JP2939601B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP2939601B2
JP2939601B2 JP3864392A JP3864392A JP2939601B2 JP 2939601 B2 JP2939601 B2 JP 2939601B2 JP 3864392 A JP3864392 A JP 3864392A JP 3864392 A JP3864392 A JP 3864392A JP 2939601 B2 JP2939601 B2 JP 2939601B2
Authority
JP
Japan
Prior art keywords
single crystal
temperature
chamber
crucible
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3864392A
Other languages
Japanese (ja)
Other versions
JPH05208888A (en
Inventor
一男 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP3864392A priority Critical patent/JP2939601B2/en
Publication of JPH05208888A publication Critical patent/JPH05208888A/en
Application granted granted Critical
Publication of JP2939601B2 publication Critical patent/JP2939601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、CZ法による単結晶製
装置に関する。
The present invention relates relates to apparatus for producing a single crystal by the CZ method.

【0002】[0002]

【従来の技術】CZ法を用いて単結晶を引き上げる場
合、結晶歩留りや結晶冷却速度を上げるため、単結晶引
き上げの各工程すなわち絞り、肩広げ、直胴部形成、テ
ール形成に応じて、チャンバ、ヒータ電極等の温度を最
適状態に制御する必要がある。これについては、下記の
引き上げ方法引き上げ装置が知られている。 (1)特開昭62−197398号公報に示されている
ように、単結晶の引き上げ工程に応じてシード軸および
るつぼ軸の冷却水温度流量に特定の変化を与えなが
ら単結晶を成長させ、結晶成長界面の形状を均一に保持
することにより、良質の単結晶を高い歩留りで得る単結
晶引き上げ方法。 (2)実開平1−94468号公報に示されているよう
に、るつぼを収納したチャンバの上端面に、単結晶を囲
んだ状態で冷却する冷却筒を着脱自在に垂設することに
より、単結晶の直径に応じた適正な冷却効果を与え、単
結晶の品質を良好に保持する引き上げ装置。
2. Description of the Related Art When a single crystal is pulled using the CZ method, a chamber is formed in accordance with each step of pulling a single crystal, ie, drawing, shoulder expansion, straight body formation, and tail formation, in order to increase the crystal yield and the crystal cooling rate. It is necessary to control the temperature of the heater electrodes and the like to an optimum state. Regarding this, the following lifting method and lifting device are known. (1) As shown in JP-A-62-197398, a single crystal is grown while giving a specific change in the temperature and flow rate of the cooling water for the seed shaft and the crucible shaft in accordance with the single crystal pulling process. A single crystal pulling method for obtaining a good quality single crystal at a high yield by maintaining the shape of the crystal growth interface uniform. (2) As shown in Japanese Utility Model Laid-Open Publication No. 1-94468, a cooling cylinder for cooling the single crystal in a state surrounding the single crystal is detachably provided vertically on the upper end surface of the chamber containing the crucible. A pulling device that gives an appropriate cooling effect according to the diameter of the crystal and maintains good quality of the single crystal.

【0003】[0003]

【発明が解決しようとする課題】上記特開昭62−19
7398号公報による単結晶引き上げ方法は、チャンバ
内の冷却能力が不足しているため、温度制御性特に立ち
上がり特性が悪く、結晶形状の制御も十分にできない。
また、実開平1−94468号公報による単結晶引き上
げ装置は、結晶冷却に対する効果は認められるが、結晶
形状に不可欠なチャンバ内温度制御速度および制御精度
の点で劣るため、結晶の歩留りを向上させることはでき
ない。_本発明は上記従来の問題点に着目し、良質でか
つ形状精度の高い単結晶を高い歩留りで得ることができ
る単結晶製造装置を提供することを目的とする。
SUMMARY OF THE INVENTION The above-mentioned Japanese Patent Application Laid-Open No. 62-19 / 1987
In the single crystal pulling method disclosed in Japanese Patent No. 7398, the cooling ability in the chamber is insufficient, so that the temperature controllability, especially the rising characteristic is poor, and the crystal shape cannot be sufficiently controlled.
The single crystal pulling apparatus disclosed in Japanese Utility Model Laid-Open No. 94468/1989 has an effect on crystal cooling, but is inferior in the temperature control speed and control accuracy in the chamber, which are indispensable for the crystal shape, and therefore improves the crystal yield. It is not possible. ______________________________________ The present invention pays attention to the above-mentioned conventional problems, and an object of the present invention is to provide a single crystal manufacturing apparatus capable of obtaining a single crystal of good quality and high shape accuracy at a high yield.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る第1発明は、チャンバ内に配設したる
つぼ内で溶融した半導体の融液から単結晶をこの単結晶
の周囲に不活性ガスを流下させつつ引き上げる単結晶製
造装置において、引上げ単結晶の外周を包囲する中空管
状部材をチャンバ内に有し、この中空管状部材の外周面
に、るつぼの融液面及びるつぼ内壁などの熱発生源から
の輻射熱をチャンバ上部内壁に反射させる凹状の曲面を
有すると共に、この曲面で反射した輻射熱を受けるチャ
ンバ上部を冷却する冷却水の温度を調節する水温調節装
置を有する構成としている。また、第2発明は、上記第
1発明の単結晶製造装置において、水温調節装置は冷却
水の温度の調節を単結晶引き上げの工程ごとに行うよう
にしている。
In order to achieve the above object, a first invention according to the present invention is provided in a chamber.
This single crystal is converted from a semiconductor melt melted in a crucible.
Made of single crystal that pulls up the inert gas while flowing down around
Hollow tube surrounding the periphery of a pulled single crystal
An outer peripheral surface of the hollow tubular member
From heat sources such as the melt surface of the crucible and the inner wall of the crucible.
A concave curved surface that reflects the radiant heat of the
And having, tea exposed to radiant heat reflected by the curved surface
It has a configuration that has a water temperature adjusting device that adjusts the temperature of the cooling water that cools the upper part of the chamber . The second invention is the first
In the single crystal manufacturing apparatus according to one aspect of the invention , the water temperature adjusting device adjusts the temperature of the cooling water for each single crystal pulling step.

【0005】[0005]

【作用】第1発明においては、るつぼ融液面及びるつぼ
内壁面から引上げ単結晶に向けて放射された輻射熱は、
引上げ単結晶の外周を包囲する中空管状部材の外周面に
形成した凹状の曲面で反射し、チャンバ上部内壁に達す
る。したがって、第1に、この輻射熱による不活性ガス
単結晶表面の温度上昇を直接的に抑制でき、 の為
結晶表面の温度上昇を小さく抑えられる。つまり、単結
晶を短時間で冷却することができ、単結晶の冷却速度を
向上できる。第2に、凹状の曲面で反射した輻射熱を受
けて温度上昇が大きいチャンバ上部を、水温調節装置に
より調節された冷却水で冷却するので、チャンバ上部に
ぶつかって生ずる不活性ガスの対流熱が冷却され、した
がって、高温の対流熱が不活性ガスや単結晶表面を間接
的にも加熱することがなくなる。すなわち、チャンバ内
の温度調節の精度が向上し、結晶形状や品質の精度も高
めることができ、単結晶の歩留りも改善できる。
According to the first aspect of the present invention , there are provided a crucible melt surface and a crucible.
The radiant heat radiated from the inner wall surface toward the pulled single crystal is
On the outer peripheral surface of the hollow tubular member surrounding the outer periphery of the pulled single crystal
Reflects on the concave curved surface and reaches the upper inner wall of the chamber
You. Therefore, first, the inert gas due to this radiant heat
And the temperature rise of the single crystal surface can be directly suppressed, is suppressed reduce the temperature rise of the single crystal surface because of this. That is , the single crystal can be cooled in a short time, and the cooling rate of the single crystal can be improved. Second, it receives radiant heat reflected by the concave curved surface.
The upper part of the chamber where the temperature rise is
Cooling with more conditioned cooling water
The convective heat of the inert gas generated by the collision was cooled,
As a result, high convection heat indirectly passes through the inert gas or single crystal surface.
No heating is required. That is, in the chamber
Temperature control accuracy and crystal shape and quality accuracy are high
And the yield of single crystals can be improved.

【0006】ところで、単結晶製造では複数工程を経る
ものであり、各工程ごとに適した温度に異ならせること
が普通である。さらにところで、上記第1発明によれ
ば、上記した通り、チャンバ内の温度調節を高精度で行
なえる。つまり、第2発明の「水温調節装置は冷却水の
温度の調節を単結晶引き上げの工程ごとに行う」のは、
上記のような作用及び効果を有する第1発明を利用する
ことにより、工程ごとの温度調節において短時間で、高
速に(応答性良く)温度を変更し、かつ維持できる。す
なわち、第2発明は第1発明においてこそ、その作用及
び効果を発揮する。したがって、チャンバ内の温度を精
度良く制御することができ、良質でかつ形状精度の高い
単結晶を高い歩留りで得ることができる
[0006] In the meantime, single crystal production involves a plurality of steps.
The temperature must be suitable for each process.
Is common. Further, according to the first aspect,
For example, as described above, the temperature inside the chamber is adjusted with high accuracy.
Lick That is, the “water temperature control device of the second invention
The temperature is adjusted for each single crystal pulling process. "
Utilize the first invention having the above-described functions and effects.
This makes it possible to quickly and
The temperature can be changed and maintained quickly (with good responsiveness). You
In other words, the second invention is the first invention only in its operation and effects.
And effect. Therefore, the temperature in the chamber can be controlled with high accuracy, and the quality and the shape accuracy are high.
A single crystal can be obtained with a high yield .

【0007】[0007]

【実施例】実施例の概略説明図である。Si単結
晶製造装置のチャンバ1と冷却水供給装置2との間に、
水温調節装置3(以後、インラインチラー3と言う)
設けられる。冷却水供給装置2は冷却水供給水管2a,
冷却水戻り水管2bを介してインラインチラー3に接続
されている。インラインチラー3は3a,3b,3c,
3dの4区画に区分され、インラインチラー3aと、図
示しないロードセルおよびシード軸との間、インライン
チラー3bとトップチャンバ1aとの間、インラインチ
ラー3cとメインチャンバ1bとの間およびインライン
チラー3dとヒータ電極4およびるつぼ軸5との間に、
それぞれ冷却水供給水管31,33,35,37と、冷
却水戻り水管32,34,36,38とが配設されてい
る。冷却水戻り水管32,34,36,38の水温は、
図示しない温度センサによって検出され、CZコントロ
ーラ6に入力される。また、CZコントローラ6の出力
配線6a,6b,6c,6dはそれぞれインラインチラ
ー3a,3b,3c,3dにそれぞれ接続され、ヒータ
4aの温度を検出する放射温度計7の出力配線7aおよ
び図示しないシード軸昇降用モータ、るつぼ軸昇降用モ
ータのエンコーダ出力配線は、前記CZコントローラ6
に接続されている。
FIG . 1 is a schematic explanatory view of an embodiment . Between the chamber 1 and the cooling water supply device 2 of the Si single crystal manufacturing device,
Temperature-controlled device 3 (hereinafter, referred to as in-line chiller 3) Ru provided. The cooling water supply device 2 includes a cooling water supply water pipe 2a,
The cooling water is connected to the in-line chiller 3 via a return water pipe 2b. In-line chiller 3 is 3a, 3b, 3c,
3d, divided into four sections, between the inline chiller 3a and a load cell and a seed shaft (not shown), between the inline chiller 3b and the top chamber 1a, between the inline chiller 3c and the main chamber 1b, and between the inline chiller 3d and the heater. Between the electrode 4 and the crucible shaft 5,
Cooling water supply water pipes 31, 33, 35, 37 and cooling water return water pipes 32, 34, 36, 38 are provided, respectively. The water temperature of the cooling water return water pipes 32, 34, 36, 38 is
The temperature is detected by a temperature sensor (not shown) and input to the CZ controller 6. Output wirings 6a, 6b, 6c, 6d of the CZ controller 6 are connected to in- line chillers 3a, 3b, 3c, 3d, respectively, and output wirings of a radiation thermometer 7 for detecting the temperature of the heater 4a. 7a and the encoder output wiring of the seed shaft elevating motor (not shown) and the crucible shaft elevating motor
It is connected to the.

【0008】チャンバ1内上部には、チャンバ1内を上
下動自在の中空管状部材上下軸9が設けられ、この中空
管状部材上下軸9の下端に、Si単結晶8の外周を包囲
する中空管状部材10が固着されている。中空管状部材
10の内周は、Si単結晶8の外周との間に不活性ガス
が流通する隙間を備え、中空管状部材10の外周は、
融液面11および石英るつぼ12の内壁からSi単結晶
8に放射される輻射熱をチャンバ内壁上部に反射させる
凹状の曲面を備えた、反射率の大きい材質で構成されて
いる。なお中空管状部材10は、その下端と融液面11
との間に一定の隙間を保つように、中空管状部材上下軸
9によって調節される。
In the upper part of the chamber 1, there is provided a hollow tubular member vertical shaft 9 which can move up and down in the chamber 1, and a hollow tubular member surrounding the outer periphery of the Si single crystal 8 is provided at the lower end of the hollow tubular member vertical shaft 9. The member 10 is fixed. The inner periphery of the hollow tubular member 10 is provided with a gap through which an inert gas flows between the outer periphery of the Si single crystal 8, and the outer peripheral surface of the hollow tubular member 10 is
The radiant heat radiated to the Si single crystal 8 from the melt surface 11 and the inner wall of the quartz crucible 12 is reflected to the upper portion of the inner wall of the chamber.
It is made of a material having a high reflectance with a concave curved surface. The hollow tubular member 10 has a lower end and a melt surface 11.
Is adjusted by the vertical axis 9 of the hollow tubular member so as to keep a constant gap between the hollow tubular member and the shaft.

【0009】上記インラインチラー3の機能について、
図2に基づいて説明する。は制御装置の構成を示す
ブロック図である。図に示した冷却水戻り水管32,
34,36,38にそれぞれ装着された水温センサ2
1,22,23,24の出力信号は、CZコントローラ
6内の戻り水温演算手段61,62,63,64に入力
され、各水温の演算が行われる。放射温度計7の出力信
号はヒータ温度演算手段65に入力されて、ヒータ温度
が演算され、シード軸昇降用モータエンコーダ25、る
つぼ軸昇降用モータエンコーダ26の出力信号は、それ
ぞれシード軸昇降速度演算手段66、るつぼ軸昇降速度
演算手段67に入力されて、各昇降速度が演算される。
Regarding the function of the inline chiller 3,
A description will be given based on FIG. FIG. 2 is a block diagram showing the configuration of the control device. Cooling water return water pipe 32 shown in FIG. 1,
Water temperature sensor 2 mounted on each of 34, 36, 38
Output signals 1, 2, 23, and 24 are input to return water temperature calculation means 61, 62, 63, and 64 in the CZ controller 6, and calculation of each water temperature is performed. The output signal of the radiation thermometer 7 is input to the heater temperature calculating means 65, where the heater temperature is calculated, and the output signals of the seed shaft elevating motor encoder 25 and the crucible shaft elevating motor encoder 26 are calculated by the seed shaft elevating speed calculation, respectively. The means 66 is input to the crucible shaft elevating speed calculating means 67, and each elevating speed is calculated.

【0010】製造装置部位別・単結晶成長工程別冷却水
温設定・記憶手段68aには、トップチャンバ、メイン
チャンバ、ヒータ等の部位別に、かつ、単結晶引き上げ
工程別に冷却水温が設定・記憶されている。たとえば絞
り工程では、ロードセルおよびシード軸に対してT1
1、トップチャンバに対してT21、メインチャンバに
対してT31、ヒータ電極およびるつぼ軸に対してT4
1、肩広げ工程では前記各部位別にT12,T22,T
32,T42であり、直胴形成工程では前記各部位別に
T13,T23,T33,T43である。これらの設定
値と、前記各演算手段による演算結果とに基づいて、製
造装置部位別・単結晶成長工程別冷却水温の可否判定手
段69aが冷却水温の可否を判定し、ロードセルおよび
シード軸冷却用チラー3a、トップチャンバ冷却用チラ
ー3b、メインチャンバ冷却用チラー3c、ヒータ電極
およびるつぼ軸冷却用チラー3dにそれぞれ指令信号V
C1,VC2,VC3,VC4を出力する。また、冷却
水温を調節する必要がある場合は、前記指令信号をVC
1’,VC2’,VC3’,VC4’に変更して出力す
る。
The cooling water temperature setting and storage means 68a for each part of the manufacturing apparatus and for each single crystal growth step stores and sets the cooling water temperature for each part such as a top chamber, a main chamber, and a heater, and for each single crystal pulling step. I have. For example, in the drawing process, T1 is applied to the load cell and the seed shaft.
1. T21 for top chamber, T31 for main chamber, T4 for heater electrode and crucible axis
1. In the shoulder expanding step, T12, T22, T
32, T42, and T13, T23, T33, T43 for each part in the straight body forming step. On the basis of these set values and the calculation results of the calculation means, the cooling water temperature availability determination means 69a for each part of the manufacturing apparatus and for each single crystal growth step determines whether or not the cooling water temperature is acceptable. A command signal V is supplied to each of the chiller 3a, the top chamber cooling chiller 3b, the main chamber cooling chiller 3c, the heater electrode, and the crucible shaft cooling chiller 3d.
C1, VC2, VC3, and VC4 are output. When it is necessary to adjust the cooling water temperature, the command signal is set to VC
1 ', VC2', VC3 ', and VC4'.

【0011】図はCZコントローラ6の制御を実行す
るフローチャートで、各ステップの左肩に記載した数字
はステップ番号である。ステップ1でインラインチラー
別冷却水温指令信号が出力される。まず第1工程すなわ
ち絞り工程において、ロードセルおよびシード軸冷却用
チラーの水温がT11になり、トップチャンバ冷却用チ
ラーの水温がT21になり、メインチャンバ冷却用チラ
ーの水温がT31になり、ヒータ電極およびるつぼ軸冷
却用チラーの水温がT41になるように、前記各チラー
にそれぞれ指令信号VC1,VC2,VC3,VC4が
出力される。次にステップ2で単結晶製造装置の各部位
からの戻り冷却水温t1,t2,t3,t4と、ヒータ
温度THとが読み込まれる。ステップ3では、戻り冷却
水温t1,t2,t3,t4と、ヒータ温度THとに基
づいて、同一工程内たとえば絞り工程内において前記T
11〜T41の変更が必要か否かを判定し、必要であれ
ばステップ4でインラインチラー別冷却水温変更指令信
号VC1’,VC2’,VC3’,VC4’が出力され
た後、ステップ2に戻る。不要であればステップ5に進
み、戻り冷却水温t1,t2,t3,t4と、ヒータ温
度TH、シード移動速度vs、るつぼ移動速度vcとが
読み込まれる。ステップ6では、ステップ5で読み込ん
だ各データに基づいて、工程進捗に伴う前記T11〜T
41の変更が必要か否かを判定し、これも不要であれば
ステップ2に戻る。必要であればステップ7で、次の工
程番号たとえば第2工程である肩広げ工程における部位
別冷却水設定温度T12,T22,T32,T42に対
する各チラーの設定温度指令信号VC1,VC2,VC
3,VC4が出力され、ステップ2に戻る。
FIG. 3 is a flowchart for executing the control of the CZ controller 6, and the numbers described at the left shoulder of each step are step numbers. In step 1, a cooling water temperature command signal for each in-line chiller is output. First, in the first step, ie, the drawing step, the water temperature of the load cell and the seed shaft cooling chiller becomes T11, the water temperature of the top chamber cooling chiller becomes T21, the water temperature of the main chamber cooling chiller becomes T31, and the heater electrode and Command signals VC1, VC2, VC3, and VC4 are output to the respective chillers such that the water temperature of the crucible shaft cooling chiller becomes T41. Next, in step 2, the return cooling water temperatures t1, t2, t3, and t4 from the respective parts of the single crystal manufacturing apparatus and the heater temperature TH are read. In step 3, based on the return cooling water temperatures t1, t2, t3, and t4 and the heater temperature TH, the T
It is determined whether or not it is necessary to change 11 to T41. If necessary, in step 4, the cooling water temperature change command signals VC1 ', VC2', VC3 ', VC4' for each in-line chiller are output, and then the process returns to step 2. . If it is not necessary, the process proceeds to step 5, where the return cooling water temperatures t1, t2, t3, and t4, the heater temperature TH, the seed moving speed vs, and the crucible moving speed vc are read. In step 6, based on each data read in step 5, T11 to T
It is determined whether or not 41 needs to be changed. If this is not necessary, the process returns to step 2. If necessary, in step 7, the chiller set temperature command signals VC1, VC2, VC for the next process number, for example, the cooling water set temperatures T12, T22, T32, T42 for each part in the shoulder expanding process as the second process.
3 and VC4 are output, and the process returns to step 2.

【0012】つぎに、中空管状部材10の機能について
説明する。高温の融液面11や石英るつぼ12の内壁か
ら放射される輻射熱は、中空管状部材10の外周面の凹
状の曲面に当たって反射し、トップチャンバ1aの内壁
上部に当たる。また、Si単結晶8と中空管状部材10
の内周面との隙間を流下する適温の不活性ガスは、中空
管状部材10と融液面11との隙間から石英るつぼ12
の内壁に沿って上昇し、ヒータ4aと保温筒13との隙
間を流下する。Si単結晶8は、不活性ガスによって外
周面を適度に冷却されるとともに、融液面11や石英る
つぼ12の内壁からの輻射熱の影響が極めて小さくな
り、Si単結晶8の冷却速度を上げることが可能とな
る。
Next, the function of the hollow tubular member 10 will be described. Radiant heat radiated from the inner wall of the hot melt surface 11 and the quartz crucible 12 is concave outer peripheral surface of the hollow tubular member 10
The light impinges on the curved surface and reflects on the upper part of the inner wall of the top chamber 1a. Further, the Si single crystal 8 and the hollow tubular member 10
The inert gas at an appropriate temperature flowing down the gap with the inner peripheral surface of the quartz crucible 12 passes through the gap between the hollow tubular member 10 and the melt surface 11.
And flows down the gap between the heater 4a and the heat retaining cylinder 13. The outer peripheral surface of the Si single crystal 8 is appropriately cooled by the inert gas, and the influence of the radiant heat from the melt surface 11 and the inner wall of the quartz crucible 12 becomes extremely small, so that the cooling rate of the Si single crystal 8 is increased. Becomes possible.

【0013】[0013]

【発明の効果】以上説明したように本発明によれば、
つぼ融液面及びるつぼ内壁面から引上げ単結晶に向けて
放射された輻射熱は、引上げ単結晶の外周を包囲する中
空管状部材の外周面に形成した凹状の曲面で反射し、チ
ャンバ上部内壁に達する。したがって、第1に、この輻
射熱による不活性ガスや単結晶表面の温度上昇を直接的
に抑制でき、この為単結晶表面の温度上昇を小さく抑え
られる。つまり、単結晶を短時間で冷却することがで
き、単結晶の冷却速度を向上できる。第2に、凹状の曲
面で反射した輻射熱を受けて温度上昇が大きいチャンバ
上部を、水温調節装置により調節された冷却水で冷却す
るので、チャンバ上部にぶつかって生ずる不活性ガスの
対流熱が冷却され、したがって、高温の対流熱が不活性
ガスや単結晶表面を間接的にも加熱することがなくな
る。すなわち、チャンバ内の温度調節の精度が向上し、
結晶形状や品質の精度も高めることができ、単結晶の歩
留りも改善できる。ところで、単結晶製造では複数工程
を経るものであり、各工程ごとに適した温度に異ならせ
ることが普通である。さらにところで、上記した通り、
チャンバ内の温度調節を高精度で行なえる。これによ
り、工程ごとの温度調節において短時 間で、高速に(応
答性良く)温度を変更し、かつ維持できる。したがっ
て、チャンバ内の温度を精度良く制御することができ、
良質でかつ形状精度の高い単結晶を高い歩留りで得るこ
とができる。_そしてこのような改良により、結晶内部
品質特にOi濃度が一定に保たれるので、高品質の単
結晶を得ることが可能となる。
According to the present invention as described above, according to the present invention, Ru
Towards single crystal pulled from crucible melt surface and crucible inner wall surface
The emitted radiant heat surrounds the periphery of the pulled single crystal.
The light is reflected by the concave curved surface formed on the outer peripheral surface of the hollow tubular
Reach the upper inner wall of the chamber. Therefore, first, this radiation
Direct temperature rise of inert gas or single crystal surface due to heat
Temperature rise on the single crystal surface
Can be In other words, the single crystal can be cooled in a short time.
Thus, the cooling rate of the single crystal can be improved. Second, concave songs
Large temperature rise due to radiant heat reflected from the surface
Cool the upper part with cooling water adjusted by a water temperature controller.
Therefore, the inert gas generated by hitting the top of the chamber
Convection heat is cooled, so hot convection heat is inert
Eliminates indirect heating of gas and single crystal surfaces
You. That is, the accuracy of the temperature control in the chamber is improved,
The accuracy of crystal shape and quality can be improved, and
The retention can be improved. By the way, in single crystal production,
Through the process to make the temperature suitable for each process
Is common. By the way, as mentioned above,
The temperature inside the chamber can be adjusted with high precision. This
Ri, in the temperature regulation of each process in a short time, a high speed (response
Can change and maintain the temperature. Accordingly
Therefore, the temperature in the chamber can be accurately controlled,
It is possible to obtain single crystals of good quality and high shape accuracy with high yield.
Can be. _ With such an improvement, the internal quality of the crystal , particularly the Oi concentration, is kept constant, so that a high-quality single crystal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例の概略説明図である。FIG. 1 is a schematic explanatory view of an embodiment .

【図2】実施例における制御装置の構成を示すブロック
図である。
2 is a block diagram showing the configuration of a definitive control device in the examples.

【図3】実施例の制御を実行するフローチャートであ
る。
3 is a flow chart for performing a control of Examples.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 冷却水供給装置 3 水温調節装置(インラインチラー) 4 ヒータ電極 5 るつぼ軸 6 CZコントローラ 8 Si単結晶 10 中空管状部材 11 融液面 12 石英るつぼ Reference Signs List 1 chamber 2 cooling water supply device 3 water temperature control device (inline chiller) 4 heater electrode 5 crucible shaft 6 CZ controller 8 Si single crystal 10 hollow tubular member 11 melt surface 12 quartz crucible

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 チャンバ内に配設したるつぼ内で溶融し
た半導体の融液から単結晶をこの単結晶の周囲に不活性
ガスを流下させつつ引き上げる単結晶製造装置におい
て、引上げ単結晶の外周を包囲する中空管状部材をチャ
ンバ内に有し、この中空管状部材の外周面に、るつぼの
融液面及びるつぼ内壁などの熱発生源からの輻射熱をチ
ャンバ上部内壁に反射させる凹状の曲面を有すると共
に、この曲面で反射した輻射熱を受けるチャンバ上部
冷却する冷却水の温度を調節する水温調節装置を有する
ことを特徴とする単結晶製造装置。
1. A method according to claim 1 , wherein the melting is performed in a crucible provided in the chamber.
A single crystal from a molten semiconductor melt around this single crystal
In a single crystal manufacturing device that pulls up gas while flowing it down
The hollow tubular member surrounding the outer periphery of the pulled single crystal.
And a crucible on the outer peripheral surface of the hollow tubular member.
Check for radiant heat from heat sources such as the melt surface and the crucible inner wall.
With a concave curved surface that reflects off the upper chamber wall
And a water temperature control device for controlling the temperature of cooling water for cooling the upper portion of the chamber receiving the radiant heat reflected by the curved surface .
【請求項2】 請求項記載の単結晶製造装置におい
て、水温調節装置は冷却水の温度の調節を単結晶引き上
げの工程ごとに行うことを特徴とする単結晶製造装置。
2. The single crystal manufacturing apparatus according to claim 1, wherein the water temperature adjusting device adjusts the temperature of the cooling water for each single crystal pulling step.
JP3864392A 1992-01-29 1992-01-29 Single crystal manufacturing equipment Expired - Fee Related JP2939601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3864392A JP2939601B2 (en) 1992-01-29 1992-01-29 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3864392A JP2939601B2 (en) 1992-01-29 1992-01-29 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH05208888A JPH05208888A (en) 1993-08-20
JP2939601B2 true JP2939601B2 (en) 1999-08-25

Family

ID=12530932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3864392A Expired - Fee Related JP2939601B2 (en) 1992-01-29 1992-01-29 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP2939601B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220291A (en) * 2000-02-01 2001-08-14 Komatsu Electronic Metals Co Ltd Method for producing silicon wafer
JP3587155B2 (en) * 2000-10-10 2004-11-10 三菱住友シリコン株式会社 Crystal growth equipment
KR20030046718A (en) * 2001-12-06 2003-06-18 주식회사 실트론 Growing chamber of silicon ingot having a small diameter

Also Published As

Publication number Publication date
JPH05208888A (en) 1993-08-20

Similar Documents

Publication Publication Date Title
JP2939601B2 (en) Single crystal manufacturing equipment
TW200815628A (en) Single crystal manufacturing apparatus and method
JP4035924B2 (en) Single crystal diameter control method and crystal growth apparatus
JP3085568B2 (en) Apparatus and method for producing silicon single crystal
JP2000313691A (en) Apparatus and method for producing single crystal ingot by czochralski method
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JPH1179880A (en) Production apparatus for fluorite of large diameter and its production
US4797174A (en) Process and apparatus for the continuous checking of the supermelting of the solidification front of a monocrystal during formation and application to the checking of the growth of a crystal
JP3725280B2 (en) Fluorite single crystal manufacturing apparatus and manufacturing method
KR100665683B1 (en) Method for manufacturing silicon single crystal
KR20120138035A (en) A ingot growing controlling system, and ingot grower including the same
JP2000044379A (en) Single crystal production unit
KR102662342B1 (en) Apparatus for controlling ingot growth and method thereof
KR20150053121A (en) Apparatus and method for manufacturing silicone single crystal ingot
JP2826085B2 (en) Liquid temperature control method for single crystal pulling furnace
KR100415172B1 (en) Grower for single crystalline silicon ingot
KR100571570B1 (en) Determination of Hot Zone Structure for High Speed Impression of Czochralski Crystal Growth Furnace
JP3558528B2 (en) Crystal manufacturing method
Verezub et al. Technology and Thermomechanics in Growing Tubular Silicon Single Crystals
JP4306009B2 (en) Single crystal ingot manufacturing apparatus and method
JPH0859388A (en) Device for producing single crystal
JPH05139878A (en) Single crystal growing unit and growing method
JPS58145692A (en) Production of single crystal
TW202421861A (en) Single crystal furnace and method for preparing single crystal silicon
JPH10130088A (en) Production of unidirectionally oriented solidified material and unidirectionally solidifying device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees