KR20030046718A - Growing chamber of silicon ingot having a small diameter - Google Patents

Growing chamber of silicon ingot having a small diameter Download PDF

Info

Publication number
KR20030046718A
KR20030046718A KR1020010076947A KR20010076947A KR20030046718A KR 20030046718 A KR20030046718 A KR 20030046718A KR 1020010076947 A KR1020010076947 A KR 1020010076947A KR 20010076947 A KR20010076947 A KR 20010076947A KR 20030046718 A KR20030046718 A KR 20030046718A
Authority
KR
South Korea
Prior art keywords
silicon ingot
small diameter
quartz crucible
cooling
silicon
Prior art date
Application number
KR1020010076947A
Other languages
Korean (ko)
Inventor
신현구
나광하
엄일수
박진택
Original Assignee
주식회사 실트론
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 실트론 filed Critical 주식회사 실트론
Priority to KR1020010076947A priority Critical patent/KR20030046718A/en
Publication of KR20030046718A publication Critical patent/KR20030046718A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: A growing chamber of silicon ingot having a small diameter is provided to be capable of quickly cooling a high temperature silicon ingot to room temperature by using a cooling part. CONSTITUTION: A quartz crucible(114) storing silicon melt is located in a chamber main frame(110). The quartz crucible is surrounded with heater(118) and a heat shielding part(120). A pull-up driving part(122) is installed on the upper portion of the quartz crucible for growing a seed crystal connected with a wire(124) to silicon ingot with a small diameter by rotating and pulling up the seed crystal using the wire. A cooling part(130) is installed on the pull-up path of the silicon ingot for cooling the silicon ingot while growing the silicon ingot. Preferably, a water cooling tube is used as the cooling part. Preferably, a purge gas jetting ring(140) is installed at the outer peripheral portion of the cooling part.

Description

소구경 실리콘 잉곳 성장챔버{Growing chamber of silicon ingot having a small diameter}Growing chamber of silicon ingot having a small diameter

본 발명은 소구경 실리콘 잉곳 성장챔버에 관한 것으로서, 특히 6" 이하의 소구경 실리콘 잉곳을 성장과 동시에 신속하게 냉각시켜 산화 유기적층결함(Oxidation-induced stacking fault; 이하 OSiF)발생을 억제하는 소구경 실리콘 잉곳 성장챔버에 관한 것이다.The present invention relates to a small-diameter silicon ingot growth chamber, and in particular, a small-diameter silicon ingot of 6 " or less can be rapidly cooled at the same time as it is grown to suppress the occurrence of Oxidation-induced stacking fault (OSiF). It relates to a silicon ingot growth chamber.

일반적으로 실리콘 잉곳은 종자체(seed crystal)를 석영 도가니(crucible)의 내부에 용융된 실리콘 용융물(melt)에 함침(dipping)시킨 후 그 용융물에서 종자체를 소정의 속도로 회전시키면서 인상하여 성장되는 것으로, 인상 속도 및 석영도가니와 종자체의 회전속도 비, 실리콘 용융물의 양 등 여러 가지 요인에 의해 4",5",6",8",12" 등 원하는 직경으로 성장시킨다.In general, a silicon ingot is grown by dipping a seed crystal into a molten silicon melt inside a quartz crucible and then pulling the seed body while rotating the seed body at a predetermined speed in the melt. It grows to desired diameters, such as 4 ", 5", 6 ", 8", and 12 ", by various factors, such as a pulling speed, the ratio of the rotation speed of a quartz crucible and a seed body, and the quantity of a silicon melt.

도 1은 여러 가지 직경 중 4",5",6" 직경을 갖는 소구경 실리콘 잉곳을 성장시키기 위한 성장 챔버를 설명하기 위한 도면이다.1 is a view for explaining a growth chamber for growing a small diameter silicon ingot having a 4 ", 5", 6 "diameter of various diameters.

도시된 바와 같이, 종래 소구경 실리콘 잉곳 성장챔버는 챔버 본체(10)내부에 실리콘 용융물(M)이 담겨지는 석영 도가니(14)가 회전축(16)에 축합되어 놓여지고, 석영 도가니의 주변을 포위하도록 설치되어 석영 도가니에 열을 방사하는 히터(18)및 히터에서 발생된 열이 외부로 방사되는 것과 실리콘 용융물의 온도가 저하되는 것이 방지되도록 열차폐체(20)가 형성된다.As shown, the conventional small-diameter silicon ingot growth chamber has a quartz crucible 14 containing silicon melt M contained within the chamber body 10 condensed on the rotating shaft 16, and surrounded the periphery of the quartz crucible. The heater 18 is installed to radiate heat to the quartz crucible and the heat shield 20 is formed to prevent the heat generated from the heater from being radiated to the outside and the temperature of the silicon melt to be lowered.

그리고, 챔버 본체(10)외부에는 와이어(24)로 실리콘 잉곳(Ingot ; I.G.)의 종자체와 결합되어 잉곳을 소정의 속도로 회전시키면서 인상시키기 위한 인상(pull-up)구동부(22)가 있다.Outside the chamber main body 10, there is a pull-up driving part 22 coupled to the seed body of the silicon ingot IG by a wire 24 to lift the ingot while rotating it at a predetermined speed. .

그리고, 챔버 본체(10)에는 아르곤(Ar) 등의 비활성 가스를 챔버 본체 내부로 주입 및 배기시켜 실리콘 잉곳(I.G.)의 냉각과 잉곳 성장도중 챔버 본체 내부에 발생되는 산화가스(Oxide 가스)를 외부로 퍼지(purge)시키기 위해 가스주입관(12a)및 가스배기관(12b)이 형성된다.In addition, the chamber main body 10 is injected with an inert gas such as argon (Ar) into the chamber main body and exhausted by oxidizing gas (Oxide gas) generated inside the chamber main body during cooling and ingot growth of the silicon ingot IG. A gas injection pipe 12a and a gas exhaust pipe 12b are formed to purge the furnace.

이러한 구성으로 된 종래 소구경 실리콘 잉곳 성장챔버에서 실리콘 잉곳의 성장은 종자체를 와이어(24)에 장착한 후, 히터(18)에서 전달되는 열에 의해 형성된 실리콘 용융물(M)에 종자체를 함침시켜 서서히 상측으로 회전과 동시에 인상시켜 4",5",6" 등 원하는 직경으로 성장되도록 한다.The growth of the silicon ingot in the conventional small-diameter silicon ingot growth chamber having such a configuration is such that the seed body is attached to the wire 24, and the seed body is impregnated in the silicon melt M formed by the heat transferred from the heater 18. It is gradually pulled up and rotated upwards to grow to a desired diameter such as 4 ", 5", 6 ".

이때, 성장되는 고온 상태인 실리콘 잉곳(I.G.)은 인상 구동부(22)에 의해 챔버 본체의 상부(10a)를 통해 내부에서 외부로 인상되면서 가스 주입관(12a)및 가스 배기관(12b)을 통해 주입 및 배기되는 비활성 가스에 의해 서서히 상온으로 냉각되어 제조된다.At this time, the grown ingot IG, which is in a high temperature state, is injected through the gas injection pipe 12a and the gas exhaust pipe 12b while being pulled out from the inside through the upper portion 10a of the chamber body by the pulling driver 22. And slowly cooled to room temperature by the inert gas exhausted.

그러나, 이러한 방법으로 4",5",6" 소구경 실리콘 잉곳을 성장시키는 종래 소구경 실리콘 잉곳 성장챔버는 인상되는 실리콘 잉곳의 냉각 효율이 떨어져 실리콘 잉곳의 산화 유기적층결함(OSiF) 제어에 취약하다.However, conventional small-diameter silicon ingot growth chambers that grow 4 ", 5", 6 "small-diameter silicon ingots in this way are less susceptible to oxidative organic layer defect (OSiF) control of silicon ingots due to poor cooling efficiency of the raised silicon ingots. Do.

즉, 종래 소구경 실리콘 잉곳 성장챔버는 실리콘 잉곳의 냉각을 위한 별도의 냉각수단을 구비하지 않고, 가스주입관 및 가스배기관을 통해 주입 및 배기되는 비활성 가스의 흐름에 의한 냉각방식을 채택하고 있으나, 비활성 가스의 흐름에 의한 냉각으로는 고온 상태인 실리콘 잉곳을 상온까지 신속하게 냉각시키기 어렵다.That is, the conventional small diameter silicon ingot growth chamber does not have a separate cooling means for cooling the silicon ingot, but adopts a cooling method by the flow of inert gas injected and exhausted through the gas injection pipe and the gas exhaust pipe, Cooling by the flow of inert gas is difficult to quickly cool the silicon ingot that is in a high temperature state to room temperature.

따라서, 종래 소구경 실리콘 잉곳 성장챔버에 의해 성장되는 실리콘 잉곳은 상온으로 냉각되는 동안 산화 유기적층결함 (OSiF)이 생성되기 쉬운 1050~1200 ℃ 온도 영역에서 장시간 머무르게 되고, 이에 과다한 산화막이 실리콘 잉곳의 표면에 형성되어 추후 실리콘 잉곳의 특성 저하를 유발시키는 문제점이 발생된다.Therefore, the silicon ingot grown by the conventional small-diameter silicon ingot growth chamber stays for a long time in the temperature range of 1050-1200 ° C. where oxidative organic layer defects (OSiF) are susceptible to cooling at room temperature. Formed on the surface there is a problem that causes the degradation of the silicon ingot later.

이에 본 발명은 소구경 실리콘 잉곳 성장시 고온 상태인 실리콘 잉곳을 상온으로 신속하게 냉각시켜 산화 유기적층결함(OSiF)의 형성을 억제시켜 실리콘 잉곳의 특성 저하를 방지할 수 있는 소구경 실리콘 잉곳 성장챔버를 제공하는데 그 목적이 있다.Accordingly, the present invention provides a small diameter silicon ingot growth chamber capable of rapidly cooling a high temperature silicon ingot to room temperature during growth of a small diameter silicon ingot, thereby inhibiting formation of oxidized organic layer defects (OSiF) to prevent deterioration of silicon ingot characteristics. The purpose is to provide.

따라서, 본 발명은 상기 목적을 이루기 위해, 챔버 본체 내부에 실리콘 용융물이 담겨지는 석영 도가니가 놓여지고, 석영 도가니 주변을 포위하도록 설치된 히터 및 열차폐체가 형성되어 구성되고, 챔버 본체의 외부에 실리콘 용융물에 함침되는 종자체를 와이어로 결합하여 소정의 속도로 회전 및 인상시켜 4",5",6" 직경을 갖는 소구경 실리콘 잉곳으로 성장시키는 인상 구동부가 구비된 소구경 실리콘 잉곳 성장챔버에 있어서, 인상 구동부에 의해 인상되는 실리콘 잉곳의 인상 이동 경로 상에 부가 형성되어 상기 냉각수단에 의해 상기 실리콘 잉곳이 냉각되도록 소구경 실리콘 잉곳 성장챔버를 구성한다.Therefore, in order to achieve the above object, the present invention comprises a quartz crucible in which a silicon melt is contained in the chamber body, and a heater and a heat shield are formed to surround the quartz crucible, and the silicon melt is formed outside the chamber body. In the small-diameter silicon ingot growth chamber provided with a pulling drive for coupling the seed body impregnated in the wire into a small diameter silicon ingot having a 4 ", 5", 6 "diameter by rotating and pulling at a predetermined speed, An addition is formed on the pulling movement path of the silicon ingot pulled up by the pulling drive unit to constitute a small diameter silicon ingot growth chamber so that the silicon ingot is cooled by the cooling means.

도 1 은 종래 소구경 실리콘 잉곳 성장챔버의 구조를 보인 도면.1 is a view showing the structure of a conventional small diameter silicon ingot growth chamber.

도 2 는 본 발명에 따른 소구경 실리콘 잉곳 성장챔버의 구조를 보인 도면.2 is a view showing a structure of a small diameter silicon ingot growth chamber according to the present invention.

도 3 은 본 발명에 따른 소구경 실리콘 잉곳 성장챔버의 요부인 수냉각관을 설명하기 위한 단면도.3 is a cross-sectional view illustrating a water cooling tube that is a main part of a small diameter silicon ingot growth chamber according to the present invention.

*도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on main parts of drawing

10,110 : 챔버 본체 14,114 : 석영 도가니10,110: chamber body 14114: quartz crucible

18,118 : 히터 20,120 : 열차폐체18,118: Heater 20,120: Heat shield

22,122 : 인상 구동부 130 : 수냉관22,122: impression driving unit 130: water cooling pipe

140 : 퍼지가스 분사링140: purge gas injection ring

이하, 첨부된 도면을 참조하여 본 발명에 따른 소구경 실리콘 잉곳 성장챔버의 바람직한 일실시예를 상세하게 설명한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment of the small-diameter silicon ingot growth chamber according to the present invention.

도 2 는 본 발명에 따른 소구경 실리콘 잉곳 성장챔버를 설명하기 위한 도면이다.2 is a view for explaining the small-diameter silicon ingot growth chamber according to the present invention.

도시된 바와 같이, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 챔버 본체(110)내부에 실리콘 용융물(M)이 담겨지는 석영 도가니(114)가 회전축(116)에 축합되어 놓여지고, 석영 도가니의 주변을 포위하도록 설치되어 석영 도가니에 열을 방사하는 히터(118)가 있다.As shown, in the small diameter silicon ingot growth chamber according to the present invention, a quartz crucible 114 in which the silicon melt M is contained in the chamber body 110 is condensed on the rotating shaft 116, and the quartz crucible There is a heater 118 installed to surround the surroundings and radiate heat to the quartz crucible.

그리고, 챔버 본체(110)내부에는 히터에서 발생된 열이 외부로 방사되어 손실되는 것을 차단하고, 고온 상태의 실리콘 용융물(M)이 일정한 온도를 유지하도록 열차폐체(120)가 형성된다.Then, the heat shield 120 is formed in the chamber body 110 to prevent heat generated from the heater from being radiated to the outside and to be lost, and to maintain a constant temperature of the silicon melt M in a high temperature state.

그리고, 챔버 본체(110)외부에는 와이어(124)로 실리콘 잉곳의 종자체와 결합되어 소정의 속도로 종자체를 회전 및 인상시키면서 4",5",6" 원하는 직경을 갖는 소구경 실리콘 잉곳으로 성장되도록 하는 인상구동부(122)가 있다.The outside of the chamber main body 110 is coupled to the seed body of the silicon ingot with a wire 124 to rotate and lift the seed body at a predetermined speed to a small diameter silicon ingot having a desired diameter of 4 ", 5", 6 ". There is an impression driving unit 122 to be grown.

또한, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 석영 도가니(114)의 실리콘 용융물(M)에 함침된 종자체가 소정의 속도로 회전 및 인상되면서 성장시키는 소구경 실리콘 잉곳(I.G.)을 성장과 동시에 신속하게 냉각시키기 위한 냉각수단이 형성된다.In addition, the small-diameter silicon ingot growth chamber according to the present invention grows and grows a small-diameter silicon ingot IG in which a seed body impregnated in the silicon melt M of the quartz crucible 114 is rotated and pulled up at a predetermined speed. At the same time, cooling means for rapid cooling are formed.

여기서, 냉각수단은 소구경 실리콘 잉곳(I.G.)이 인상 구동부(122)에 의해 챔버 본체의 상부(110a)로 인상되어 이동되는 이동 경로상에 형성되는 것으로, 챔버 본체의 상부 내측에 일단이 결합되고 석영도가니의 실리콘 용융물(M)표면에 근접되게 타단이 위치되는 수냉각관(130)으로 구성한다.Here, the cooling means is formed on the movement path in which the small-diameter silicon ingot (IG) is pulled up and moved to the upper portion (110a) of the chamber body by the impression drive unit 122, one end is coupled to the upper inner side of the chamber body It consists of a water cooling tube 130, the other end of which is located near the surface of the silicon melt (M) of the quartz crucible.

수냉각관(130)은 본 발명에 따른 소구경 실리콘 잉곳 성장챔버의 요부인 수냉각관을 설명하기 위한 단면도인 도 3에 도시된 바와 같이, 내부가 밀폐되면서 냉각수가 유동되는 공간이 형성되도록 외측관(130a)과 내측관(130b)으로 된 이중관 형태로 형성되고, 외측 관의 소정 위치에는 외측 관과 내측 관 사이의 공간으로 냉각수를 공급하는 냉각수 인입구(132a)및 공급된 냉각수를 배출하는 냉각수 배출구(132b)가 각각 형성된다.Water cooling tube 130 is a cross-sectional view for explaining the water cooling tube which is a main part of the small-diameter silicon ingot growth chamber according to the present invention, as shown in Figure 3, the outer tube to form a space in which the coolant flows while the inside is sealed ( It is formed in the form of a double tube 130a and the inner tube (130b), the predetermined position of the outer tube is a coolant inlet 132a for supplying coolant to the space between the outer tube and the inner tube and the coolant outlet for discharging the supplied coolant ( 132b) are formed respectively.

그리고, 외측관(130a)의 외주연에는 소구경 실리콘 잉곳(I.G.)의 성장 도중 발생되는 산화가스(Oxide gas)가 관의 외주연과 챔버 본체의 상부(110a)사이에 증착되는 것을 방지하도록 에어 커튼(air curtain)수단이 구비된다.In addition, the outer periphery of the outer tube (130a) air to prevent the deposition of oxide gas (Oxide gas) generated during the growth of the small-diameter silicon ingot (IG) between the outer periphery of the tube and the upper portion (110a) of the chamber body Air curtain means is provided.

여기서, 에어 커튼 수단은 수냉각관(130)의 외주연을 따라 퍼지가스의 하향 흐름(down flow)이 형성되도록 외부에서 퍼지가스를 공급받아 분사되도록 하방향으로 다수개의 분사공(142)이 일정 간격으로 천공된 퍼지가스 분사링(140)을 설치하여 구성된다.Here, the air curtain means is a plurality of injection holes 142 in the downward direction to be injected to receive the purge gas from the outside so that the down flow of the purge gas (down flow) is formed along the outer periphery of the water cooling tube 130 It is configured by installing a purge gas injection ring 140 perforated.

도 2 에서 퍼지가스의 하향 흐름(down flow)의 형태를 일점 쇄선으로 도시하였다.In FIG. 2, the form of the down flow of the purge gas is illustrated by a dashed-dotted line.

또한, 퍼지가스 분사링(140)을 통해 분사되는 퍼지가스는 아르곤(Ar) 등의 비활성가스를 사용한다.In addition, the purge gas injected through the purge gas injection ring 140 uses an inert gas such as argon (Ar).

이러한 구성으로 된 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 4",5",6"의 직경을 갖는 소구경 실리콘 잉곳을 성장시키는 과정에서 실리콘 잉곳의 냉각 효율이 향상되고, 이에 따라 실리콘 잉곳의 산화 유기적층결함 (OSiF)을 효율적으로 제어할 수 있게 된다.The small-diameter silicon ingot growth chamber according to the present invention having such a configuration improves the cooling efficiency of the silicon ingot in the process of growing the small-diameter silicon ingot having a diameter of 4 ", 5", 6 ", and thus The oxidative organic lamination defect (OSiF) can be efficiently controlled.

좀더 구체적으로 설명하면, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 일단이 챔버 본체의 상부(110a)내측에 접합되고 타단이 석영 도가니의 실리콘 용융물(M)에 근접되게 위치되며, 또한 실리콘 잉곳의 인상 이동 통로 상에 놓여지는 수냉각관(130)이 장착되어 있다.In more detail, the small-diameter silicon ingot growth chamber according to the present invention has one end bonded to the inside of the upper portion 110a of the chamber body and the other end is located close to the silicon melt M of the quartz crucible, The water cooling tube 130 put on the impression movement path is mounted.

이와 같은 수냉각관이 장착된 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 석영도가니의 실리콘 용융물에서 인상 구동부(122)에 의해 인상되어 성장하는 고온 상태의 실리콘 잉곳(I.G.)이 실리콘 용융물에서 성장되는 것과 동시에 수냉각관의 내측 관(130b)사이로 이동한다.The small diameter silicon ingot growth chamber according to the present invention equipped with such a water cooling tube is characterized in that the high temperature silicon ingot IG, which is pulled up and grown by the pulling driver 122 in the silicon melt of the quartz crucible, is grown in the silicon melt. At the same time it moves between the inner tube (130b) of the water cooling tube.

따라서, 성장하는 실리콘 잉곳(I.G.)이 가지고 있는 고온의 열과 수냉각관(130)사이를 흐르는 냉각수가 서로 열교환하여 실리콘 잉곳은 상온으로 신속하게 냉각된다.Therefore, the high temperature heat of the growing silicon ingot I.G. and the cooling water flowing between the water cooling tubes 130 exchange heat with each other, and the silicon ingot is rapidly cooled to room temperature.

이에 실리콘 잉곳은 상온으로 신속하게 냉각되어 산화 유기적층결함 (OSiF)이 생성되기 쉬운 1050~1200 ℃ 온도 영역에서 단시간 머무르면서 과다한 산화막이 실리콘 잉곳의 표면에 형성되는 것을 방지하여 추후 실리콘 잉곳의 특성 저하를 방지한다.Therefore, the silicon ingot is rapidly cooled to room temperature and stays for a short time in the temperature range of 1050-1200 ° C where oxidative organic layer defects (OSiF) are easily generated, thereby preventing excessive oxide film from forming on the surface of the silicon ingot. prevent.

또한, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 성장하는 실리콘 잉곳(I.G.)이 수냉각관(130)을 통과하는 시간과 냉각수의 온도, 그리고 수냉각관의 길이를 가변시킴으로써 산화 유지적층결함(OSiF)을 제어할 수 있게 된다.In addition, the small-diameter silicon ingot growth chamber according to the present invention is characterized in that the oxidative retention stack defect (OSiF) is changed by varying the time that the growing silicon ingot IG passes through the water cooling tube 130, the temperature of the cooling water, and the length of the water cooling tube. Can be controlled.

그 이유는 첫째, 실리콘 잉곳이 수냉각관을 통과하는 시간을 증감시키는 경우, 실리콘 잉곳과 냉각수의 열교환 시간이 증감된다.The reason for this is, firstly, when the silicon ingot increases or decreases the time passing through the water cooling tube, the heat exchange time of the silicon ingot and the cooling water is increased or decreased.

둘째, 냉각수의 온도를 증감시키는 경우, 실리콘 잉곳과 냉각수의 열교환 정도가 증감된다.Second, when increasing or decreasing the temperature of the cooling water, the degree of heat exchange between the silicon ingot and the cooling water is increased or decreased.

셋째, 수냉각관의 길이를 증감시키는 경우, 실리콘 잉곳과 냉각수의 열교환 면적이 증감된다.Third, when increasing the length of the water cooling tube, the heat exchange area of the silicon ingot and the cooling water is increased or decreased.

따라서, 성장하는 실리콘 잉곳이 수냉각관을 통과하는 시간과 냉각수의 온도, 그리고 수냉각관의 길이를 가변시킴으로써 산화 유지적층결함(OSiF)을 제어할 수 있게 된다.Therefore, by controlling the time for the growing silicon ingot to pass through the water cooling tube, the temperature of the cooling water, and the length of the water cooling tube, it is possible to control the OSIF.

또한, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 실리콘 잉곳의 성장 중 발생되는 산화가스가 퍼지가스 분사링(140)을 통해 분사되어 하향 흐름을 발생시키면서 배기관으로 배기되는 비활성 가스에 의해 챔버 본체의 외부로 제거되어 증착되는 것이 방지된다.In addition, the small-diameter silicon ingot growth chamber according to the present invention is characterized in that the oxidizing gas generated during the growth of the silicon ingot is injected through the purge gas injection ring 140 to generate a downward flow of the chamber body by the inert gas exhausted to the exhaust pipe. Removal to the outside and deposition is prevented.

상술한 바와 같이, 본 발명에 따른 소구경 실리콘 잉곳 성장챔버는 4",5",6" 소구경 실리콘 잉곳을 성장과 동시에 잉곳이 가지고 있는 고온의 열이 수냉각관을 흐르는 냉각수와 열교환되어 신속하게 제거됨으로써 산화 유기적층결함(OSiF)이 생성되기 쉬운 1050~1200 ℃ 온도 영역에 실리콘 잉곳을 단시간 머무르게 한다.As described above, the small-diameter silicon ingot growth chamber according to the present invention grows 4 ", 5", 6 "small-diameter silicon ingots at the same time as the high-temperature heat of the ingot heat exchanges with the cooling water flowing through the water cooling tube to quickly The removal allows the silicon ingot to stay for a short time in the temperature range of 1050-1200 ° C where oxidative organic lamination defects (OSiF) are susceptible to formation.

따라서, 실리콘 잉곳의 표면에 과다한 산화막이 형성되는 것을 차단하여 추후 실리콘 잉곳의 소자 특성이 저하되는 것을 방지하여 4",5",6" 직경의 고품질 실리콘 웨이퍼 생산이 가능하게 된다.Therefore, the excessive oxide film is prevented from being formed on the surface of the silicon ingot, thereby preventing the device characteristics of the silicon ingot from deteriorating in the future, thereby making it possible to produce high quality silicon wafers having 4 ", 5 "

Claims (3)

챔버 본체 내부에 실리콘 용융물이 담겨지는 석영 도가니가 놓여지고, 상기 석영 도가니 주변을 포위하도록 설치된 히터 및 열차폐체가 형성되어 구성되고, 상기 챔버 본체의 외부에 상기 실리콘 용융물에 함침되는 종자체를 와이어로 결합하여 소정의 속도로 회전 및 인상시켜 4",5",6" 직경을 갖는 소구경 실리콘 잉곳으로 성장시키는 인상 구동부가 구비된 소구경 실리콘 잉곳 성장챔버에 있어서,A quartz crucible in which the silicon melt is contained is placed inside the chamber body, and a heater and a heat shield are formed to surround the quartz crucible, and a seed body impregnated in the silicon melt on the outside of the chamber body is formed of a wire. A small diameter silicon ingot growth chamber having an impression drive unit for combining and rotating and pulling at a predetermined speed to grow into a small diameter silicon ingot having a 4 ", 5", and 6 "diameter, 상기 인상 구동부에 의해 인상되는 상기 실리콘 잉곳의 인상 이동 경로 상에 냉각수단이 부가 형성되어 상기 냉각수단에 의해 상기 실리콘 잉곳이 냉각되도록 한 것을 특징으로 하는 소구경 실리콘 잉곳 성장챔버.And a cooling means is formed on the pulling movement path of the silicon ingot pulled by the pulling driving unit to cool the silicon ingot by the cooling means. 제1항에 있어서,The method of claim 1, 상기 냉각수단은 상기 챔버 본체의 상부 내측에 일단이 결합되고, 상기 석영도가니의 실리콘 용융물 표면에 근접되게 타단이 위치되는 수냉각관인 것을 특징으로 하는 소구경 실리콘 잉곳 성장챔버.The cooling means is a small diameter silicon ingot growth chamber characterized in that the one end is coupled to the upper inside of the chamber body, the other end is located near the surface of the silicon melt of the quartz crucible. 제2항에 있어서,The method of claim 2, 상기 수냉각관의 외주연에는 퍼지가스 분사링이 형성된 것을 특징으로 하는 소구경 실리콘 잉곳 성장챔버.Small diameter silicon ingot growth chamber, characterized in that the purge gas injection ring is formed on the outer periphery of the water cooling tube.
KR1020010076947A 2001-12-06 2001-12-06 Growing chamber of silicon ingot having a small diameter KR20030046718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010076947A KR20030046718A (en) 2001-12-06 2001-12-06 Growing chamber of silicon ingot having a small diameter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010076947A KR20030046718A (en) 2001-12-06 2001-12-06 Growing chamber of silicon ingot having a small diameter

Publications (1)

Publication Number Publication Date
KR20030046718A true KR20030046718A (en) 2003-06-18

Family

ID=29573400

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010076947A KR20030046718A (en) 2001-12-06 2001-12-06 Growing chamber of silicon ingot having a small diameter

Country Status (1)

Country Link
KR (1) KR20030046718A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024541A2 (en) * 2008-08-26 2010-03-04 주식회사 아바코 Apparatus and method for manufacturing an ingot
KR101146695B1 (en) * 2009-01-21 2012-05-22 주식회사 엘지실트론 Apparatus and Method for manufacturing silicon crystal Improved cooling efficiency of remaining silicon melt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416589A (en) * 1990-05-11 1992-01-21 Ishikawajima Harima Heavy Ind Co Ltd Device for producing single crystal
JPH04317491A (en) * 1991-04-11 1992-11-09 Kawasaki Steel Corp Cooling cylinder for single crystal pulling-up device
JPH05208888A (en) * 1992-01-29 1993-08-20 Komatsu Denshi Kinzoku Kk Cooling system for single crystal production apparatus by cz process
JPH06211592A (en) * 1993-01-05 1994-08-02 Nippon Steel Corp Method for producing single crystalline body and apparatus therefor
JPH08239291A (en) * 1995-02-02 1996-09-17 Wacker Siltronic G Fuer Halbleitermaterialien Mbh Device for producing single crystal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0416589A (en) * 1990-05-11 1992-01-21 Ishikawajima Harima Heavy Ind Co Ltd Device for producing single crystal
JPH04317491A (en) * 1991-04-11 1992-11-09 Kawasaki Steel Corp Cooling cylinder for single crystal pulling-up device
JPH05208888A (en) * 1992-01-29 1993-08-20 Komatsu Denshi Kinzoku Kk Cooling system for single crystal production apparatus by cz process
JPH06211592A (en) * 1993-01-05 1994-08-02 Nippon Steel Corp Method for producing single crystalline body and apparatus therefor
JPH08239291A (en) * 1995-02-02 1996-09-17 Wacker Siltronic G Fuer Halbleitermaterialien Mbh Device for producing single crystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010024541A2 (en) * 2008-08-26 2010-03-04 주식회사 아바코 Apparatus and method for manufacturing an ingot
WO2010024541A3 (en) * 2008-08-26 2010-07-01 주식회사 아바코 Apparatus and method for manufacturing an ingot
KR101146695B1 (en) * 2009-01-21 2012-05-22 주식회사 엘지실트론 Apparatus and Method for manufacturing silicon crystal Improved cooling efficiency of remaining silicon melt

Similar Documents

Publication Publication Date Title
US4981549A (en) Method and apparatus for growing silicon crystals
US5264189A (en) Apparatus for growing silicon crystals
US8741059B2 (en) Single-crystal manufacturing apparatus and method for manufacturing single crystal
JPH1192272A (en) Single crystal production apparatus and production of single crystal
WO2009087724A1 (en) Single crystal producing device
US20090114147A1 (en) Semiconductor single crystal growth method having improvement in oxygen concentration characteristics
JP2011132067A (en) Apparatus and method for producing silicon carbide single crystal
KR101146695B1 (en) Apparatus and Method for manufacturing silicon crystal Improved cooling efficiency of remaining silicon melt
KR20030046718A (en) Growing chamber of silicon ingot having a small diameter
KR101675903B1 (en) Apparatus and method for manufacturing semiconductor single crystal
JP5392040B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP3612974B2 (en) Crystal growth method
JPH092892A (en) Pull up apparatus for semiconductor single crystal
KR20030055900A (en) Growing apparatus of a single crystal ingot
JP2009184863A (en) Apparatus and method for manufacturing single crystal
JPH06211591A (en) Method for producing single crystalline body and apparatus therefor
KR102677112B1 (en) The ingot manufacturing apparatus of low resistance large diameter
JP3203342B2 (en) Single crystal manufacturing equipment
JP2001010890A (en) Single crystal pulling device
KR20190069056A (en) Ingot growing apparatus
JPH06211592A (en) Method for producing single crystalline body and apparatus therefor
JPH09309787A (en) Eater-cooling tower for single crystal-pulling up apparatus
JP3288786B2 (en) Method and apparatus for cooling silicon single crystal
KR101100862B1 (en) Silicon wafer and method of manufacturing silicon single crystal ingot
JP3126530B2 (en) Method and apparatus for producing single crystal

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application