 끼워지는 창부재(50)를 구비한다.Referring to FIG. 1, a silicon single crystal ingot production apparatus 1 includes a case 10 having a receiving portion 11, a quartz crucible 20 in which a silicon melt is stored, and a silicon melt stored in a quartz crucible 20. A window member 50 fitted to the heater 30 to be heated, the seed 41 and the cable 40 connected to the seed crystal 41, and the viewport 12 formed through the case 10. It is provided.

상기한 실리콘 단결정 잉곳 생산장치(1)를 사용하여 실리콘 단결정 잉곳을 생산하는 과정을 살펴보면, 석영 도가니(20)에 초 고순도의 다결정 실리콘(Poly silicon)과 안티몬(Sb)을 장입한 후 히터(30)로 가열하여 용융시킨다. 이후, 융해된 실리콘 융액 내에 종결정(41)을 담근 후, 회전시키면서 서서히 끌어올려 실리콘 단결정 잉곳을 성장시킨다. 이때, 창부재(50)를 투과하여 외부로 발산되는 빛은 직경측정기(60)에서 수광되고, 수광된 빛을 이용하여 실리콘 단결정 잉곳의 직경을 측정한다. 측정된 잉곳의 직경과 미리 설정된 기준 직경을 비교한 후, 그 결과에 따라 종결정(41)의 인상속도를 제어함으로써 실리콘 단결정 잉곳의 직경을 원하는 크기로 성장시킨다.Looking at the process of producing a silicon single crystal ingot using the silicon single crystal ingot production apparatus (1), the ultra-high purity polycrystalline silicon (Poly silicon) and antimony (Sb) is charged into the quartz crucible 20, and then the heater 30 Heat to melt). Subsequently, the seed crystal 41 is immersed in the molten silicon melt, and then slowly pulled up while growing to grow a silicon single crystal ingot. In this case, the light transmitted through the window member 50 and emitted to the outside is received by the diameter measuring device 60, and the diameter of the silicon single crystal ingot is measured using the received light. After comparing the measured diameter of the ingot and the preset reference diameter, the diameter of the silicon single crystal ingot is grown to a desired size by controlling the pulling speed of the seed crystal 41 according to the result.

하지만, 상술한 바와 같이 실리콘 단결정 잉곳을 생산하는 과정 중 석영 도가니(20)에 장입된 안티몬이 가열되어 휘발하게 되고, 휘발된 안티몬과 석영 도가니(20)에서 방출된 산소가 반응하여 산화 안티몬(SixOy)을 생성하게 된다. 이렇게 생성된 산화 안티몬은 케이스 수용부(11) 내에 채워지며, 케이스 수용부(11) 중 상대적으로 온도가 낮은 케이스 내부벽 및 창부재(50)에 의해 냉각된다. 그리고 냉각된 산화 안티몬은 케이스 내부벽 및 창부재(50)에 증착하게 된다. 이와 같이 창부재(50)에 산화 안티몬이 증착하게 되면, 케이스 수용부(11)에서 발산되는 빛이 직경측정기(50)에서 정밀하게 측정되지 않으므로 실리콘 단결정 잉곳의 직경을 정확하게 측정할 수 없게 되며, 그 결과 생산되는 실리콘 단결정 잉곳의 직경 크기가 불균일하게 되는 문제점이 있었다. However, as described above, the antimony charged in the quartz crucible 20 is heated and volatilized during the process of producing the silicon single crystal ingot, and the volatilized antimony reacts with oxygen released from the quartz crucible 20 to react with antimony oxide (Si). x O y ) The antimony oxide thus produced is filled in the case accommodating part 11 and cooled by the case inner wall and the window member 50 having a relatively low temperature among the case accommodating parts 11. The cooled antimony oxide is deposited on the inner wall of the case and the window member 50. When antimony oxide is deposited on the window member 50 as described above, since the light emitted from the case accommodating part 11 is not measured precisely by the diameter measuring device 50, the diameter of the silicon single crystal ingot cannot be accurately measured. As a result, there was a problem that the diameter of the silicon single crystal ingot produced is non-uniform.

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명의 목적은 창부재에 증착되는 산화 안티몬의 양을 감소시킴으로서 실리콘 단결정 잉곳의 직경을 정확하게 측정하고, 이를 통하여 우수한 품질의 실리콘 단결정 잉곳을 생산가능하도록 구조가 개선된 실리콘 단결정 잉곳 생산장치를 제공하는 것이다.The present invention has been made to solve the above-described problems, an object of the present invention is to accurately measure the diameter of the silicon single crystal ingot by reducing the amount of antimony oxide deposited on the window member, thereby to obtain a good quality silicon single crystal ingot It is to provide a silicon single crystal ingot production apparatus whose structure is improved to be productive.

상기 목적을 달성하기 위하여, 본 발명에 따른 실리콘 단결정 잉곳 생산장치는 실리콘 융액이 저장되는 도가니와, 상기 도가니에 저장된 실리콘 융액을 가열하는 히터와, 실리콘 단결정 잉곳을 형성하기 위한 종결정에 연결되며, 승강가능하게 상기 도가니의 상측에 설치되는 케이블과, 광 투과성 소재로 이루어지는 창부재와, 상기 도가니와 히터와 케이블이 설치되는 수용부를 가지며, 상기 수용부 내의 광이 상기 창부재를 투과하여 외부로 발산되도록 상기 창부재가 결합되는 케이스를 포함하는 실리콘 단결정 잉곳 생산장치에 있어서, 상기 창부재를 통하여 상기 케이스의 외부로 유출되는 열을 감소시키기 위하여 상기 창부재와 마주보도록 상기 케이스의 외부에 배치되며, 광 투과성 소재로 이루어진 보조창부재를 더 구비하는 것을 특징으로 한다.In order to achieve the above object, the silicon single crystal ingot production apparatus according to the present invention is connected to a crucible in which the silicon melt is stored, a heater for heating the silicon melt stored in the crucible, and a seed crystal for forming a silicon single crystal ingot, A cable provided on an upper side of the crucible so as to be able to move up and down, a window member made of a light transmissive material, and a receiving part to which the crucible, a heater and a cable are installed, and light in the receiving part passes through the window member and radiates to the outside In the silicon single crystal ingot production apparatus comprising a case to which the window member is coupled to, wherein the window member is disposed outside of the case to face the window member to reduce the heat flowing out of the case through the window member, Further comprising an auxiliary window member made of a light transmitting material .

상기한 구성의 본 발명에 따르면, 창부재에 증착되는 산화 안티몬의 양을 용이하게 감소시킬 수 있다. 따라서, 생산되는 실리콘 단결정 잉곳의 직경을 정밀하 게 측정할 수 있으며, 그 결과 우수한 품질의 실리콘 단결정 잉곳을 생산할 수 있다. According to the present invention having the above-described configuration, the amount of antimony oxide deposited on the window member can be easily reduced. Therefore, the diameter of the silicon single crystal ingot to be produced can be precisely measured, and as a result, silicon single crystal ingot of good quality can be produced.

도 2는 본 발명의 일 실시예에 따른 실리콘 단결정 잉곳 생산장치의 개략적인 단면도이다.2 is a schematic cross-sectional view of a silicon single crystal ingot production apparatus according to an embodiment of the present invention.

도 2를 참조하면, 실리콘 단결정 잉곳 생산장치(100)는 케이스(110)와, 창부재(120)와, 보조창부재(121)와, 도가니(130)와, 히터(150)와, 보온벽(160)과, 케이블(170)과, 직경측정기(180)를 구비한다.2, the silicon single crystal ingot production apparatus 100 includes a case 110, a window member 120, an auxiliary window member 121, a crucible 130, a heater 150, and a thermal insulation wall ( 160, a cable 170, and a diameter gauge 180.

케이스(110)는 중공 형상으로 이루어지며, 내부에는 수용부(111)가 형성되어 있다. 또한 케이스(110)에는 배출구(112)와 관통공(113)과 플랜지부(114)가 형성되어 있다. 배출구(112)는 실리콘 단결정 잉곳이 배출되는 통로이며, 케이스(110)의 상부에 관통 형성된다. 관통공(113)은 수용부 내에서 발산되는 광이 외부로 발산되는 통로이며, 케이스(110) 상부의 일측에 관통 형성된다. 플랜지부(114)는 관통공(113)을 감싸며 케이스(110)의 외부 방향으로 돌출 형성된다.Case 110 is made of a hollow shape, the receiving portion 111 is formed therein. In addition, the case 110 has an outlet 112, a through hole 113, and a flange portion 114. The outlet 112 is a passage through which the silicon single crystal ingot is discharged and is formed through the upper portion of the case 110. The through hole 113 is a passage through which light emitted from the receiving portion is emitted to the outside, and is formed through one side of the case 110. The flange portion 114 surrounds the through hole 113 and protrudes outward from the case 110.

창부재(120)는 케이스의 관통공(113)에 끼워져 결합된다. 창부재(120)는 내열성이 강하며 광을 투과할 수 있는 소재로 이루어지며, 특히 본 실시예에서는 석영으로 이루어진다. Window member 120 is fitted into the through hole 113 of the case is coupled. Window member 120 is made of a material that is strong heat resistance and can transmit light, in particular in the present embodiment is made of quartz.

보조창부재(121)는 창부재(120)와 마주보게 배치된다. 보조창부재(121)는 케이스 플랜지부(114)의 단부에 결합되어, 창부재(120)와 서로 이격된다. 보조창부재(121)와 창부재(120) 사이에는 보조창부재(121)와, 창부재(120)와, 플랜지 부(114)로 둘러싸인 공간부(122)가 형성된다. 공간부(122)와 보조창부재(121)는 창부재(120)를 단열시킴으로서 창부재(120)의 온도를 높은 상태로 유지시킨다. 상세히 설명하면, 케이스(110) 내부의 열은 창부재(120)를 통해 전도되어 공간부(122)로 전달된다. 전달된 열은 공간부(122)를 가열시키고 이후 보조창부재(121)를 통해 전도되어 케이스(110) 외부로 유출된다. 이러한 과정 중 보조창부재(121)와 플랜지부(114)는 공간부(122)를 격리함으로써 공간부(122)의 온도를 케이스(110) 외부의 온도보다 높은 상태로 유지시킨다. 그리고 창부재(120)를 통하여 공간부(122)로 유출되는 열량은 공간부(122)와 케이스 수용부(111)의 온도 차이에 비례하는데, 상술한 바와 같이 공간부(122)의 온도가 높은 상태로 유지되므로 창부재(120)를 통해 유출되는 열량이 감소하게 되며, 그 결과 창부재(120)의 온도가 높은 상태로 유지된다. The auxiliary window member 121 is disposed to face the window member 120. The auxiliary window member 121 is coupled to an end of the case flange part 114 and spaced apart from the window member 120. Between the auxiliary window member 121 and the window member 120, an auxiliary window member 121, a window member 120, and a space portion 122 surrounded by the flange portion 114 is formed. The space part 122 and the auxiliary window member 121 insulate the window member 120 to maintain the temperature of the window member 120 in a high state. In detail, heat inside the case 110 is transferred through the window member 120 and transferred to the space 122. The transferred heat heats the space 122 and is then conducted through the auxiliary window member 121 to flow out of the case 110. During this process, the auxiliary window member 121 and the flange portion 114 maintain the temperature of the space portion 122 higher than the temperature outside the case 110 by isolating the space portion 122. The amount of heat flowing out of the space 122 through the window member 120 is proportional to the temperature difference between the space 122 and the case accommodating portion 111. As described above, the temperature of the space 122 is high. Since the amount of heat flowing out through the window member 120 is reduced, the temperature of the window member 120 is maintained in a high state.

도가니(130)는 석영으로 이루어지며, 케이스(110)의 수용부(111)에 회전 가능하게 설치된다. 도가니(130)에는 폴리 실리콘 및 안티몬이 장입된다. 도가니(130)는 후술할 히터(150)에 의해 가열되며, 도가니(130)의 가열시 폴리 실리콘이 융해되어 실리콘 융액이 된다. 그리고 도가니(130)에는 흑연으로 이루어진 도가니 지지대(140)가 도가니(130)를 감싸며 결합되며, 이 지지대(140)는 회전축(141)에 고정된다. 회전축(141)은 케이스(110)에 대하여 회전가능하게 설치되며, 그 회전시 도가니(130)와 함께 회전한다. The crucible 130 is made of quartz and is rotatably installed in the receiving portion 111 of the case 110. The crucible 130 is filled with polysilicon and antimony. The crucible 130 is heated by the heater 150, which will be described later, and polysilicon melts when the crucible 130 is heated to form a silicon melt. The crucible 130 is made of graphite, and the crucible support 140 is formed to surround the crucible 130, and the support 140 is fixed to the rotation shaft 141. The rotating shaft 141 is rotatably installed with respect to the case 110, and rotates together with the crucible 130 during its rotation.

히터(150)는 중공의 원통형으로 형성되며, 그 내부에 도가니(130)가 배치된다. 히터(150)는 전원 인가시 도가니(130)를 가열하여 도가니(130) 내부에 존재하 는 폴리 실리콘을 융해시킨다.The heater 150 is formed in a hollow cylindrical shape, the crucible 130 is disposed therein. The heater 150 heats the crucible 130 when power is applied to melt the polysilicon present in the crucible 130.

보온벽(160)은 중공의 원통형으로 형성되며, 그 내부에 히터(150)와 도가니(130)가 배치된다. 보온벽(160)은 히터(150)에서 발산되는 열이 케이스(110)의 내벽 쪽으로 확산되는 것을 방지하여 열효율을 향상시키며, 고온의 복사열로부터 케이스(110)의 내벽을 보호한다.The insulating wall 160 is formed in a hollow cylindrical shape, the heater 150 and the crucible 130 is disposed therein. The thermal insulation wall 160 prevents the heat emitted from the heater 150 from spreading toward the inner wall of the case 110 to improve thermal efficiency, and protects the inner wall of the case 110 from high temperature radiant heat.

케이블(170)은 케이스(110)의 배출구(112)를 통과하도록 설치되며, 구동수단(미도시)과 연결되어 회전 및 승강가능하다. 그리고 케이블(170)의 일단에는 종결정(171)이 결합되어 있다. 종결정(171)은 도가니(130) 내의 실리콘 융액에 담긴 후, 케이블(170)과 함께 회전 및 상승하면서 실리콘 단결정 잉곳으로 성장하게 된다.The cable 170 is installed to pass through the outlet 112 of the case 110 and is connected to a driving means (not shown) to be rotatable and liftable. The seed crystal 171 is coupled to one end of the cable 170. The seed crystal 171 is immersed in the silicon melt in the crucible 130, and grows into a silicon single crystal ingot while rotating and rising with the cable 170.

직경측정기(180)는 보조창부재(121)와 마주보도록 케이스(110) 외부에 설치된다. 직경측정기(180)는 실리콘 단결정 잉곳의 성장시 실리콘 단결정 잉곳과 실리콘 융액이 만나는 지점, 즉 메니서커스(Meniscus)에서 발산되는 빛을 연속적으로 수광하며, 수광되는 빛을 이용하여 성장하는 실리콘 단결정 잉곳의 직경을 지속적으로 측정한다. The diameter measuring unit 180 is installed outside the case 110 to face the auxiliary window member 121. The diameter measuring unit 180 continuously receives the light emitted from the point where the silicon single crystal ingot meets the silicon melt when the silicon single crystal ingot grows, that is, the meniscus, and grows the silicon single crystal ingot using the received light. Measure the diameter continuously.

이하, 상술한 바와 같이 구성된 실리콘 단결정 잉곳 생산장치(100)를 사용하여 실리콘 단결정 잉곳을 생산하는 방법을 간략하게 설명하기로 한다.Hereinafter, a method of producing a silicon single crystal ingot using the silicon single crystal ingot production apparatus 100 configured as described above will be briefly described.

먼저, 도가니(130)에 폴리 실리콘과 안티몬을 장입한 후, 도가니(130)를 히터(150)로 가열하여 폴리 실리콘을 융해시킨다. 폴리 실리콘이 융해되면 케이블(170)을 하강시켜 케이블(170)에 연결된 종결정(171)을 실리콘 융액에 담근다. 이후, 도가니(130)와 케이블(170)을 서로 반대방향으로 회전하면서 케이블(170)을 서서히 상승시키면 실리콘 단결정 잉곳이 성장하게 된다. 이때, 직경측정기(180)로 성장하는 실리콘 단결정 잉곳의 직경을 측정하고, 측정된 직경 크기에 따라서 케이블의 상승속도를 제어함으로써 실리콘 단결정 잉곳의 직경을 원하는 크기로 성장시킨다. 예를 들어, 실리콘 단결정 잉곳의 직경이 기준 직경보다 더 크게 성장되는 경우에는 케이블(170)을 빠르게 인상하고, 기준 직경보다 작게 성장되는 경우에는 케이블(170)을 천천히 인상함으로써 실리콘 단결정 잉곳을 기준 직경의 크기로 성장시키게 된다.First, after charging polysilicon and antimony into the crucible 130, the crucible 130 is heated by the heater 150 to melt the polysilicon. When the polysilicon is melted, the cable 170 is lowered to immerse the seed crystal 171 connected to the cable 170 in the silicon melt. Thereafter, when the crucible 130 and the cable 170 are rotated in opposite directions to each other and the cable 170 is gradually raised, the silicon single crystal ingot grows. At this time, the diameter of the silicon single crystal ingot grown by the diameter measuring unit 180 is measured, and the diameter of the silicon single crystal ingot is grown to a desired size by controlling the rising speed of the cable according to the measured diameter size. For example, when the diameter of the silicon single crystal ingot grows larger than the reference diameter, the cable 170 is pulled up quickly, and when the diameter of the silicon single crystal ingot grows smaller than the reference diameter, the silicon single crystal ingot is pulled up slowly by the reference diameter. It grows to the size of.

한편, 상기한 실리콘 단결정 잉곳의 성장과정에서는 도가니(130)가 고온으로 가열되므로 도가니(130)에 장입되어 있는 안티몬이 열에 의해 휘발되고, 이 안티몬이 산소와 반응하여 산화 안티몬을 생성하게 된다. 생성된 산화 안티몬은 케이스(110)의 내벽 중 온도가 낮은 부분에서 집중적으로 증착하게 되는데, 산화 안티몬이 창부재(120)에 증착되면 이 산화 안티몬에 의해 케이스(110) 내부에서 발산된 빛이 창부재(120)를 투과하는데 방해를 받게 된다. 따라서, 실리콘 단결정 잉곳의 직경을 측정하는데 오차가 발생하여 실리콘 단결정 잉곳을 동일한 직경으로 성장시킬 수 없게 되며, 그 결과 생산되는 실리콘 단결정 잉곳의 품질이 저하되게 된다. Meanwhile, in the growth process of the silicon single crystal ingot, since the crucible 130 is heated to a high temperature, antimony charged in the crucible 130 is volatilized by heat, and the antimony reacts with oxygen to generate antimony oxide. The produced antimony oxide is concentrated on the low temperature part of the inner wall of the case 110. When antimony oxide is deposited on the window member 120, the light emitted from the inside of the case 110 by the antimony oxide window is emitted. Interfere with transmission of member 120. Therefore, an error occurs in measuring the diameter of the silicon single crystal ingot, so that the silicon single crystal ingot cannot be grown to the same diameter, and as a result, the quality of the produced silicon single crystal ingot is degraded.

하지만 본 실시예에 따른 실리콘 단결정 잉곳 생산장치(100)에서는 보조창부재(121)에 의해 창부재(120)와 맞닿는 공간부(122)의 온도가 높은 상태로 유지된다. 따라서, 창부재(120)를 통하여 공간부(122)로 유출되는 열량이 감소하게 되며, 그 결과 창부재(120)의 온도가 종래보다 높은 상태로 유지되게 된다. 이와 같 이 창부재(120)의 온도가 높은 상태로 유지되므로, 창부재(120)에 증착되는 산화 안티몬의 양이 감소하게 된다. 그 결과, 실리콘 단결정 잉곳의 직경을 정밀하게 측정할 수 있고, 이를 이용하여 케이블(170)의 상승 속도를 적절하게 조절함으로써 생산되는 실리콘 단결정 잉곳의 직경을 동일하게 할 수 있다. However, in the silicon single crystal ingot production apparatus 100 according to the present embodiment, the temperature of the space portion 122 contacting the window member 120 by the auxiliary window member 121 is maintained at a high state. Therefore, the amount of heat flowing out into the space 122 through the window member 120 is reduced, and as a result, the temperature of the window member 120 is maintained at a higher state than before. As such, since the temperature of the window member 120 is maintained at a high state, the amount of antimony oxide deposited on the window member 120 is reduced. As a result, the diameter of the silicon single crystal ingot can be precisely measured, and the diameter of the silicon single crystal ingot produced can be equalized by appropriately adjusting the rising speed of the cable 170 using the same.

또한, 상술한 바와 같이 보조창부재(121)가 케이스(110)의 플랜지부(114)에 결합되므로 실리콘 단결정 잉곳 생산장치(100)를 용이하게 생산할 수 있다. 나아가 이미 제작되어 사용되고 있는 실리콘 단결정 잉곳 생산장치에도 보조창부재(121)를 추가적으로 설치하기만 하면 창부재(120)를 단열시킬 수 있으며 그 결과 동일한 직경을 가지는 실리콘 단결정 잉곳을 생산할 수 있게 된다.In addition, since the auxiliary window member 121 is coupled to the flange portion 114 of the case 110 as described above, the silicon single crystal ingot production apparatus 100 may be easily produced. Furthermore, simply installing the auxiliary window member 121 in the silicon single crystal ingot production apparatus already manufactured and used can insulate the window member 120, and as a result, it is possible to produce a silicon single crystal ingot having the same diameter.

한편, 상술한 바와 같이 보조창부재(121)를 설치함으로써 창부재(120)의 온도가 높아지는 것을 확인하기 위하여, 실리콘 단결정 잉곳의 성장과정 중 창부재(120)의 온도를 보조창부재(121)를 설치하지 않은 경우 및 보조창부재(121)를 창부재(120)와 이격되게 설치한 경우에 따라 측정해 보았으며, 그 결과를 <표 1>에 기재하였다. Meanwhile, in order to confirm that the temperature of the window member 120 is increased by installing the auxiliary window member 121 as described above, the auxiliary window member 121 is installed to adjust the temperature of the window member 120 during the growth process of the silicon single crystal ingot. If not and the auxiliary window member 121 was measured according to the case in which the window member 120 is spaced apart, the results are shown in Table 1.

창부재의 온도분포  Temperature distribution of the window member 보조창부재 설치전 (도 1에 도시되어 있는 구조)  Before installing the auxiliary window member (structure shown in Figure 1) 340 ~ 358 ℃  340 ~ 358 ℃ 창부재와 보조창부재 사이에 공기층이 존재하도록 보조창부재를 설치한 경우 (도 2에 도시되어 있는 구조)  When the auxiliary window member is installed so that an air layer exists between the window member and the auxiliary window member (structure shown in FIG. 2) 400 ~ 531 ℃  400 ~ 531 ℃

<표 1>을 참조하면, 보조창부재(121)를 창부재(120)와 이격되게 설치하는 경우 창부재(120)의 온도가 높은 상태로 유지됨을 확인할 수 있다. 따라서, 창부재(120)에 증착되는 산화 안티몬의 양이 감소하게 되며, 그 결과 동일한 직경을 가지는 실리콘 단결정 잉곳을 생산할 수 있게 된다.Referring to <Table 1>, it can be seen that the temperature of the window member 120 is maintained in a high state when the auxiliary window member 121 is spaced apart from the window member 120. Therefore, the amount of antimony oxide deposited on the window member 120 is reduced, and as a result, it is possible to produce a silicon single crystal ingot having the same diameter.

한편, 본 실시예에서는 창부재(120)와 보조창부재(121)가 서로 이격되어 결합되도록 구성되어 있으나, 도 3에 도시되어 있는 바와 같이 창부재(120)와 보조창부재(121)가 서로 밀착되어 결합되도록 구성할 수 있으며, 이와 같이 창부재(120)와 보조창부재(121)가 밀착되어 결합된 경우에도 창부재(120)의 온도가 높은 상태로 유지되는지를 확인하기 위하여 <표 2>에 기재된 실험을 진행하였다. Meanwhile, in this embodiment, the window member 120 and the auxiliary window member 121 are configured to be spaced apart from each other, but as shown in FIG. 3, the window member 120 and the auxiliary window member 121 are closely attached to each other. The window member 120 and the auxiliary window member 121 may be configured to be coupled to each other so as to check whether the temperature of the window member 120 is maintained in a high state even when the window member 120 and the auxiliary window member 121 are closely coupled to each other. The experiment was conducted.

<표 2>는 실리콘 단결정 잉곳의 성장과정 중 창부재(120)의 온도를 보조창부재(121)를 설치하지 않은 경우와 보조창부재(121)와 창부재(120)가 밀착되도록 설치한 경우에 따라 측정한 결과이다.Table 2 shows the temperature of the window member 120 during the growth process of the silicon single crystal ingot when the auxiliary window member 121 is not installed and the auxiliary window member 121 and the window member 120 are installed in close contact with each other. It is a result of a measurement.

창부재의 온도분포  Temperature distribution of window members 보조창부재 설치전 (도 1에 도시되어 있는 구조)  Before installing the auxiliary window member (structure shown in Figure 1) 340 ~ 358 ℃   340 ~ 358 ℃ 창부재와 보조창부재가 상호 밀착되도록 결합시킨 경우 (도 3에 도시되어 있는 구조)  When the window member and the auxiliary window member is combined to be in close contact with each other (structure shown in Figure 3) 358 ~ 383 ℃  358 ~ 383 ℃

<표 2>를 참조하면, 보조창부재(121)를 창부재(120)와 밀착되도록 설치하는 경우에도 창부재(120)의 온도가 높은 상태로 유지됨을 확인할 수 있다. 다만, 보조창부재(121)와 창부재(120) 사이에 공기층이 존재하지 않으므로, 보조창부재(121)를 창부재(120)와 이격되게 설치하는 경우에 비하여 창부재(120)를 단열시키는 효율이 감소하게 되며, 그 결과 창부재(120)의 온도가 낮아지게 됨을 알 수 있다.Referring to <Table 2>, even when the auxiliary window member 121 is installed to be in close contact with the window member 120, it can be seen that the temperature of the window member 120 is maintained in a high state. However, since there is no air layer between the auxiliary window member 121 and the window member 120, the efficiency of insulating the window member 120 compared to the case where the auxiliary window member 121 is spaced apart from the window member 120. It can be seen that as a result, the temperature of the window member 120 is lowered.

이상, 본 발명을 바람직한 실시예들을 들어 상세하게 설명하였으나, 본 발명은 상기 실시예들에 한정되지 않으며, 본 발명의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함은 명백하다.As mentioned above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications may be made by those skilled in the art within the technical idea of the present invention. It is obvious.

예를 들어, 본 실시예에서는 케이스(110)와 플랜지부(114)가 일체로 형성되고 이 플랜지부에 보조창부재(121)가 결합되도록 구성되어 있으나, 도 4에 도시되어 있는 바와 같이 케이스와 플랜지부(114')가 서로 분리 가능하게 구성할 수도 있다. For example, in this embodiment, the case 110 and the flange portion 114 are integrally formed and the auxiliary window member 121 is coupled to the flange portion, but as shown in FIG. Branches 114 'may be configured to be separated from each other.

도 1은 종래의 실리콘 단결정 잉곳 생산장치의 개략적인 단면도이다.1 is a schematic cross-sectional view of a conventional silicon single crystal ingot production apparatus.

도 2는 본 발명의 일 실시예에 따른 실리콘 단결정 잉곳 생산장치의 개략적인 단면도이다.2 is a schematic cross-sectional view of a silicon single crystal ingot production apparatus according to an embodiment of the present invention.

도 3은 본 발명의 다른 실시예에 따른 실리콘 단결정 잉곳 생산장치를 설명하기 위한 확대도로서, 도 2의 A에 대응하는 부분을 확대한 부분확대도이다.3 is an enlarged view illustrating a silicon single crystal ingot production apparatus according to another exemplary embodiment of the present invention, and is an enlarged partial enlarged view of a portion corresponding to A of FIG. 2.

도 4는 본 발명의 또 다른 실시예에 따른 실리콘 단결정 잉곳 생산장치를 설명하기 위한 확대도로서, 도 2의 A에 대응하는 부분을 확대한 부분확대도이다.FIG. 4 is an enlarged view illustrating a silicon single crystal ingot production apparatus according to still another embodiment of the present invention, and is an enlarged partial enlarged view of a portion corresponding to A of FIG. 2.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

100...실리콘 단결정 잉곳 생산장치 110...케이스100 ... Silicone Monocrystalline Ingot Production Equipment 110 ... Case

120...창부재 121...보조창부재120 ... window member 121 ... auxiliary window member

130...도가니 140...도가니 지지대130 ... crucible 140 ... crucible support

150...히터 160...보온벽150 ... heater 160 ... heat insulation wall

170...케이블 171...종결정170 cable 171 seed crystal

180...직경측정기180 ... diameter

Claims (4)

실리콘 융액이 저장되는 도가니;A crucible in which the silicon melt is stored; 상기 도가니에 저장된 실리콘 융액을 가열하는 히터;A heater for heating the silicon melt stored in the crucible; 실리콘 단결정 잉곳을 형성하기 위한 종결정에 연결되며, 승강가능하게 상기 도가니의 상측에 설치되는 케이블;A cable connected to a seed crystal for forming a silicon single crystal ingot and installed on an upper side of the crucible so as to be movable; 광 투과성 소재로 이루어지는 창부재; 및A window member made of a light transmitting material; And 상기 도가니와 히터와 케이블이 설치되는 수용부를 가지며, 상기 수용부 내의 광이 상기 창부재를 투과하여 외부로 발산되도록 상기 창부재가 결합되는 케이스;를 포함하는 실리콘 단결정 잉곳 생산장치에 있어서,In the silicon single crystal ingot production apparatus comprising: a case having a crucible, a receiving portion and a cable is installed, the case is coupled to the window member so that light in the receiving portion is transmitted through the window member to the outside, 상기 창부재를 통하여 상기 케이스의 외부로 유출되는 열을 감소시키기 위하여 상기 창부재와 마주보도록 상기 케이스에 결합되며, 광 투과성 소재로 이루어진 보조창부재;를 더 구비하는 것을 특징으로 하는 실리콘 단결정 잉곳 생산장치. Silicon single crystal ingot production apparatus further comprises; an auxiliary window member made of a light-transmissive material coupled to the case to face the window member to reduce the heat flowing out of the case through the window member; . 제 1항에 있어서,The method of claim 1, 상기 케이스에는 상기 창부재가 끼워지는 관통공과, 상기 관통공을 감싸며 상기 케이스의 외부를 향하여 돌출 형성되는 플랜지부가 형성되어 있으며,The case has a through hole in which the window member is fitted, and a flange portion formed to surround the through hole and protrude toward the outside of the case, 상기 보조창부재는 상기 창부재와 이격되도록 상기 플랜지부에 결합되는 것을 특징으로 하는 실리콘 단결정 잉곳 생산장치. The auxiliary window member is silicon single crystal ingot production apparatus, characterized in that coupled to the flange portion so as to be spaced apart from the window member. 제 1항에 있어서,The method of claim 1, 상기 보조창부재는 내열성 소재로 이루어지는 것을 특징으로 하는 실리콘 단결정 잉곳 생산장치.The auxiliary window member is a silicon single crystal ingot production apparatus, characterized in that made of a heat-resistant material. 제 3항에 있어서,The method of claim 3, wherein 상기 보조창부재는 석영으로 이루어지는 것을 특징으로 하는 실리콘 단결정 잉곳 생산장치.The auxiliary window member is a silicon single crystal ingot production apparatus, characterized in that made of quartz.
KR1020070098628A 2007-10-01 2007-10-01 Apparatus of manufacturing silicon single crystal ingot KR100872806B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070098628A KR100872806B1 (en) 2007-10-01 2007-10-01 Apparatus of manufacturing silicon single crystal ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070098628A KR100872806B1 (en) 2007-10-01 2007-10-01 Apparatus of manufacturing silicon single crystal ingot

Publications (1)

Publication Number Publication Date
KR100872806B1 true KR100872806B1 (en) 2008-12-09

Family

ID=40372204

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070098628A KR100872806B1 (en) 2007-10-01 2007-10-01 Apparatus of manufacturing silicon single crystal ingot

Country Status (1)

Country Link
KR (1) KR100872806B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467117B1 (en) * 2013-09-26 2014-11-28 주식회사 엘지실트론 Ingot growing apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297480A (en) * 1988-10-05 1990-04-10 Mitsubishi Metal Corp Single crystal pulling up device
JPH0948692A (en) * 1995-08-01 1997-02-18 Japan Energy Corp Single crystal production apparatus
JPH09309787A (en) * 1996-05-20 1997-12-02 Sumitomo Sitix Corp Eater-cooling tower for single crystal-pulling up apparatus
KR19980032806A (en) * 1996-10-15 1998-07-25 헨넬리헬렌에프 Method and Apparatus for Controlling Oxygen Content in Highly Doped Silicon Wafers with Antimony or Arsenic

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0297480A (en) * 1988-10-05 1990-04-10 Mitsubishi Metal Corp Single crystal pulling up device
JPH0948692A (en) * 1995-08-01 1997-02-18 Japan Energy Corp Single crystal production apparatus
JPH09309787A (en) * 1996-05-20 1997-12-02 Sumitomo Sitix Corp Eater-cooling tower for single crystal-pulling up apparatus
KR19980032806A (en) * 1996-10-15 1998-07-25 헨넬리헬렌에프 Method and Apparatus for Controlling Oxygen Content in Highly Doped Silicon Wafers with Antimony or Arsenic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101467117B1 (en) * 2013-09-26 2014-11-28 주식회사 엘지실트론 Ingot growing apparatus

Similar Documents

Publication Publication Date Title
US8123855B2 (en) Device and process for growing Ga-doped single silicon crystals suitable for making solar cells
CN111020691A (en) System and control method for drawing crystal bar
US7608145B2 (en) Method and apparatus of growing silicon single crystal and silicon wafer fabricated thereby
US20110079175A1 (en) Image sensor and method for manufacturing the same
KR101574749B1 (en) Upper heater for manufacturing single crystal, single crystal manufacturing apparatus and single crystal manufacturing method
CN107849728B (en) System and method for low oxygen crystal growth using a two-layer continuous Czochralsk method
KR20160090288A (en) Method for producing silicon single crystal
WO2018154874A1 (en) Method for manufacturing silicon single crystal, flow straightening member, and single crystal pulling device
JP2013513545A (en) Germanium ingot / wafer with low micropit density (MPD), and manufacturing system and manufacturing method thereof
KR102038960B1 (en) Silicon single crystal manufacturing method
KR100872806B1 (en) Apparatus of manufacturing silicon single crystal ingot
KR20090127295A (en) Method of growing single crystal and single crystal pulling apparatus
CN111088525B (en) Device for preparing single crystal and method for preparing silicon carbide single crystal
CN102639763B (en) Single-crystal manufacturing apparatus and monocrystalline manufacture method
KR102422843B1 (en) Method of estimating oxygen concentration of silicon single crystal and manufacturing method of silicon single crystal
WO2023051693A1 (en) Nitrogen dopant feeding apparatus and method, and system for manufacturing nitrogen-doped monocrystalline silicon rod
JP2012106870A (en) Method of growing crystal
JP2023539379A (en) Crystal pulling system having a cover member for covering a silicon filling and method for growing a silicon melt in a crucible assembly
KR20150089717A (en) Apparatus and method for growing ingot
KR20130007354A (en) Apparatus for growing silicon crystal and method for growing silicon crystal using the same
KR100843019B1 (en) Module providing thermal environment in apparatus for growing semiconductor single crystal based on Czochralski and Apparatus using the same
JP7420060B2 (en) Single crystal manufacturing equipment
JP2002255684A (en) Manufacturing method of silicone monocrystal ingot
KR100869218B1 (en) Method for Determining Distance of Heat Shield and Manufacturing Apparatus of Silicon Single Crystal Ingot Using the Same
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121011

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20130926

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140926

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150924

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160928

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20170927

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20181004

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20190924

Year of fee payment: 12