JP2937000B2 - Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal

Info

Publication number
JP2937000B2
JP2937000B2 JP5560394A JP5560394A JP2937000B2 JP 2937000 B2 JP2937000 B2 JP 2937000B2 JP 5560394 A JP5560394 A JP 5560394A JP 5560394 A JP5560394 A JP 5560394A JP 2937000 B2 JP2937000 B2 JP 2937000B2
Authority
JP
Japan
Prior art keywords
pbn
container
single crystal
crystal
compound semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5560394A
Other languages
Japanese (ja)
Other versions
JPH07133184A (en
Inventor
清治 水庭
三千則 和地
知己 稲田
修一 田原迫
進一 高場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP5560394A priority Critical patent/JP2937000B2/en
Publication of JPH07133184A publication Critical patent/JPH07133184A/en
Application granted granted Critical
Publication of JP2937000B2 publication Critical patent/JP2937000B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の技術分野】本発明は、化合物半導体単結晶の
製造方法及び化合物半導体単結晶を製造する際に使用さ
れるPBN(Pyrolitic Boron Nitride :熱分解窒化ホ
ウ素)製容器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound semiconductor single crystal and a container made of PBN (Pyrolitic Boron Nitride: pyrolytic boron nitride) used for producing the compound semiconductor single crystal.

【0002】[0002]

【従来の技術】従来の化合物半導体単結晶の製造方法に
ついて、III−V族化合物半導体単結晶として生産、
研究開発ともに最も大きな規模で実施されている砒化ガ
リウム(以下GaAsと記す)結晶の製造方法を例にとり説
明する。
2. Description of the Related Art A conventional method for producing a compound semiconductor single crystal is described below.
An example of a method for manufacturing gallium arsenide (hereinafter referred to as GaAs) crystals, which has been conducted on the largest scale in both research and development, will be described.

【0003】図1には、GaAs単結晶の製造装置とし
て広く使用されている結晶引上装置の概略側断面図が示
されている。図において、1は結晶成長用の高温炉(耐
圧容器)であり、高温炉1内には下側から下軸2が挿入
され、この下軸2の先端にペデスタル3を介してサセプ
タ4が支持されている。サセプタ4内にはPBN製容器
(るつぼ)5が配置されている。サセプタ4の周囲には
ヒータ8が設けられており、サセプタ4を介してPBN
製容器5を周囲から加熱できるようになっている。下軸
2は図示しない回転機構に接続されており、一定の回転
速度で回転されるようになっている。また、容器1の上
側からは下軸2と同軸的に上軸9が挿入され、その下端
に設けられた種結晶ホルダ10に所望の方位を持った種
結晶11(通常、方位として(100)が用いられる)
が取り付けられる。この上軸9は、図示しない回転・昇
降機構によってPBN製容器5とは逆向きに軸回転され
ると共に、昇降移動されるようになっている。上軸9の
途中には重量センサ12が設けられており、これによっ
て成長過程の結晶重量を検知できるようになっている。
FIG. 1 is a schematic side sectional view of a crystal pulling apparatus widely used as a GaAs single crystal manufacturing apparatus. In the figure, reference numeral 1 denotes a high-temperature furnace (pressure-resistant vessel) for crystal growth, into which a lower shaft 2 is inserted from below, and a susceptor 4 is supported at the tip of the lower shaft 2 via a pedestal 3. Have been. A PBN container (crucible) 5 is arranged in the susceptor 4. A heater 8 is provided around the susceptor 4.
The container 5 can be heated from the surroundings. The lower shaft 2 is connected to a rotation mechanism (not shown) and is rotated at a constant rotation speed. An upper shaft 9 is inserted coaxially with the lower shaft 2 from the upper side of the container 1, and a seed crystal 11 having a desired orientation is placed in a seed crystal holder 10 provided at the lower end thereof (usually (100) as the orientation). Is used)
Is attached. The upper shaft 9 is rotated by a rotating / elevating mechanism (not shown) in a direction opposite to that of the PBN container 5 and is moved up and down. A weight sensor 12 is provided in the middle of the upper shaft 9 so that the weight of the crystal during the growth process can be detected.

【0004】結晶成長の際には、先ず、PBN製容器5
の中にGaAs多結晶原料6を14,000g と、B2 3
体封止剤7を4,000g入れ、高温炉1内を真空排気し、そ
の後窒素またはアルゴンなどの不活性ガスで40気圧程度
に加圧し、主ヒータ8に通電してPBN製容器5の内部
を昇温させる。500 ℃前後で液体封止剤(B2 3 )7
が軟化、融解してGaAs多結晶原料6を覆う。引き続
き昇温させ、PBN製容器5内部の温度を1,238 ℃以上
とし、多結晶原料6を融解させる。次に、高温炉1内を
5〜20気圧に減圧した後、種結晶11を降下させ、そ
の先端を原料融液に浸して種付けを行う。その後、主ヒ
ータ8の温度を下げながら、上軸9を9〜12mm/hr の速
度で引き上げていき、重量センサ12で結晶重量を検知
しながら、主ヒータの出力を制御してGaAs単結晶を
成長させる。
At the time of crystal growth, first, a PBN vessel 5
14,000 g of the GaAs polycrystalline raw material 6 and 4,000 g of the B 2 O 3 liquid sealing agent 7 are evacuated, and the inside of the high-temperature furnace 1 is evacuated to a vacuum of about 40 atm. The main heater 8 is energized to increase the temperature inside the PBN container 5. Liquid sealant (B 2 O 3 ) 7 at around 500 ° C
Softens and melts to cover the GaAs polycrystalline raw material 6. Subsequently, the temperature is increased to make the temperature inside the PBN vessel 5 1,238 ° C. or higher, and the polycrystalline raw material 6 is melted. Next, after the pressure in the high-temperature furnace 1 is reduced to 5 to 20 atm, the seed crystal 11 is lowered, and its tip is immersed in a raw material melt to perform seeding. Then, while lowering the temperature of the main heater 8, the upper shaft 9 is pulled up at a speed of 9 to 12 mm / hr, and while detecting the crystal weight by the weight sensor 12, the output of the main heater is controlled to remove the GaAs single crystal. Let it grow.

【0005】[0005]

【発明が解決しようとする課題】しかし、上記のように
自動化された装置によって化合物半導体単結晶の引上げ
を行っても毎回良好な単結晶が得られるとは限らず、む
しろ常に一定の割合以上で欠陥が発生する。特に、長さ
が200mm を越える長尺結晶を得る場合や、結晶直径がφ
4インチサイズを越える大口径結晶を得ようとする場合
等は、再現性の良い結晶成長条件を得ることは非常に難
しく、ほとんどの場合は単結晶成長の過程において多結
晶化してしまい、結晶の種付け部(シード部)から結晶
成長終端部(テール部)まで全域単結晶が得られること
は希であった。
However, even if a compound semiconductor single crystal is pulled by an automated apparatus as described above, a good single crystal is not always obtained every time. Defects occur. In particular, when obtaining a long crystal having a length exceeding 200 mm, or when the crystal diameter is φ
In the case of obtaining a large-diameter crystal exceeding 4 inches in size, it is extremely difficult to obtain crystal growth conditions with good reproducibility. It was rare that a single crystal was obtained over the entire region from the seeding portion (seed portion) to the crystal growth termination portion (tail portion).

【0006】図1には図示されていないが、高温炉1に
は熱遮蔽筒等の部材(ホットゾーンと呼ばれる。以下H
Zと記す)が設けられており、最近まで、このHZの配
置、形状、材質等が化合物半導体単結晶の成長条件の再
現性を左右する要因とみられていた。ところが、HZの
配置、形状、材質等の条件の安定化が図られるにつれ、
その要因がHZのみにあるのではなく、使用するPBN
製容器の特性も大きく関係していることが明確になって
きた。PBN製容器は、化合物半導体単結晶の成長を行
う高温時にもその原料化合物と反応せずPyrolitic Boro
n Nitride 自体の純度が高い等の利点により、特にGa
As単結晶の成長には欠かせない器具であり、その代替
品は今のところ知られていない。したがって、化合物半
導体単結晶の成長条件の再現性を向上し、歩留まり向上
を図る上でPBN製容器の特性改善が不可欠である。し
かしながら、PBN製容器の特性において、何が最も決
定的な要因となっているかは明確でなかった。
Although not shown in FIG. 1, the high-temperature furnace 1 has a member such as a heat shield tube (called a hot zone, hereinafter H).
Until recently, the arrangement, shape, material, and the like of the HZ were considered to be factors affecting the reproducibility of the growth conditions of the compound semiconductor single crystal. However, with the stabilization of conditions such as the arrangement, shape, and material of HZ,
The cause is not only HZ, but the PBN used
It has become clear that the characteristics of the container are also significantly related. The PBN container does not react with the raw material compound even at high temperatures at which the compound semiconductor single crystal grows, and the Pyrolitic Boro
n Nitride itself has high purity and other advantages,
It is an indispensable tool for the growth of As single crystal, and its substitute is not yet known. Therefore, in order to improve the reproducibility of the growth conditions of the compound semiconductor single crystal and improve the yield, it is essential to improve the characteristics of the PBN container. However, it was not clear what was the most decisive factor in the characteristics of the PBN container.

【0007】また、化合物半導体単結晶を製造するため
の別の方法として温度勾配法がある。この方法は、高温
炉内に、結晶の融点以上の温度領域(溶融領域)と融点
以下の温度領域(固化領域)とを形成すると共に溶融領
域と固化領域との間に所定の温度勾配を有する領域(温
度勾配領域)を形成し、溶融領域にてPBN製容器内の
多結晶原料を溶融させた後、PBN製容器を温度勾配領
域を通過させて固化領域側へ移動させることにより、温
度勾配領域容器の一端に設置された種結晶側から原料融
液を固化させて単結晶を成長させる方法であり、上記引
上法に比べて欠陥の少ない化合物半導体単結晶を得るこ
とができる。しかし、この方法においても使用するPB
N製容器によって化合物半導体単結晶の収率に差が生
じ、化合物半導体単結晶を再現性良く得られないという
問題があった。
Another method for manufacturing a compound semiconductor single crystal is a temperature gradient method. According to this method, a temperature region above the melting point of the crystal (melting region) and a temperature region below the melting point (solidification region) are formed in the high-temperature furnace, and a predetermined temperature gradient exists between the melting region and the solidification region. After forming a region (temperature gradient region) and melting the polycrystalline raw material in the PBN container in the melting region, the PBN container is moved through the temperature gradient region to the solidification region side, whereby the temperature gradient is increased. This is a method in which a raw material melt is solidified from the seed crystal side provided at one end of the region container to grow a single crystal, and a compound semiconductor single crystal having fewer defects than the pulling method can be obtained. However, the PB used in this method
There is a problem that the yield of the compound semiconductor single crystal varies depending on the N container, and the compound semiconductor single crystal cannot be obtained with good reproducibility.

【0008】この発明の目的は、前記した従来技術の問
題点を解消し、化合物半導体単結晶を再現性良く得るこ
とができる化合物半導体単結晶の製造方法及び化合物半
導体単結晶の製造に使用するPBN製容器を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems of the prior art and to provide a method for producing a compound semiconductor single crystal capable of obtaining a compound semiconductor single crystal with good reproducibility, and a PBN used for producing a compound semiconductor single crystal. It is an object of the present invention to provide a container made of a resin.

【0009】[0009]

【課題を解決するための手段】本発明の化合物半導体単
結晶の製造方法は、いわゆる引上法に属する方法と、い
わゆる温度勾配法に属する方法とに大別される。
The method of manufacturing a compound semiconductor single crystal according to the present invention is roughly classified into a method belonging to a so-called pulling method and a method belonging to a so-called temperature gradient method.

【0010】前者は、高温炉内に原料融液を収容したP
BN製容器を配置し、種結晶を原料融液に接触させつつ
種結晶とPBN製容器とを相対的に移動させて単結晶を
成長させる方法を前提としており、使用するPBN製容
器の特性別に以下の第1〜5の方法に分類できる。
[0010] The former is a P type containing a raw material melt in a high-temperature furnace.
It is assumed that a BN container is placed and a single crystal is grown by relatively moving the seed crystal and the PBN container while bringing the seed crystal into contact with the raw material melt. The methods can be classified into the following first to fifth methods.

【0011】第1の方法は、下記の(1)、(2)、
(3)及び(4)の条件を同時に満たすPBN製容器を
使用する。
The first method is as follows (1) , (2),
Use a PBN container that satisfies the conditions (3) and (4) at the same time.

【0012】第2の方法は、下記の(5)及び(6)
条件を同時に満たすPBN製容器を使用する。
The second method uses a PBN container that satisfies the following conditions (5) and (6) simultaneously.

【0013】後者は、高温炉内に原料融液を収容したP
BN製容器を配置すると共に結晶の融点以上の温度から
融点以下の温度に至る所定の温度勾配の領域を形成し、
当該領域を当該容器に対して相対的に移動させて容器の
下端部に収容した種結晶側から単結晶を成長させる方法
を前提としており、下記の(1)及び(2)の条件を同
時に満たすPBN製容器を使用する。
The latter is a P type in which a raw material melt is contained in a high-temperature furnace.
Arranging a BN container and forming a region of a predetermined temperature gradient from a temperature equal to or higher than the melting point of the crystal to a temperature equal to or lower than the melting point,
Move the area relative to the container to
The method is based on a method of growing a single crystal from the side of the seed crystal housed at the lower end, and uses a PBN container that satisfies the following conditions (1) and (2) simultaneously.

【0014】(1) PBN製容器の密度が、全域に亘
り1.85g/cm3 〜2.05g/cm3 の範囲である。
(1) The density of the PBN container is in the range of 1.85 g / cm 3 to 2.05 g / cm 3 over the entire area.

【0015】(2) PBN製容器を構成するPBN板
の厚さ方向に垂直な面で測定した(002) 面と(100) 面の
X線回折積分強度比:{I(002) /I(100) }の値が、
全域に亘り8 〜30の範囲である。
(2) X-ray diffraction integrated intensity ratio of the (002) plane and the (100) plane measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container: ΔI (002) / I ( 100) The value of 、
It is in the range of 8 to 30 over the entire area.

【0016】(3) PBN製容器の密度が、底部から
開口部にかけて徐々に大きくなっている。
(3) The density of the PBN container gradually increases from the bottom to the opening.

【0017】(4) PBN製容器を構成するPBN板
の厚さ方向に対して垂直な面で測定した (002)面と (10
0)面のX線回折積分強度比:{I(002) /I(100) }の
値が、底部から開口部にかけて徐々に大きくなってい
る。
(4) The (002) plane and the (10) plane measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container.
The value of the X-ray diffraction integral intensity ratio of the (0) plane: {I (002) / I (100)} gradually increases from the bottom to the opening.

【0018】(5) PBN製容器を構成するPBN板
の厚さ方向に垂直な面で測定した熱伝導率の値が、全域
に亘り50W/mK〜200W/mK の範囲である。
(5) The value of the thermal conductivity measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container is in the range of 50 W / mK to 200 W / mK over the entire region.

【0019】(6) PBN製容器を構成するPBN板
の厚さ方向に垂直な面で測定した熱伝導率の値が、底部
から開口部にかけて徐々に大きくなっている。
(6) The value of the thermal conductivity measured on the plane perpendicular to the thickness direction of the PBN plate constituting the PBN container gradually increases from the bottom to the opening.

【0020】[0020]

【作用】PBN板の密度と厚さ方向に垂直な面で測定し
た上記X線回折積分強度比の間にはおよそ一定の関係が
あり、密度が小さいほど厚さ方向に垂直な面で測定した
上記X線回折積分強度比も小さくなる傾向にある。ま
た、PBN製容器はその底部から開口部にかけて、上記
密度、上記X線回折積分強度比とも一定ではなく、PB
N製容器内においてばらつきを生ずる。PBN製容器の
特性として、化合物半導体単結晶を再現性良く得るのに
最も決定的な要因は基本的には熱流の問題と考えられる
ため、PBN容器の特性を熱伝導率等で規定するのが本
筋であるが、熱伝導率等は測定が必ずしも容易でない。
前者の第1,第2の方法及び後者の方法は、このような
知見の下に、測定が容易で熱伝導率等と関連がある密度
及びX線回析積分強度比でPBN容器の特性を規定し、
密度と上記X線回折積分強度比とに関して所定の特性を
持ったPBN容器を使用して化合物半導体単結晶を成長
させる方法である。
There is an approximately constant relationship between the density of the PBN plate and the X-ray diffraction integral intensity ratio measured on a plane perpendicular to the thickness direction. The lower the density, the more the measurement is on the plane perpendicular to the thickness direction. The X-ray diffraction integral intensity ratio also tends to decrease. Further, in the PBN container, the density and the X-ray diffraction integrated intensity ratio are not constant from the bottom to the opening.
Variations occur in the N container. Regarding the characteristics of the PBN container, the most crucial factor for obtaining a compound semiconductor single crystal with good reproducibility is considered to be basically the problem of heat flow. Although it is the main line, it is not always easy to measure the thermal conductivity and the like.
Based on such knowledge , the former first and second methods and the latter method use the characteristics of the PBN container in terms of density and X-ray diffraction integral intensity ratio that are easy to measure and related to thermal conductivity and the like. Prescribe,
This is a method of growing a compound semiconductor single crystal using a PBN container having predetermined characteristics with respect to the density and the X-ray diffraction integrated intensity ratio .

【0021】前者の第1の方法及び後者の方法における
(1)及び(2)なる条件は、容器全体の密度と上記X
線回折積分強度比のみを考慮した場合において、これら
2つの条件を同時に満たすPBN製容器を用いた場合に
化合物半導体単結晶の得られる再現性が最も高くなると
いう知見に基づくものである。すなわち、密度が1.85g/
cm3 より小または2.05g/cm3 より大の場合には、上記X
線回折積分強度比によらず化合物半導体単結晶の得られ
る再現性が低く、上記X線回折積分強度比が8より小ま
たは30より大の場合も密度によらず良好な化合物半導体
単結晶を得られる再現性が低い。
The conditions (1) and (2) in the former first method and the latter method are as follows:
It is based on the finding that when only a line diffraction integral intensity ratio is considered, the reproducibility of a compound semiconductor single crystal is highest when a PBN container that satisfies these two conditions is used at the same time. That is, the density is 1.85g /
If more cm 3 of larger than the small or 2.05 g / cm 3, the above X
The reproducibility of the compound semiconductor single crystal obtained is low regardless of the X-ray diffraction integrated intensity ratio, and a good compound semiconductor single crystal is obtained regardless of the density even when the X-ray diffraction integrated intensity ratio is smaller than 8 or larger than 30. Low reproducibility.

【0022】また、第1の方法における(3)及び
(4)なる条件は、更に、容器の底部から開口部にかけ
ての上記密度並びに上記X線回折積分強度比の分布に関
する2つの条件を加えたものである。すなわち、引上法
において(1)及び(2)を同時に満たす場合であって
も、密度並びに上記X線回折積分強度比が底部から開口
部にかけて徐々に大きくなるという条件を満たさない場
合は、これらの条件を満たした特性を持ったPBN製容
器を用いた場合に比べ、良好な化合物半導体単結晶を得
られる再現性が低い。
In the first method, (3) and
The condition (4) is obtained by further adding two conditions relating to the distribution of the density and the X-ray diffraction integrated intensity ratio from the bottom to the opening of the container. That is, the lifting method
Even when (1) and (2) are simultaneously satisfied in the above, when the condition that the density and the X-ray diffraction integrated intensity ratio gradually increase from the bottom to the opening is not satisfied, these conditions were satisfied. The reproducibility of obtaining a good compound semiconductor single crystal is lower than when a PBN container having characteristics is used.

【0023】また、第2の方法における(5)の条件
は、容器全体の熱伝導率のみを考慮した場合において、
この条件を満たすPBN製容器を用いて引上げ成長し
場合に化合物半導体単結晶の得られる再現性が最も高く
なることによる。すなわち、熱伝導率が50W/mKより小さ
いPBN製容器を用いた場合には、化合物半導体単結晶
を得られる再現性が低く、同様に熱伝導率が200W/mK よ
り大きいPBN製容器を用いた場合にも、良好な化合物
半導体単結晶を得られる再現性が低い。
The condition (5) in the second method is that when only the thermal conductivity of the whole container is considered,
This is because the reproducibility of obtaining a compound semiconductor single crystal is highest when the growth is carried out using a PBN container satisfying this condition. That is, when a PBN container having a thermal conductivity of less than 50 W / mK was used, the reproducibility of obtaining a compound semiconductor single crystal was low, and a PBN container having a thermal conductivity of more than 200 W / mK was used. Also in this case, the reproducibility of obtaining a good compound semiconductor single crystal is low.

【0024】また、第2の方法における(6)の条件
は、更に、容器の底部から開口部にかけての熱伝導率の
分布に関する条件を加えたものである。すなわち、熱伝
導率が50W/mK〜200W/mK の条件を満たす場合であって
も、容器底部から開口部にかけて熱伝導率が徐々に大き
くなるという条件を満たすときに良好な化合物半導体単
結晶の得られる再現性が最も高くなる。
The condition (6) in the second method
Is a further plus the condition of the distribution of the thermal conductivity of toward the opening from the bottom of the container. That is, even when the thermal conductivity satisfies the condition of 50 W / mK to 200 W / mK, a good compound semiconductor single crystal can be obtained when the condition that the thermal conductivity gradually increases from the container bottom to the opening is satisfied. The reproducibility obtained is the highest.

【0025】なお、PBN製容器を構成するPBN板の
上記X線回折積分強度を求めた測定条件は下記の通りで
ある。
The measurement conditions for determining the X-ray diffraction integrated intensity of the PBN plate constituting the PBN container are as follows.

【0026】 測定条件 X線源:Cu Ka線 電圧/電流:40KV/30mA スリット:DSI,RS0.3 、SSI スキャンスピ−ド:1°/min スキャン幅(2θ):(002)24°〜28° (100)40°〜50°Measurement conditions X-ray source: Cu Ka line Voltage / current: 40 KV / 30 mA Slit: DSI, RS0.3, SSI Scan speed: 1 ° / min Scan width (2θ): (002) 24 ° to 28 ° ° (100) 40 ° to 50 °

【0027】[0027]

【実施例】次に、本発明の化合物半導体単結晶の製造方
法の実施例について説明する。
EXAMPLES Next, examples of the method for producing a compound semiconductor single crystal of the present invention will be described.

【0028】[実施例1] 本発明の方法を引上法によるGaAs単結晶の製造に適
用した場合の実施例について説明する。なお、以下の実
施例1−1〜1−5で使用した製造装置の全体的構成は
図1と同様である。
Example 1 An example in which the method of the present invention is applied to the production of a GaAs single crystal by the pulling method will be described. The overall configuration of the manufacturing apparatus used in the following Examples 1-1 to 1-5 is the same as that in FIG.

【0029】[実施例1−1] 容器全体の密度の分布
範囲が1.87g/cm3 〜2.00g/cm3 、厚さ方向に垂直な面で
測定した前記X線回折積分強度比が14〜20という特性を
持ったφ9インチサイズのPBN製容器を用い、GaA
s結晶のφ3インチサイズで結晶長300mm の結晶成長を
10回行った。その結果、結晶のシード部からテール部ま
で、全域単結晶(以下All Singleと記す)が10本得られ
た。残りの1本の結果も結晶全長の約80%が単結晶であ
った。また、密度が1.85g/cm3 〜2.05g/cm3 、前記X線
回析積分強度比が 8〜30という特性を持った他のφ9イ
ンチサイズのPBN製容器を用い、GaAs結晶のφ3
インチサイズで結晶長300mm の結晶成長を100 回行っ
た。その結果、All Singleは90%以上の確率で得られ
た。また、この90%以上という高い確率はφ9インチサ
イズ以外のPBN製容器を用いた場合及びφ3インチサ
イズの結晶成長を行った場合でも同様であった。
[0029] [Example 1-1] distribution range of the density of the entire container is 1.87g / cm 3 ~2.00g / cm 3 , the X-ray diffraction integrated intensity ratio measured with a plane perpendicular to the thickness direction 14 Using a PBN container with a diameter of 9 inches and a characteristic of 20
A crystal growth of 300 mm in crystal length of φ3 inch size of s crystal
I went 10 times. As a result, from the seed part to the tail part of the crystal, 10 single crystals in the entire region (hereinafter referred to as All Single) were obtained. In the result of the other one, about 80% of the entire crystal length was a single crystal. Further, another P9 container of φ9 inch size having a density of 1.85 g / cm 3 to 2.05 g / cm 3 and a characteristic of the X-ray diffraction integral intensity of 8 to 30 was used.
Crystal growth of an inch size and a crystal length of 300 mm was performed 100 times. As a result, All Single was obtained with a probability of 90% or more. The high probability of 90% or more was the same when a PBN container other than the φ9 inch size was used and when the φ3 inch size crystal was grown.

【0030】[比較例1−1−1] 容器全体の密度の
分布範囲の下限が1.85g/cm3 より小さいPBN製容器を
用い、それ以外は実施例1と同じ条件で結晶成長を行っ
た結果、前記X線回析積分強度比に依らず、All Single
の確率は60%以下であった。
Comparative Example 1-1-1 Crystal growth was performed under the same conditions as in Example 1 except that a PBN container having a lower limit of the distribution range of the density of the entire container smaller than 1.85 g / cm 3 was used. As a result, regardless of the X-ray diffraction integral intensity ratio, All Single
Was less than 60% of the time.

【0031】[比較例1−1−2] 容器全体の密度の
分布範囲の上限が2.05g/cm3 より大きいPBN製容器を
用い、それ以外は実施例1と同じ条件で結晶成長を行っ
た結果、前記X線回析積分強度比に依らず、All Single
の確率は40%以下であった。
Comparative Example 1-1-2 Crystal growth was performed under the same conditions as in Example 1 except that a PBN container having an upper limit of the distribution range of the density of the entire container larger than 2.05 g / cm 3 was used. As a result, regardless of the X-ray diffraction integral intensity ratio, All Single
Was less than 40%.

【0032】[比較例1−1−3] 前記X線回析積分
強度比の分布範囲の下限が 8より小さいPBN製容器を
用い、それ以外は実施例1と同じ条件で結晶成長を行っ
た結果、PBN製容器の密度に依らず、All Singleの確
率は50%以下であった。
[Comparative Example 1-1-3] A crystal was grown under the same conditions as in Example 1 except that a PBN container having a lower limit of the distribution range of the X-ray diffraction integrated intensity ratio smaller than 8 was used. As a result, the probability of All Single was 50% or less regardless of the density of the PBN container.

【0033】[比較例1−1−4] 前記X線回析積分
強度比の分布範囲の上限が30より大きいPBN製容器を
用い、それ以外は実施例1と同じ条件で結晶成長を行っ
た結果、PBN製容器の密度に依らず、All Singleの確
率は40%以下であった。
Comparative Example 1-1-4 Crystal growth was performed under the same conditions as in Example 1 except that a container made of PBN was used, in which the upper limit of the distribution range of the X-ray diffraction integrated intensity ratio was larger than 30. As a result, the probability of All Single was 40% or less regardless of the density of the PBN container.

【0034】以上の実施例1−1及び比較例1−1−1
〜1−1−4の結果を総合すると、密度が1.85g/cm3
2.05g/cm3 の範囲であり、前記X線回析積分強度比が 8
〜30の範囲であるPBN製容器を用いて結晶成長を実施
した場合に、All Singleを得られる確率が90%以上と、
GaAs単結晶を得る再現性が大幅に向上することがわか
る。
Example 1-1 and Comparative Example 1-1-1
Taken together, the results of ~1-1-4, density of 1.85g / cm 3 ~
2.05 g / cm 3 , and the X-ray diffraction integrated intensity ratio is 8
When crystal growth is performed using a PBN container having a range of ~ 30, the probability of obtaining All Single is 90% or more,
It can be seen that the reproducibility of obtaining a GaAs single crystal is greatly improved.

【0035】[実施例1−2] 容器全体の密度とX線
回析積分強度比が実施例1と同様それぞれ1.87g/cm3
2.00g/cm3 、14〜20の範囲であり、且つ密度、前記X線
回析積分強度比とも底部から開口部に従って徐々に大き
くなっているという条件を満たしたφ9インチサイズの
PBN容器を用い、GaAs結晶のφ3インチサイズで
結晶長300mm の結晶成長を10回行った。その結果、All
Singleが10本全て得られた。また、X線回析積分強度比
が 8〜30の範囲であり、密度が1.85g/cm3 〜2.05g/cm3
の範囲であり、且つ前記X線回析積分強度比、密度とも
底部から開口部に従って徐々に大きくなるという条件を
満たした他のφ9インチサイズのPBN容器を用い、Ga
As結晶のφ3インチサイズで結晶長300mm 結晶成長を10
0 回行った結果、All Singleは95%以上の確率で得られ
た。また、この95%以上という高い確率はφ9インチサ
イズ以外のPBN製容器を用いた場合でも、φ3インチ
サイズ以外の結晶成長を行った場合でも同様であった。
Example 1-2 The density of the whole container and the X-ray diffraction integrated intensity ratio were 1.87 g / cm 3-, respectively, as in Example 1.
2.00 g / cm 3 , in the range of 14 to 20 and a PBN container of φ9 inch size satisfying the condition that the density and the X-ray diffraction integrated intensity ratio gradually increase from the bottom to the opening. A GaAs crystal having a diameter of 3 inches and a crystal length of 300 mm was grown 10 times. As a result, All
All 10 Singles were obtained. Further, the X-ray diffraction integral intensity ratio is in the range of 8 to 30, and the density is 1.85 g / cm 3 to 2.05 g / cm 3
Using another φ9 inch PBN container satisfying the condition that the X-ray diffraction integrated intensity ratio and the density gradually increase from the bottom toward the opening,
As crystal of φ3 inch size, crystal length 300mm, crystal growth of 10
As a result of performing 0 times, All Single was obtained with a probability of 95% or more. The high probability of 95% or more was the same even when a PBN container having a size other than φ9 inches was used and when a crystal having a size other than φ3 inches was grown.

【0036】[比較例1−2−1] PBN製容器を構
成するPBN板の密度が1.85g/cm3より小さいPBN製
容器を用い、実施例1−2と同様にして結晶成長を行っ
た結果、前記X線回析積分強度比に依らず、All Single
の確率は60%以下であった。
[Comparative Example 1-2-1] Crystal growth was carried out in the same manner as in Example 1-2, using a PBN container having a PBN plate density of less than 1.85 g / cm 3 constituting the PBN container. As a result, regardless of the X-ray diffraction integral intensity ratio, All Single
Was less than 60% of the time.

【0037】[比較例1−2−2] PBN製容器を構
成するPBN板の密度が2.05g/cm3より大きいPBN製
容器を用い、実施例1−2と同様にして結晶成長を行っ
た結果、前記X線回析積分強度比に依らず、All Single
の確率は40%以下であった。
Comparative Example 1-2-2 Crystal growth was carried out in the same manner as in Example 1-2, using a PBN container having a PBN plate density of more than 2.05 g / cm 3 constituting the PBN container. As a result, regardless of the X-ray diffraction integral intensity ratio, All Single
Was less than 40%.

【0038】[比較例1−2−3] PBN製容器を構
成するPBN板の前記X線回析積分強度比が 8より小さ
いPBN製容器を用い、実施例1−2と同様にして結晶
成長を行った結果、密度に依らず、All Singleの確率は
50%以下であった。
Comparative Example 1-2-3 Crystal growth was carried out in the same manner as in Example 1-2, using a PBN container having the X-ray diffraction integrated intensity ratio of less than 8 of the PBN plate constituting the PBN container. As a result, regardless of density, the probability of All Single is
It was less than 50%.

【0039】[比較例1−2−4] PBN製容器を構
成するPBN板の前記X線回析積分強度比が30より大き
いPBN容器を用い、実施例1−2と同様にして結晶成
長を行った結果、密度に依らず、All Singleの確率は40
%以下であった。
Comparative Example 1-2-4 Crystal growth was carried out in the same manner as in Example 1-2 using a PBN container having a ratio of X-ray diffraction integrated intensity of 30 or more of the PBN plate constituting the PBN container. As a result, regardless of density, the probability of All Single is 40
% Or less.

【0040】[比較例1−2−5] PBN製容器を構
成するPBN板の前記X線回析積分強度比が 8〜30の範
囲であり、且つ密度が1.85g/cm3 〜2.05g/cm3 の範囲で
あるが、X線回析積分強度比が容器の底部から開口部か
けて徐々に大きくなっていないPBN製容器を用い、実
施例1−2と同様にして結晶成長を行った結果、PBN
製容器内の密度の分布に依らず、All Singleの確率は80
%以下であった。
Comparative Example 1-2-5 The ratio of the integrated X-ray diffraction intensity of the PBN plate constituting the container made of PBN was in the range of 8 to 30, and the density was 1.85 g / cm 3 to 2.05 g /. Crystal growth was carried out in the same manner as in Example 1-2, using a PBN container in the range of cm 3 , where the X-ray diffraction integrated intensity ratio did not gradually increase from the bottom to the opening of the container. Result, PBN
The probability of All Single is 80 irrespective of the density distribution in the container.
% Or less.

【0041】[比較例1−2−6] PBN製容器を構
成するPBN板の前記X線回析積分強度比が 8〜30の範
囲であり、且つ密度が1.85g/cm3 〜2.05g/cm3 の範囲で
あるが、密度が容器の底部から開口部にかけて徐々に大
きくなっていないPBN製容器を用い、実施例1−2と
同様にして結晶成長を行った結果、PBN製容器内の前
記X線回析積分強度比の分布に依らず、All Singleの確
率は85%以下であった。
Comparative Example 1-2-6 The XBN diffraction integral intensity ratio of the PBN plate constituting the PBN container is in the range of 8 to 30, and the density is 1.85 g / cm 3 to 2.05 g /. The crystal growth was performed in the same manner as in Example 1-2 using a PBN container whose density was in the range of cm 3 but the density did not gradually increase from the bottom to the opening of the container. Regardless of the distribution of the X-ray diffraction integral intensity ratio, the probability of All Single was 85% or less.

【0042】以上の実施例1−2及び比較例1−2−1
〜1−2−6の結果を総合すると、密度が、容器全域に
亘り1.85g/cm3 〜2.05g/cm3 範囲であり、密度の値が容
器の底部から開口部にかけて徐々に大きくなっており、
且つPBN製容器を構成するPBN板の前記X線回析積
分強度比の値が、容器全域に亘り 8〜30の範囲であり、
その値が容器の底部から開口部にかけて徐々に大きくな
るような特性を持ったPBN製容器を用いた場合に、化
合物半導体単結晶を得られる再現性を大幅に向上させる
ことができる。
Example 1-2 and Comparative Example 1-2-1
Taken together the results of ~1-2-6, density is 1.85g / cm 3 ~2.05g / cm 3 range over the vessel throughout the value of density gradually increases toward the opening from the bottom of the container Yes,
And the value of the X-ray diffraction integral intensity ratio of the PBN plate constituting the PBN container is in the range of 8 to 30 over the entire region of the container,
When a PBN container having such characteristics that its value gradually increases from the bottom to the opening of the container is used, the reproducibility of obtaining a compound semiconductor single crystal can be greatly improved.

【0043】[実施例1−3] PBN製容器の側壁を
構成するPBN板の密度が1.98g/cm3 、PBN製容器の
側壁を構成するPBN板の前記X線回折積分強度比の値
が21のPBN製容器を用い、その他の条件は従来と同じ
にして、GaAs結晶のφ3インチサイズで結晶長300m
m の結晶成長を10回行った。その結果、All Singleの結
晶が 8本得られた。残りの2本は全長の約85%が単結晶
であった。
Example 1-3 The density of the PBN plate forming the side wall of the PBN container was 1.98 g / cm 3 , and the value of the X-ray diffraction integrated intensity ratio of the PBN plate forming the side wall of the PBN container was Using 21 PBN containers, the other conditions were the same as before, and the GaAs crystal was 3 inches in size and 300 m in length.
The crystal growth of m was performed 10 times. As a result, eight All Single crystals were obtained. About 85% of the remaining two were single crystals.

【0044】[比較例1−3−1] PBN製容器の側
壁を構成するPBN板の密度が2.05g/cm3 より大きいP
BN製容器を用い、その他の条件は実施例1−3と同じ
にして結晶成長を行った結果、前記X線回折積分強度比
の値によらず結晶化率(歩留)は60%以下であった。
Comparative Example 1-3-1 The density of the PBN plate constituting the side wall of the PBN container is higher than 2.05 g / cm 3.
As a result of crystal growth using a BN container under the same conditions as in Example 1-3, the crystallization ratio (yield) was 60% or less regardless of the value of the X-ray diffraction integrated intensity ratio. there were.

【0045】[比較例1−3−2] PBN製容器の側
壁を構成するPBN板の密度が2.05g/cm3 以下であり、
前記X線回折積分強度比の値が20より小さいPBN製容
器を用い、その他の条件は実施例1−3と同じにして結
晶成長を行った結果、結晶化率(歩留)は80%以下であ
った。
Comparative Example 1-3-2 The density of the PBN plate constituting the side wall of the PBN container is 2.05 g / cm 3 or less,
As a result of crystal growth using a PBN container having a value of the X-ray diffraction integrated intensity ratio smaller than 20 and the other conditions being the same as in Example 1-3, the crystallization ratio (yield) was 80% or less. Met.

【0046】以上の実施例1−3及び比較例1−3−
1,1−3−2等の結果を基に図2のグラフが得られ
る。すなわち、PBN製容器の側壁を構成するPBN板
のCVD条件によりL1及びL2のような曲線が描かれ
る。従来の方法はL1曲線に近く、その場合B領域(比
較例1−3−1)及びC領域(比較例1−3−2)のも
のしか得られず、歩留は最大80%程度である。これに対
し、A領域の特性を持ったPBN製容器を使用すると、
90%以上という飛躍的な歩留向上が見られた。
The above Examples 1-3 and Comparative Examples 1-3
The graph of FIG. 2 is obtained based on the results of 1, 1-3-2 and the like. That is, curves such as L1 and L2 are drawn depending on the CVD conditions of the PBN plate constituting the side wall of the PBN container. The conventional method is close to the L1 curve, in which case only the B region (Comparative Example 1-3-1) and the C region (Comparative Example 1-3-2) can be obtained, and the yield is up to about 80%. . In contrast, when a PBN container having the characteristics of the A region is used,
A dramatic improvement in yield of over 90% was observed.

【0047】[実施例1−4] PBN製容器を構成す
るPBN板の厚さ方向に垂直な面方向で測定した熱伝導
率の値が、容器全域に亘り60W/mK〜90W/mKの特性を満た
したφ9インチサイズのPBN製容器を用い、その他の
条件は従来と同じにして、GaAs結晶のφ3インチサイズ
で結晶長300mm の結晶成長を10回行った。その結果、Al
l Singleの結晶が10本全て得られた。また、同じく熱伝
導率の値が50W/mK〜200W/mK の特性を満たした他のφ9
インチサイズのPBN製容器を用い、GaAs結晶のφ
3インチサイズで結晶長300mm の結晶成長を100 回行っ
た結果、All Singleの結晶は90%以上の確率で得られ
た。また、この90%以上という高い確率はφ9インチサ
イズ以外のPBN製容器を用いた場合でも、φ3インチ
サイズ以外の結晶成長を行った場合でも同様であった。
Example 1-4 A thermal conductivity value measured in a plane direction perpendicular to a thickness direction of a PBN plate constituting a PBN container has a characteristic of 60 W / mK to 90 W / mK over the entire region of the container. A GaAs crystal with a diameter of 3 mm and a crystal length of 300 mm was grown 10 times using a PBN container having a diameter of 9 inches and satisfying the same conditions as in the conventional case. As a result, Al
All 10 single crystals were obtained. In addition, another φ9 having a thermal conductivity value of 50 W / mK to 200 W / mK.
Using an inch-sized PBN container, the φ of GaAs crystal
As a result of 100 times of crystal growth of 300 mm in length and 3 inches in size, all single crystals were obtained with a probability of 90% or more. The high probability of 90% or more was the same even when a PBN container having a size other than φ9 inches was used and when a crystal having a size other than φ3 inches was grown.

【0048】[比較例1−4−1] PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が50W/mKより
小さい特性を持ったPBN製容器を用い、その他の条件
は実施例1−4と同じにして結晶成長を行った結果、Al
l Singleの確率は60%以下であった。
[Comparative Example 1-4-1] The PBN plate constituting the side wall of the PBN container uses a PBN container having a characteristic in which the value of the thermal conductivity is less than 50 W / mK. As a result of performing crystal growth in the same manner as in Example 1-4, Al
The probability of l Single was less than 60%.

【0049】[比較例1−4−2] PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が200W/mK よ
り大きい特性を持ったPBN製容器を用い、その他の条
件は実施例1−4と同じにして結晶成長を行った結果、
All Singleの確率は40%以下であった。
[Comparative Example 1-4-2] The PBN plate constituting the side wall of the PBN container had a thermal conductivity value of more than 200 W / mK. As a result of performing crystal growth in the same manner as in Example 1-4,
The probability of All Single was less than 40%.

【0050】以上の実施例1−4、比較例1−4−1及
び1−4−2の結果を総合すると、PBN製容器の側壁
を構成するPBN板の前記熱伝導率の値が50W/mK〜200W
/mKを満たしたPBN製容器を用いた場合に化合物半導
体単結晶を得られる再現性を大幅に向上させることがで
きる。
When the results of Example 1-4, Comparative Examples 1-4-1 and 1-4-2 are combined, the value of the thermal conductivity of the PBN plate constituting the side wall of the PBN container is 50 W / mK ~ 200W
When a PBN container satisfying / mK is used, the reproducibility of obtaining a compound semiconductor single crystal can be greatly improved.

【0051】[実施例1−5] PBN製容器の側壁を
構成するPBN板の前記熱伝導率の値が実施例1−4と
同様60W/mK〜90W/mKであり、且つその値が容器の底部か
ら開口部にかけて徐々に大きくなる特性を満たした9イ
ンチサイズのPBN製容器を用い、その他の条件は従来
と同じにして、GaAs結晶のφ3インチサイズで結晶長30
0mm の結晶成長を10回行った。その結果、All Singleの
結晶が10本全て得られた。また、同じく熱伝導率の値が
50W/mK〜200W/mK であり、且つその値が容器の底部から
開口部にかけて徐々に大きくなる特性を満たした9イン
チサイズのPBN製容器を用い、GaAs結晶のφ3イ
ンチサイズで結晶長300mm の結晶成長を100 回行った結
果、All Singleの結晶は90%以上の確率で得られた。ま
た、この90%以上という高い確率はφ9インチサイズ以
外のPBN製容器を用いた場合でも、φ3インチサイズ
以外の結晶成長を行った場合でも同様であった。
Example 1-5 The value of the thermal conductivity of the PBN plate constituting the side wall of the PBN container is 60 W / mK to 90 W / mK as in Example 1-4, and the value is the container. A 9-inch PBN container that satisfies the characteristics of gradually increasing from the bottom to the opening is used.
Crystal growth of 0 mm was performed 10 times. As a result, all 10 All Single crystals were obtained. Also, the value of thermal conductivity is
A 9 inch PBN container satisfying the characteristics of 50 W / mK to 200 W / mK and the value gradually increases from the bottom to the opening of the container is used. As a result of performing the crystal growth 100 times, All Single crystals were obtained with a probability of 90% or more. The high probability of 90% or more was the same even when a PBN container having a size other than φ9 inches was used and when a crystal having a size other than φ3 inches was grown.

【0052】[比較例1−5−1] PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が50W/mKより
小さい特性を持ったPBN製容器を用い、その他の条件
は実施例1−5と同じにして結晶成長を行った結果、Al
l Singleの確率は60%以下であった。
[Comparative Example 1-5-1] The PBN plate constituting the side wall of the PBN container uses a PBN container having a characteristic that the value of the thermal conductivity is less than 50 W / mK. As a result of performing crystal growth in the same manner as in Example 1-5, Al
The probability of l Single was less than 60%.

【0053】[比較例1−5−2] PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が200W/mK よ
り大きい特性を持ったPBN製容器を用い、その他の条
件は実施例1−5と同じにして結晶成長を行った結果、
All Singleの確率は40%以下であった。
[Comparative Example 1-5-2] The PBN plate constituting the side wall of the PBN container had a thermal conductivity value of more than 200 W / mK. As a result of performing crystal growth in the same manner as in Example 1-5,
The probability of All Single was less than 40%.

【0054】[比較例1−5−3] PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が50W/mK〜20
0 W/mKであるが、その値が容器の底部から開口部にかけ
て徐々に大きくなる特性を満たしていないPBN製容器
を用い、その他の条件は実施例1−5と同じにして結晶
成長を行った結果、All Singleの確率は80%以下であっ
た。
[Comparative Example 1-5-3] The value of the thermal conductivity of the PBN plate constituting the side wall of the PBN container was 50 W / mK to 20 W / mK.
0 W / mK, but using a PBN container whose value does not satisfy the characteristic of gradually increasing from the bottom to the opening of the container, and using other conditions as in Example 1-5 for crystal growth. As a result, the probability of All Single was 80% or less.

【0055】以上の実施例1−5および比較例1−5−
1〜1−5−3の結果を総合すると、PBN製容器の側
壁を構成するPBN板の前記熱伝導率の値が50W/mK〜20
0W/mK であり、且つその値が容器の底部から開口部にか
けて徐々に大きくなっているという条件を満たしたPB
N製容器を用いた場合に化合物半導体単結晶を得られる
再現性を大幅に向上させることができる。
The above Examples 1-5 and Comparative Examples 1-5
When the results of 1-1-5-3 are combined, the value of the thermal conductivity of the PBN plate constituting the side wall of the PBN container is from 50 W / mK to 20 W / mK.
PB that satisfies the condition that it is 0 W / mK and the value gradually increases from the bottom to the opening of the container.
When an N container is used, the reproducibility of obtaining a compound semiconductor single crystal can be greatly improved.

【0056】[実施例2] 本発明の方法を温度勾配法によるGaAs単結晶の製造
に適用した場合の実施例について説明する。ここで使用
したPBN製容器は、図3に示すように円筒形状の直胴
部14の下端部に逆円錐形部15が形成され、逆円錐形
部15の下端部に有底筒体状の種結晶収容部16が形成
されてなる。直胴部14の直径は52mm、高さは 200mm
逆円錐形部の傾斜角は45°、種結晶部の直径は10mmであ
る。同図(a)に示すように、PBN製容器13内に
は、種結晶収容部16にGaAs種結晶17を装着した
後、GaAs多結晶原料18を1000g とB2 3 液体封
止剤19を100g順次投入した。この結晶原料の入ったP
BN製容器13を図示省略の高温炉(温度勾配炉)内に
設置してGaAs多結晶原料18及びB2 3 液体封止
剤19を溶融させ、同図(b)に示すように原料融液2
0と液体封止剤層21とした。次いで、高温炉内にGa
Asの融点以上の温度から融点以下の温度に至る所定の
温度勾配の領域を形成し、30deg/min の温度勾配を設定
してPBN製容器13を5mm/hrの速度で降下させて結晶
成長を行った。
Example 2 An example in which the method of the present invention is applied to the production of a GaAs single crystal by the temperature gradient method will be described. As shown in FIG. 3, the PBN container used here has an inverted conical part 15 formed at the lower end of a cylindrical straight body part 14 and a bottomed cylindrical body at the lower end of the inverted conical part 15. The seed crystal accommodating section 16 is formed. The diameter of the straight body 14 is 52 mm , the height is 200 mm ,
The angle of inclination of the inverted conical part is 45 °, and the diameter of the seed crystal part is 10 mm . As shown in FIG. 1A, after a GaAs seed crystal 17 is mounted in a seed crystal accommodating portion 16 in a PBN container 13, 1000 g of a GaAs polycrystalline raw material 18 and a B 2 O 3 liquid sealant 19 are provided. Were sequentially charged in an amount of 100 g. P containing this crystal raw material
The BN container 13 is placed in a high-temperature furnace (temperature gradient furnace) (not shown) to melt the GaAs polycrystalline raw material 18 and the B 2 O 3 liquid sealant 19, as shown in FIG. Liquid 2
0 and the liquid sealant layer 21. Next, Ga is placed in a high-temperature furnace.
A region of a predetermined temperature gradient from a temperature higher than the melting point of As to a temperature lower than the melting point of As is formed, a temperature gradient of 30 deg / min is set, and the PBN container 13 is lowered at a speed of 5 mm / hr to perform crystal growth. went.

【0057】[実施例2−1] 容器全体の密度の分布
範囲が1.87g/cm3 〜2.00g/cm3 であり、厚さ方向に垂直
な面で測定した前記X線回折積分強度比が14〜20という
特性を満たしたPBN製容器を用い、上記の方法で結晶
成長を10回行った。その結果、シード部からテール部ま
で、All Singleが10本全て得られた。また、容器全体の
密度の分布範囲が1.85g/cm3 〜2.05g/cm3 、前記X線回
析積分強度比の分布範囲が 8〜30という特性を満たした
他のPBN製容器を用い、上記の方法で結晶成長を100
回行った結果、All Singleは95%以上の確率で得られ
た。
Example 2-1 The distribution range of the density of the entire container was 1.87 g / cm 3 to 2.00 g / cm 3 , and the X-ray diffraction integral intensity ratio measured on a plane perpendicular to the thickness direction was as follows. Crystal growth was performed 10 times by the above method using a PBN container satisfying the characteristics of 14 to 20. As a result, all 10 All Singles were obtained from the seed part to the tail part. Further, using another PBN container satisfying the characteristics that the distribution range of the density of the whole container is 1.85 g / cm 3 to 2.05 g / cm 3 , and the distribution range of the X-ray diffraction integral intensity ratio is 8 to 30, Crystal growth of 100 by the above method
As a result, All Single was obtained with a probability of 95% or more.

【0058】[比較例2−1−1] 容器を構成するP
BNの密度の分布範囲の下限が1.85g/cm3 より小さいP
BN製容器を用い、それ以外は実施例2−1と同じ条件
で結晶成長を行った結果、前記X線回析積分強度比に依
らず、All Singleの確率は60%以下であった。
[Comparative Example 2-1-1] P constituting container
The lower limit of the distribution range of BN density is less than 1.85 g / cm 3 P
Crystal growth was performed using a BN container under the same conditions as in Example 2-1 except for the above. As a result, the probability of All Single was 60% or less regardless of the X-ray diffraction integrated intensity ratio.

【0059】[比較例2−1−2] 容器を構成するP
BNの密度の分布範囲の上限が2.05g/cm3 より大きいP
BN製容器を用い、それ以外は実施例2−1と同じ条件
で結晶成長を行った結果、前記X線回析積分強度比に依
らず、All Singleの確率は40%以下であった。
[Comparative Example 2-1-2] P constituting container
The upper limit of the distribution range of BN density is greater than 2.05 g / cm 3
Crystal growth was performed using a BN container under the same conditions as in Example 2-1 except for the above. As a result, the probability of All Single was 40% or less regardless of the X-ray diffraction integrated intensity ratio.

【0060】[比較例2−1−3] 前記X線回析積分
強度比の分布範囲の下限が 8より小さいPBN製容器を
用い、それ以外は実施例2−1と同じ条件で結晶成長を
行った結果、PBN製容器の密度に依らず、All Single
の確率は50%以下であった。
[Comparative Example 2-1-3] A PBN container having a lower limit of the distribution range of the X-ray diffraction integrated intensity ratio smaller than 8 was used, and the crystal growth was carried out under the same conditions as in Example 2-1. As a result, regardless of the density of the PBN container, All Single
Was less than 50%.

【0061】[比較例2−1−4] 前記X線回析積分
強度比の分布範囲の上限が30より大きいPBN製容器を
用い、それ以外は実施例1と同じ条件で結晶成長を行っ
た結果、PBN製容器の密度に依らず、All Singleの確
率は40%以下であった。
Comparative Example 2-1-4 Crystal growth was performed under the same conditions as in Example 1 except that a PBN container having an upper limit of the distribution range of the X-ray diffraction integrated intensity ratio larger than 30 was used. As a result, the probability of All Single was 40% or less regardless of the density of the PBN container.

【0062】以上の実施例2−1及び比較例2−1−1
〜2−1−4の結果を総合すると、密度の分布範囲が容
器全体に亙り1.85g/cm3 〜2.05g/cm3 の範囲であり、前
記X線回析積分強度比の分布範囲が容器全体に亙り 8〜
30の範囲であるという条件を満すPBN製容器を用いて
結晶成長を実施した場合に、All Singleを得られる確率
が95%以上と、GaAs単結晶を得る再現性が大幅に向上す
ることがわかる。
Example 2-1 and Comparative Example 2-1-1
Taken together the results of ~2-1-4, in the range of 1.85g / cm 3 ~2.05g / cm 3 distribution range of density over the entire container, the distribution range of the X-ray diffraction析積component intensity ratio container 8 ~
When crystal growth is performed using a PBN container that satisfies the condition of 30, the probability of obtaining All Single is 95% or more, and the reproducibility of obtaining GaAs single crystal is greatly improved. Recognize.

【0063】なお、この実施例2では、高温炉内にGa
Asの融点以上の温度から融点以下の温度に至る所定の
温度勾配の領域を形成し、この領域に対し原料融液20
の入ったPBN製容器13を相対的に移動させて結晶を
成長させるいわゆる温度勾配法に適用した場合について
説明したが、この発明の方法およびPBN製容器は、高
温炉内にGaAsの融点以上のピ−ク温度をもつ温度分
布を形成すると共に多結晶原料を収容したPBN製容器
を配置し、そのピ−ク温度位置をPBN製容器に対して
移動させつつPBN製容器内の多結晶原料を種結晶側か
ら溶融固化させて単結晶を成長させるいわゆる帯溶融法
(ゾーンメルティング法)にも適用できる。
In the second embodiment, Ga is placed in a high-temperature furnace.
A region having a predetermined temperature gradient from a temperature above the melting point of As to a temperature below the melting point of As is formed.
Of the temperature gradient method of growing the crystal by relatively moving the PBN container 13 into which the PBN container 13 is filled. However, the method and the PBN container according to the present invention have a melting point higher than the melting point of GaAs in the high-temperature furnace. A PBN container that forms a temperature distribution having a peak temperature and contains a polycrystalline raw material is disposed, and the polycrystalline raw material in the PBN container is moved while moving the peak temperature position with respect to the PBN container. It is also applicable to a so-called zone melting method (zone melting method) in which a single crystal is grown by melting and solidifying from the seed crystal side.

【0064】また、以上の実施例1及び2では、GaA
s単結晶成長の製造方法について述べたが、本発明の化
合物半導体単結晶の製造方法はInP,GaP、InA
s等、その他の化合物半導体単結晶の製造に適用しても
同様の効果が得られる。
In the first and second embodiments, the GaAs
Although the method for producing s single crystal growth has been described, the method for producing a compound semiconductor single crystal of the present invention is based on InP, GaP, and InA.
Similar effects can be obtained by applying the present invention to the production of other compound semiconductor single crystals such as s.

【0065】[0065]

【発明の効果】(1)請求項記載の方法によれば、P
BN製容器の密度が、全域に亘り1.85g/cm3 〜2.05g/cm
3 の範囲であり、その密度が、底部から開口部にかけて
徐々に大きくなっており、PBN製容器を構成するPB
N板の厚さ方向に垂直な面で測定した(002) 面と(100)
面のX線回折積分強度比:{I(002) /I(100) }の値
が、全域に亘り8 〜30の範囲であり、そのX線回折積分
強度比の値が、底部から開口部にかけて徐々に大きくな
っているPBN製容器を用いて化合物半導体単結晶の
上げ成長を行うことにより、化合物半導体単結晶の長尺
結晶、大口径結晶を得る再現性を大幅に向上できる。
(1) According to the method of claim 1 , P
The density of the BN container is 1.85 g / cm 3 to 2.05 g / cm
3 , the density of which is gradually increasing from the bottom to the opening.
The (002) plane and the (100) plane measured on the plane perpendicular to the thickness direction of the N plate
X-ray diffraction integrated intensity ratio of the surface: The value of {I (002) / I (100)} is in the range of 8 to 30 over the entire region, and the value of the X-ray diffraction integrated intensity ratio is from the bottom to the opening. argument of the compound semiconductor single crystal by using a PBN made container gradually increases toward
By performing the growth, the reproducibility of obtaining a long crystal and a large-diameter crystal of the compound semiconductor single crystal can be greatly improved.

【0066】(2)請求項記載の方法によれば、PB
N製容器を構成するPBN板の厚さ方向に垂直な面で測
定した熱伝導率の値が、全域に亘り50W/mK〜200W/mK の
範囲であり、PBN製容器を構成するPBN板の厚さ方
向に垂直な面で測定した熱伝導率の値が、底部から開口
部にかけて徐々に大きくなっているPBN製容器を用い
て化合物半導体単結晶の引上げ成長を行うことにより、
化合物半導体単結晶の長尺結晶、大口径結晶を得る再現
性を大幅に向上できる。
(2) According to the method of claim 2 , PB
The value of the thermal conductivity measured on a plane perpendicular to the thickness direction of the PBN plate constituting the N container is in the range of 50 W / mK to 200 W / mK over the entire region, and the PBN plate constituting the PBN container is The value of the thermal conductivity measured on a plane perpendicular to the thickness direction is gradually increased from the bottom to the opening, and the compound semiconductor single crystal is pulled and grown using a PBN container.
The reproducibility of obtaining a long crystal and a large diameter crystal of a compound semiconductor single crystal can be greatly improved.

【0067】(3)請求項記載の方法によれば、PB
N製容器の密度が、全域に亘り1.85g/cm 3 〜2.05g/cm 3
の範囲であり、且つPBN製容器を構成するPBN板の
厚さ方向に垂直な面で測定した(002) 面と(100) 面のX
線回折積分強度比:{I(002) /I(100) }の値が、全
域に亘り8 〜30の範囲であるPBN製容器を用いて、容
器の下端部に収容した種結晶側から化合物半導体単結晶
の成長を行うことにより、結晶の種付け部から結晶成長
最終端部まで全域単結晶の化合物半導体単結晶を再現性
良く得ることができる。
(3) According to the method of claim 3 , PB
The density of the container made of N is 1.85 g / cm 3 to 2.05 g / cm 3
Of the PBN plate constituting the PBN container.
X of (002) plane and (100) plane measured on the plane perpendicular to the thickness direction
Line diffraction integrated intensity ratio: {I (002) / I (100)}
Using a PBN container ranging from 8 to 30 over the area,
Compound semiconductor single crystal from the seed crystal side housed in the lower end of the vessel
In this manner, a compound semiconductor single crystal of a single crystal in the entire region from the seed portion of the crystal to the final end of the crystal growth can be obtained with good reproducibility.

【0068】(4)請求項記載のPBN製容器を用い
て化合物半導体単結晶の引上げ成長を行えば、上記
(1)項〜(2)項の理由により、結晶の種付け部から
結晶成長最終端部まで全域単結晶の化合物半導体単結晶
を再現性良く得ることができる。
(4) If the compound semiconductor single crystal is pulled and grown using the PBN container according to the fourth aspect , the crystal growth from the seeding portion of the crystal to the final stage of crystal growth can be performed for the reasons described in (1) and (2) above. It is possible to obtain a compound semiconductor single crystal of the entire region single crystal with good reproducibility up to the end.

【図面の簡単な説明】[Brief description of the drawings]

【図1】化合物半導体単結晶の製造に使用される装置構
成例を示す概略断面図である。
FIG. 1 is a schematic cross-sectional view showing an example of an apparatus configuration used for manufacturing a compound semiconductor single crystal.

【図2】PBN製容器の密度とX線回折積分強度比(配
向度)との関係をグラフにした図である。
FIG. 2 is a graph showing the relationship between the density of a PBN container and the X-ray diffraction integrated intensity ratio (degree of orientation).

【図3】本発明の実施例を説明するためのPBN製容器
の断面図である。
FIG. 3 is a cross-sectional view of a PBN container for explaining an example of the present invention.

【符号の説明】[Explanation of symbols]

1 高温炉 5 PBN製容器(るつぼ) 6 多結晶原料 7 液体封止剤 11 種結晶 13 PBN製容器 17 種結晶 18 多結晶原料 19 液体封止剤 20 原料融液 21 液体封止剤層 DESCRIPTION OF SYMBOLS 1 High temperature furnace 5 PBN container (crucible) 6 Polycrystalline raw material 7 Liquid sealant 11 seed crystal 13 PBN container 17 Seed crystal 18 Polycrystalline raw material 19 Liquid sealant 20 Raw material melt 21 Liquid sealant layer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原迫 修一 茨城県日立市日高町5丁目1番1号 日 立電線株式会社日高工場内 (72)発明者 高場 進一 茨城県日立市日高町5丁目1番1号 日 立電線株式会社日高工場内 (56)参考文献 特開 平6−122504(JP,A) (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 21/06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Shuichi Tahara Sachi, 5-1-1 Hidaka-cho, Hitachi City, Ibaraki Prefecture Inside the Hidaka Factory, Hitachi Cable Co., Ltd. 5-1-1, Hachimachi, Hidaka Electric Cable Co., Ltd. (56) References JP-A-6-122504 (JP, A) (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1 / 00-21/06

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料融液を収容したPBN製容器を高温炉
内に配置し、種結晶を原料融液に接触させつつ種結晶と
PBN製容器とを相対的に移動させて単結晶を成長させ
る方法において、下記の(1)、(2)、(3)及び
(4)の条件を同時に満たすPBN製容器を使用して化
合物半導体単結晶を成長させることを特徴とする化合物
半導体単結晶の製造方法。 (1) PBN製容器の密度が、全域に亘り1.85g/cm3
〜2.05g/cm3 の範囲である。 (2) PBN製容器を構成するPBN板の厚さ方向に
垂直な面で測定した(002) 面と(100) 面のX線回折積分
強度比:{I(002) /I(100) }の値が、全域に亘り8
〜30の範囲である。 (3) PBN製容器の密度が、底部から開口部にかけ
て徐々に大きくなっている。 (4) PBN製容器を構成するPBN板の厚さ方向に
対して垂直な面で測定した (002)面と (100)面のX線回
折積分強度比: {I(002) /I(100) }の値が、底部から開口部にかけ
て徐々に大きくなっている。
1. A PBN container containing a raw material melt is placed in a high-temperature furnace, and a single crystal is grown by relatively moving the seed crystal and the PBN container while contacting the seed crystal with the raw material melt. In the method, the compound semiconductor single crystal is grown using a PBN container that simultaneously satisfies the following conditions (1), (2), (3) and (4). Production method. (1) The density of the PBN container is 1.85 g / cm 3 over the entire area.
It is in the range of ~2.05g / cm 3. (2) X-ray diffraction integrated intensity ratio of (002) plane and (100) plane measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container: {I (002) / I (100)} Is 8
It is in the range of ~ 30. (3) The density of the PBN container gradually increases from the bottom to the opening. (4) X-ray diffraction integrated intensity ratio of the (002) plane and the (100) plane measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container: {I (002) / I (100) ) The value of} gradually increases from the bottom to the opening.
【請求項2】原料融液を収容したPBN製容器を高温炉
内に配置し、種結晶を原料融液に接触させつつ種結晶と
PBN製容器とを相対的に移動させて単結晶を成長させ
る方法において、下記の(5)及び(6)の条件を同時
に満たすPBN製容器を使用して化合物半導体単結晶を
成長させることを特徴とする化合物半導体単結晶の製造
方法。(5) PBN製容器を構成するPBN板の厚さ方向に
垂直な面で測定した熱伝導率の値が、全域に亘り50W/mK
〜200W/mK の範囲である。(6) PBN製容器を構成するPBN板の厚さ方向に
垂直な面で測定した熱伝導率の値が、底部から開口部に
かけて徐々に大きくなっている。
2. A PBN container containing a raw material melt is placed in a high-temperature furnace, and a single crystal is grown by relatively moving the seed crystal and the PBN container while contacting the seed crystal with the raw material melt. A method for producing a compound semiconductor single crystal, comprising growing a compound semiconductor single crystal using a PBN container that satisfies the following conditions (5) and (6) simultaneously. (5) The value of the thermal conductivity measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container is 50 W / mK over the entire area.
It is in the range of ~ 200W / mK. (6) The value of the thermal conductivity measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container gradually increases from the bottom to the opening.
【請求項3】高温炉内に原料融液を収容したPBN製容
器を配置すると共に結晶の融点以上の温度から融点以下
の温度に至る所定の温度勾配の領域を形成し、当該領域
PBN製容器に対して相対的に移動させてPBN製
器の下端部に収容した種結晶側から単結晶を成長させる
方法において、下記の(1)及び(2)の条件を同時に
満たすPBN製容器を使用して化合物半導体単結晶を成
長させることを特徴とする化合物半導体単結晶の製造方
法。 (1) PBN製容器の密度が、全域に亘り1.85g/cm3
〜2.05g/cm3 の範囲である。 (2) PBN製容器を構成するPBN板の厚さ方向に
垂直な面で測定した(002) 面と(100) 面のX線回折積分
強度比:{I(002) /I(100) }の値が、全域に亘り8
〜30の範囲である。
3. A PBN vessel containing a raw material melt is disposed in a high-temperature furnace, and a region having a predetermined temperature gradient from a temperature higher than the melting point of the crystal to a temperature lower than the melting point is formed . meet in the method from the seed crystal side is relatively moved and housed in the lower end portion of the PBN made containers <br/> device to the container growing a single crystal, the following conditions (1) and (2) at the same time A method for producing a compound semiconductor single crystal, comprising growing a compound semiconductor single crystal using a PBN container. (1) The density of the PBN container is 1.85 g / cm 3 over the entire area.
It is in the range of ~2.05g / cm 3. (2) X-ray diffraction integrated intensity ratio of (002) plane and (100) plane measured on a plane perpendicular to the thickness direction of the PBN plate constituting the PBN container: {I (002) / I (100)} Is 8
It is in the range of ~ 30.
【請求項4】請求項1又は請求項2に記載のPBN製容
器。
4. A container made of PBN according to claim 1 or 2 .
JP5560394A 1993-09-16 1994-03-25 Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal Expired - Lifetime JP2937000B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5560394A JP2937000B2 (en) 1993-09-16 1994-03-25 Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5-230225 1993-09-16
JP23022593 1993-09-16
JP5560394A JP2937000B2 (en) 1993-09-16 1994-03-25 Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH07133184A JPH07133184A (en) 1995-05-23
JP2937000B2 true JP2937000B2 (en) 1999-08-23

Family

ID=26396491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5560394A Expired - Lifetime JP2937000B2 (en) 1993-09-16 1994-03-25 Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2937000B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111840A (en) * 2007-11-06 2008-05-15 Shin Etsu Chem Co Ltd Container for element analysis pretreatment, and element analysis method

Also Published As

Publication number Publication date
JPH07133184A (en) 1995-05-23

Similar Documents

Publication Publication Date Title
JPH0328398B2 (en)
Udayashankar et al. Growth and characterization of indium antimonide and gallium antimonide crystals
JPH076972A (en) Growth method and device of silicon single crystal
JPH08143396A (en) Method for growing silicon carbide single crystal
JP2688137B2 (en) Method of pulling silicon single crystal
JP2937000B2 (en) Method for manufacturing compound semiconductor single crystal and PBN container used for manufacturing compound semiconductor single crystal
US6238477B1 (en) Process and device for the production of a single crystal
JPH06340490A (en) Apparatus for production of silicon single crystal
JP2937109B2 (en) Single crystal manufacturing apparatus and manufacturing method
Roksnoer et al. Growth of dislocation-free gallium-phosphide crystals from a stoichiometric melt
US3413098A (en) Process for varying the width of sheets of web material
JPH05139886A (en) Production of arsenic compound single crystal
Blum et al. Growth of large single crystals of gallium phosphide from a stoichiometric melt
US3649210A (en) Apparatus for crucible-free zone-melting of crystalline materials
JP3018738B2 (en) Single crystal manufacturing equipment
JP2804455B2 (en) Method for growing Si single crystal with controlled temperature fluctuation
JPS6317291A (en) Method for growing crystal and device therefor
JPH069290A (en) Method for growing compound semiconductor single crystal
JP2785578B2 (en) Silicon single crystal pulling equipment
JP2009057237A (en) Method for producing compound semiconductor single crystal
JPH054358B2 (en)
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH03193689A (en) Production of compound semiconductor crystal
JPH07291783A (en) Silicon single crystal and production thereof
JPH07110797B2 (en) Method for producing compound semiconductor single crystal containing high vapor pressure component

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080611

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090611

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100611

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110611

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120611

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120611

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140611

Year of fee payment: 15

EXPY Cancellation because of completion of term