JP2934653B2 - Automatic analyzer - Google Patents

Automatic analyzer

Info

Publication number
JP2934653B2
JP2934653B2 JP15988390A JP15988390A JP2934653B2 JP 2934653 B2 JP2934653 B2 JP 2934653B2 JP 15988390 A JP15988390 A JP 15988390A JP 15988390 A JP15988390 A JP 15988390A JP 2934653 B2 JP2934653 B2 JP 2934653B2
Authority
JP
Japan
Prior art keywords
absorbance
reaction
pulse signal
converts
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15988390A
Other languages
Japanese (ja)
Other versions
JPH0450752A (en
Inventor
秀彦 藤岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUSHOO KK
NITSUTEKU KK
Original Assignee
NITSUSHOO KK
NITSUTEKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUSHOO KK, NITSUTEKU KK filed Critical NITSUSHOO KK
Priority to JP15988390A priority Critical patent/JP2934653B2/en
Publication of JPH0450752A publication Critical patent/JPH0450752A/en
Application granted granted Critical
Publication of JP2934653B2 publication Critical patent/JP2934653B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、検体の吸光度変化を測定する自動分析装
置に係り、特に、検出限界を判定することにより分析結
果の信頼性を向上させる技術に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic analyzer for measuring a change in absorbance of a sample, and more particularly to a technique for improving the reliability of an analysis result by determining a detection limit. .

〔技術の背景〕[Technological background]

臨床生化学検査は、検体の吸光度変化を利用した反応
速度測定装置、即ち、自動分析装置の普及により検体処
理速度が著しく向上した。
In clinical biochemical tests, the processing speed of a sample has been remarkably improved by the spread of a reaction rate measuring device utilizing a change in absorbance of a sample, that is, an automatic analyzer.

しかしながら、このような自動分析装置に採用される
分析法の一つであるレート分析は、被測定物質の関与す
る主反応の速度を定常状態(副反応がほとんどなく、基
質その他の反応物質が十分残存して主反応が一定速度で
反応している状態)で測定する場合に限り正確な測定結
果を得られるという特徴がある。
However, the rate analysis, which is one of the analysis methods employed in such an automatic analyzer, is intended to reduce the rate of the main reaction involving the analyte in a steady state (there is almost no side reaction, and the substrate and other reactants are sufficient). The characteristic feature is that accurate measurement results can be obtained only when measurement is performed with the main reaction remaining at a constant rate.

第4図は最も一般的な2試薬レート法における吸光度
変化を示すもので、時間t0において、第1試薬(一部の
基質を除いたものでNADH等の反応物質や緩衝液よりな
る)を添加すると酵素活性の促進や共存物質の除去等、
一次反応が進み、吸光度がA0より減少する。時間t1にお
いて、一次反応に伴う誤差を除去した後、第2試薬(第
1試薬で除かれている基質よりなる)を添加すると主反
応が進行してNADHが消費され、吸光度が再び減少変化す
る。
FIG. 4 shows the change in absorbance in the most common two-reagent rate method. At time t 0 , the first reagent (excluding some substrates and consisting of a reactant such as NADH or a buffer) was used. When added, it promotes enzyme activity and removes coexisting substances.
Advances the primary reaction, the absorbance decreases from A 0. At time t 1, after removal of the errors associated with the primary reaction, the main reaction when the addition of the second reagent (consisting of a substrate which is removed in the first reagent) is consumed NADH proceeds, the absorbance decreases again changes I do.

かかる吸光度変化において、時間t2〜t5間が前記定常
状態に相当し、吸光度も直線的に変化する領域である。
レート分析では、この直線領域の一定時間例えばt3〜t4
間で正しい測定を行うことが必須の条件である。
In such absorbance change, the time t 2 ~t between 5 corresponds to the steady state, the absorbance is also linearly varying region.
In the rate analysis, for a certain period of time in this linear region, for example, t 3 to t 4
It is an indispensable condition that correct measurement is performed between them.

ところが、被測定物質の活量が高濃度である場合(第
4図中波線で示す)には、第2試薬添加後、急激に主反
応が進行し、例えば、t3の時点では既にNADHの不足によ
って反応が停止状態(プラトーな状態)になっているの
で吸光度変化が小さく、従って、高活性の異常検体が低
活性の正常検体として誤って測定される危険性が存在す
る。
However, when the activity of substance to be measured is high concentration (shown in FIG. 4 in dashed lines) after the second reagent addition, rapid main reaction proceeds, for example, already NADH at the time of t 3 Since the reaction is stopped (plateau state) due to the shortage, the change in absorbance is small, and therefore, there is a risk that an abnormal sample with high activity is erroneously measured as a normal sample with low activity.

〔従来技術〕(Prior art)

ところで、従来、かかる誤測定を防止する手段とし
て、各検体別に妨害成分(ヘモグロビン、ビリルビン
等)に応じた限界吸光度を設定し、これと各検体の最終
吸光度を比較して、吸光度変化測定が定常状態で行われ
たか否かを判定する分析法が、例えば、特開昭56−1089
41号公報に示されているように、公知である。
By the way, conventionally, as a means for preventing such an erroneous measurement, a limit absorbance corresponding to an interfering component (hemoglobin, bilirubin, etc.) is set for each sample, and this is compared with the final absorbance of each sample. An analysis method for determining whether or not the analysis was performed in a state is described in, for example, Japanese Patent Application Laid-Open No. 56-1089.
As shown in Japanese Patent Publication No. 41, it is publicly known.

第5図は妨害成分を含まない理想血清、妨害成分であ
る強度乳化ビ強度溶血、強度黄疸を含む血清の吸収スペ
クトルをそれぞれ符号1,2,3,4で示したものであるが、
測定波長340nmにおける理想血清の吸光度A1に対し、乳
ぴ、溶血、黄疸を含む血清の吸光度はA1+α、A1+α
、A1+αのように高くなるため、この従来技術では
各検体毎にα値を求めて、反応曲線がプラトーになる限
界吸光度を設定していた。
FIG. 5 shows the absorption spectra of ideal serum containing no interfering component, serum containing strong emulsifying bi-hemolysis, and severe jaundice, which are the interfering components, as indicated by reference numerals 1, 2, 3, and 4, respectively.
To absorbance A 1 of the ideal serum at a measurement wavelength of 340 nm, milk Pi, hemolysis the absorbance of sera containing jaundice A 1 + alpha L, A 1 + alpha
Since H and A 1 + α I are high, in this prior art, the α value is obtained for each sample, and the limit absorbance at which the reaction curve becomes a plateau is set.

そして、このα値は次の式で与えられる。 This α value is given by the following equation.

α=k1・a2-1+k2(a4-3−c1・a2-1) +k3〔a6-5−c2・a2-1−c3(a4-3−c1・a2-1)〕 =k1・a2-1+k2(a4-3−c1・a2-1) +k3(a6-5−c2・a2-1−c3・a4-3) ただし、 α=k1・a2-1 α=k2(a4-3−c1・a2-1) α=k3(a6-5−c'2・a2-1−c3・a4-3) c2=c2−c1・c3 a2-1;可視域の2つの波長λ、λの吸光度差 (例えば、λ=700nm,λ=660nm) a4-3;同様にλ−λ (例えば、λ=600nm,λ=570nm) a6-5;同様にλ−λ (例えば、λ=505nm,λ=480nm) k1,k2,k3,c1,c2,c3;ヘモグロビン標本、ビリルビン標本
を始めとする実際の検体の可視域スペクトルを分析して
求める実験値で、例えば、GOT測定用試薬中で求めた場
合、 k1=9.25,k2=2.47,k3=0.51 c1=0.83,c2=1.42,c3=0.10 そして、この従来装置にあっては、実際に測定を終了し
た時点の最終吸光度と、このようにして求めた限界吸光
度とを比較して、最終吸光度が限界吸光度を越えている
とき(減少反応では以下のとき、増加反応では以上のと
き)、結果値にコメントを付けることにより検査結果の
異常を知らせるように構成されていた。
α = k 1・ a 2-1 + k 2 (a 4-3 −c 1・ a 2-1 ) + k 3 [a 6-5 −c 2・ a 2-1 −c 3 (a 4-3 −c 1・ a 2-1 )) = k 1・ a 2-1 + k 2 (a 4-3 −c 1・ a 2-1 ) + k 3 (a 6-5 −c 2・ a 2-1 −c 3・ A 4-3 ) where α L = k 1・ a 2-1 α H = k 2 (a 4-3 −c 1・ a 2-1 ) α I = k 3 (a 6-5 −c ′) 2 · a 2-1 -c 3 · a 4-3) c 2 = c 2 -c 1 · c 3 a 2-1; 2 two wavelengths lambda 1 in the visible range, lambda 2 of absorbance difference (e.g., lambda 1 = 700 nm, λ 2 = 660 nm) a 4-3 ; similarly, λ 3 −λ 4 (eg, λ 3 = 600 nm, λ 4 = 570 nm) a 6-5 ; similarly, λ 5 −λ 6 (eg, λ 5 = 505 nm, λ 6 = 480 nm) k 1 , k 2 , k 3 , c 1 , c 2 , c 3 ; experimental values obtained by analyzing the visible spectrum of actual samples such as hemoglobin samples and bilirubin samples , for example, when determined by the GOT determination reagent, k 1 = 9.25, k 2 = 2.47, k 3 = 0.51 c 1 = 0.83, c 2 = 1.42, c 3 = 0.10 Then, the conventional apparatus In other words, the final absorbance at the time when the measurement is actually completed is compared with the limit absorbance obtained in this way, and when the final absorbance exceeds the limit absorbance (in the case of a decrease reaction, Then, at the time of the above), it was configured to notify the abnormality of the inspection result by adding a comment to the result value.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、かかる従来のレート分析法を用いた自
動分析装置にあっては、試薬の組成変化等があって限界
吸光度の値が変化したような場合には、最終吸光度がこ
の限界値を越えないまま急激な反応を呈してプラトーな
状態に移行しても、これを検出することができず、何ら
コメントのないままデータがかなり低い(または高い)
値になる事態が生じうる(第6図参照)。また、測定範
囲をできるだけ広げるために限界吸光度をぎりぎりにセ
ットする傾向もあり、その場合も最終吸光度が限界値に
ひっかからず、同様の問題が生じる、という問題を有し
ていた。
However, in such an automatic analyzer using the conventional rate analysis method, when the value of the limit absorbance changes due to a change in the composition of the reagent or the like, the final absorbance does not exceed the limit value. Even if a sudden reaction occurs and the state changes to a plateau state, this cannot be detected and the data is very low (or high) without any comment
A value may occur (see FIG. 6). In addition, there is a tendency that the limit absorbance is set very close in order to extend the measurement range as much as possible. In this case, there is a problem that the final absorbance does not fall below the limit value and the same problem occurs.

この発明は、かかる現状に鑑み創案されたものであっ
て、その目的とするところは、一定の速度で間欠的に移
動する反応容器と;この反応容器に対し、検体及び試薬
を添加するピペットと;このピペットにより添加された
検体及び試薬を含んだ前記反応容器を透過した光束を分
光したのち、電圧に変換する光度計と;この光度計から
出力された変換電圧をパルス信号に変換して出力するAD
変換器と;このAD変換器からパルス信号を受領し、それ
に基づき前記透過した光束の吸光度の変化状態を積算す
る吸光度積算装置と;この吸光度積算装置の出力を受
け、分光波長の吸光度を所定のタイミングでプロットし
て反応曲線を作成するとともに、該吸光度を平滑化し、
その最大の微分絶対値に基づいて閾値を設け、該反応曲
線の定常状態の反応領域を判定するマイクロプロセッサ
装置と;このマイクロプロセッサ装置による判定結果
を、所定の形式により出力する周辺機器と;を備え、前
記判定結果が、閾値を越えたときは、定常状態における
反応ではない旨の信号を前記吸光度積算装置に出力し
て、一連の制御動作を自動的に中止するように駆動制御
するよう構成したことを特徴とする自動分析装置を提供
しょうとするものである。
The present invention has been made in view of the above situation, and has as its object to provide a reaction vessel that moves intermittently at a constant speed; and a pipette that adds a specimen and a reagent to the reaction vessel. A photometer that splits the luminous flux transmitted through the reaction vessel containing the sample and the reagent added by the pipette, and converts it into a voltage; and converts the converted voltage output from the photometer into a pulse signal and outputs it. AD
A converter; an absorbance accumulator for receiving a pulse signal from the AD converter and accumulating a change in the absorbance of the transmitted light beam based on the pulse signal; and receiving an output of the absorbance accumulator to determine an absorbance at a spectral wavelength to a predetermined value. Create a reaction curve by plotting at the timing, smoothing the absorbance,
A microprocessor that determines a steady-state reaction region of the reaction curve by setting a threshold based on the maximum differential absolute value; and a peripheral device that outputs a determination result by the microprocessor in a predetermined format. When the determination result exceeds a threshold, a signal indicating that the reaction is not a reaction in a steady state is output to the absorbance integrating device, and drive control is performed so as to automatically stop a series of control operations. It is an object of the present invention to provide an automatic analyzer characterized by the following.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、この発明に係る自動分析装
置は、一定の速度で間欠的に移動する反応容器と;この
反応容器に対し、検体及び試薬を添加するピペットと;
このピペットにより添加された検体及び試薬を含んだ前
記反応容器を透過した光束を分光したのち、電圧に変換
する光度計と;この光度計から出力された変換電圧をパ
ルス信号に変換して出力するAD変換器と;このAD変換器
からパルス信号を受領し、それに基づき前記透過した光
束の吸光度の変化状態を積算する吸光度積算装置と;こ
の吸光度積算装置の出力を受け、分光波長の吸光度を所
定のタイミングでプロットして反応曲線を作成するとと
もに、該吸光度を平滑化し、その最大微分絶対値に基づ
いて閾値を設け、該反応曲線の定常状態の反応領域を判
定するマイクロプロセッサ装置と;このマイクロプロセ
ッサ装置による判定結果を、所定の形式により出力する
周辺機器と;を備え、前記判定結果が、閾値を越えたと
きは、定常状態における反応ではない旨の信号を前記吸
光度積算装置に出力して、一連の制御動作を自動的に中
止するように駆動制御するよう構成したことを特徴とす
るものである。
In order to achieve the above object, an automatic analyzer according to the present invention includes a reaction container that moves intermittently at a constant speed; a pipette for adding a sample and a reagent to the reaction container;
A photometer that splits the luminous flux transmitted through the reaction vessel containing the sample and the reagent added by the pipette and then converts it into a voltage; and converts the converted voltage output from the photometer into a pulse signal and outputs it. An AD converter; an absorbance integrating device that receives a pulse signal from the AD converter and integrates a change in the absorbance of the transmitted light flux based on the pulse signal; and receives an output of the absorbance integrater to determine the absorbance at a spectral wavelength. A microprocessor device which plots a reaction curve at the timing of, prepares a response curve, smoothes the absorbance, sets a threshold value based on the maximum absolute differential value, and determines a steady-state reaction region of the reaction curve; A peripheral device that outputs a result of the determination by the processor device in a predetermined format; and when the result of the determination exceeds a threshold value, the device returns to a steady state. A signal indicating that the reaction is not a reaction to be performed is output to the absorbance integrating device, and drive control is performed to automatically stop a series of control operations.

〔実施例〕〔Example〕

以下、添付図面に示す一実施例に基きこの発明を詳細
に説明する。
Hereinafter, the present invention will be described in detail based on an embodiment shown in the accompanying drawings.

第1図は、この実施例に係る自動分析装置を示すもの
であり、符号10は一定速度で間欠的に移動する透明性の
反応容器、11は該反応容器10に対し検体及び第1試薬を
添加するピペット、12は第2試薬を添加するピペット、
13は光源、14は反応容器10を透過した光を複数波長に分
光して電圧変換する光度計、15はAD変換器、16は入力し
た電圧値に基づき吸光度変化を積算する吸光度積算装
置、17は検体の濃度を求める濃度変換装置、18は測定結
果を画像表示するCRT、19は測定結果を印字出力するプ
リンタ装置であり、符号20で示すマイクロプロセッサ装
置は、入力電圧または吸光度積算装置16の出力に基づい
て反応曲線の微分絶対値が、予め設定した閾値を越えた
ときに吸光度積算装置16へ出力する限界吸光度判定回路
21を備えている。
FIG. 1 shows an automatic analyzer according to this embodiment, in which reference numeral 10 denotes a transparent reaction vessel that moves intermittently at a constant speed, and 11 denotes a sample and a first reagent to the reaction vessel 10. A pipette to add, 12 a pipette to add a second reagent,
13 is a light source, 14 is a photometer that spectrally converts light transmitted through the reaction vessel 10 into a plurality of wavelengths and converts the voltage, 15 is an AD converter, 16 is an absorbance integrating device that integrates an absorbance change based on an input voltage value, 17 Is a concentration conversion device for obtaining the concentration of the sample, 18 is a CRT for displaying an image of the measurement result, 19 is a printer device for printing out the measurement result, and a microprocessor device denoted by reference numeral 20 is an input voltage or absorbance integration device 16. A limit absorbance determination circuit that outputs to the absorbance integrating device 16 when the absolute value of the derivative of the reaction curve based on the output exceeds a preset threshold value
It has 21.

次に、上記構成からなる本自動分析装置の作動を説明
する。
Next, the operation of the present automatic analyzer having the above configuration will be described.

反応容器10を透過した光束は、光度計14で分光された
後電圧変換され、AD変換器15を経たパルス信号が吸光度
積算装置16に入力される。
The luminous flux transmitted through the reaction vessel 10 is spectrally separated by a photometer 14 and then subjected to voltage conversion, and a pulse signal having passed through an AD converter 15 is input to an absorbance integrating device 16.

この吸光度積算装置16は、入力パルス信号に基いて分
光波長の吸光度値を所定タイミングでプロットし、反応
曲線を作成するわけであるが、ここで定常状態の反応領
域を判定する限界吸光度判定回路21は以下のように作動
する。
The absorbance integrator 16 plots the absorbance value of the spectral wavelength at a predetermined timing based on the input pulse signal to create a reaction curve. Here, a limit absorbance determination circuit 21 for determining a steady-state reaction region is used. Works as follows.

いま、反応曲線が、第2図aに示すような状態である
場合、限界吸光度判定回路21は、原理的には曲線の微分
値をとって定常反応領域(直線領域)を判別する(第2
図b)。但し、実際の反応曲線はデータのばらつきがあ
るので吸光度を平滑化してから微分値をとり、判定する
(第2図c)。この場合、各点の吸光度値をAiとし、平
滑後の値をAAiとすると、次式のように重み付き移動平
均化法を用いて平滑化を行う。即ち、 AAi=Ai-3+2×Ai-2+3×Ai-1+4×Ai +3×Ai+1+2×Ai+2+Ai+3 である。
Now, when the reaction curve is in a state as shown in FIG. 2A, the limiting absorbance determination circuit 21 determines the steady-state reaction region (linear region) by taking the differential value of the curve in principle (second region).
Figure b). However, since the actual reaction curve has data variations, the absorbance is smoothed, and then a differential value is obtained and determined (FIG. 2c). In this case, the absorbance value of each point as A i, A value after the smoothing and AA i, performs smoothing using weighted moving average method as shown in the following equation. That is, AA i = A i-3 + 2 × A i-2 + 3 × A i-1 + 4 × A i + 3 × A i + 1 + 2 × A i + 2 + A i + 3.

そして、このような平滑処理後の微分絶対値の最大値
をDmaxとすると、本自動分析装置における限界吸光度
(プラトー判定の閾値)Tは、例えば、 T=−2/3×Dmax と定義し、これを予め限界吸光度判定回路21に設定して
おく。
When the maximum value of the differential absolute value after such smoothing processing is Dmax, the limit absorbance (threshold for plateau determination) T in the automatic analyzer is defined as, for example, T = −2 / 3 × Dmax, This is set in the limit absorbance determination circuit 21 in advance.

減少反応の場合、吸光度積算装置16において算出され
た微分値が、この閾値Tを越えた1点前から再び閾値T
より小さくなった点の間を定常反応と判定し、それ以外
の領域は定常反応ではない可能性が高いとして、限界吸
光度判定回路21から吸光度積算装置16に対して判定信号
を出力させる。当該判定信号に基づく後段処理は、次の
ようなものがある。
In the case of a decrease reaction, the differential value calculated by the absorbance integrating device 16 is changed to the threshold value T from one point before the threshold value T is exceeded.
The region between the smaller points is determined to be a steady-state reaction, and the other region is determined to be likely not to be a steady-state reaction, and the limit absorbance determining circuit 21 outputs a determination signal to the absorbance integrating device 16. The post-processing based on the determination signal is as follows.

例えば、第1に測定データとともに、測定吸光度値が
限界吸光度値を越えたことを知らせる所定マーク(減少
反応のときはLマーク、増加反応のときはHマーク等)
をプリントアウトすることであり、これによって検体が
高濃度であることを確実に知り再測定や試薬の劣化チェ
ック等、それ以後の措置を講ずることが可能となる。
For example, first, a predetermined mark (L mark for a decreasing reaction, H mark for an increasing reaction, etc.) indicating that the measured absorbance value has exceeded the limit absorbance value together with the measurement data.
Is printed out, whereby it is possible to reliably know that the sample has a high concentration, and to take subsequent measures such as re-measurement and reagent deterioration check.

第2は、判定信号が出力されたときは、それ以後は反
応曲線のタイムコースを中止し、CRT18等にその旨を表
示して、定常領域だけの測定結果をプリントアウトする
ことである。これにより、最終吸光度値まで測定した従
来の測定結果に比べ、格段に信頼性の高いデータを得る
ことが可能となる。
Second, when the judgment signal is output, the time course of the response curve is stopped thereafter, the fact is displayed on the CRT 18 or the like, and the measurement result of only the steady region is printed out. As a result, it is possible to obtain data with extremely high reliability as compared with the conventional measurement result up to the final absorbance value.

しかも、前記従来装置の場合は、主反応の進行が急激
で定常領域が狭かったり、傾斜が急で定常領域を算出で
きないというケースも生じたのであるが、本装置のよう
に最大の微分絶対値(直線の傾斜が最大の部分)に基づ
いて閾値を設け、それを越えたときにタイムコースを中
断するように設定すれば、通常の最小自乗法計算によっ
て確実に直線領域を設定することが可能となる。尚、最
小自乗法による傾き計算は次のとおりである(第3図参
照)。
In addition, in the case of the conventional apparatus, the case where the progress of the main reaction is rapid and the steady area is narrow or the slope is steep and the steady area cannot be calculated has occurred. If a threshold is set based on (the part where the slope of the straight line is the maximum) and the time course is set to be exceeded, a straight-line area can be reliably set by ordinary least squares calculation Becomes The slope calculation by the least squares method is as follows (see FIG. 3).

Rate値 但し、n=m−l+1 〔発明の効果〕 以上説明したように、この発明に係る自動分析装置に
よれば、反応曲線の微分絶対値が、最大絶対値に基づい
て予め設定した閾値を越えたときは、定常状態の反応で
はない旨の信号を前記吸光度積算装置に出力して、一連
の制御動作を自動的に中止するようにしたので、検体の
主反応が急激に進行して早い時期に反応停止状態に移行
したとしても、定常状態の反応領域のみを確実に捉えて
処理状態を明確に判断でき、高濃度検体を含むレート分
析の信頼性を一段と向上させる、という優れた効果を奏
する。
Rate value However, n = ml + 1 [Effect of the Invention] As described above, according to the automatic analyzer according to the present invention, the differential absolute value of the reaction curve exceeds the preset threshold based on the maximum absolute value. At this time, a signal indicating that the reaction is not a steady-state reaction was output to the absorbance integrating device, and a series of control operations was automatically stopped. Even if the process is shifted to the reaction stopped state, an excellent effect that the processing state can be clearly determined by reliably capturing only the reaction region in the steady state, and the reliability of the rate analysis including the high-concentration sample is further improved is achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例に係る自動分析装置を示す
系統ブロック図、第2図は同自動分析装置の処理例を示
すグラフ図、第3図は吸光度の傾き具合を例示するグラ
フ図、第4図は一般的な吸光度変化曲線を示すグラフ
図、第5図は妨害成分と吸光度の関係を例示するグラフ
図、第6図は高濃度検体の反応曲線と従来の限界吸光度
との関係を示すグラフ図である。 〔符号の説明〕 14……光度計、16……吸光度積算装置 20……マイクロプロセッサ装置 21……限界吸光度判定回路
FIG. 1 is a system block diagram showing an automatic analyzer according to an embodiment of the present invention, FIG. 2 is a graph showing an example of processing by the automatic analyzer, and FIG. 3 is a graph showing an inclination of absorbance. , FIG. 4 is a graph showing a general absorbance change curve, FIG. 5 is a graph illustrating the relationship between an interference component and absorbance, and FIG. 6 is a relationship between a reaction curve of a high concentration sample and a conventional limit absorbance. FIG. [Explanation of symbols] 14: photometer, 16: absorbance integrating device 20: microprocessor device 21: limit absorbance determination circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01N 21/75 G01N 21/59 G01N 35/00 JICST──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01N 21/75 G01N 21/59 G01N 35/00 JICST

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一定の速度で間欠的に移動する反応容器
と;この反応容器に対し、検体及び試薬を添加するピペ
ットと;このピペットにより添加された検体及び試薬を
含んだ前記反応容器を透過した光束を分光したのち、電
圧に変換する光度計と;この光度計から出力された変換
電圧をパルス信号に変換して出力するAD変換器と;この
AD変換器からパルス信号を受領し、それに基づき前記透
過した光束の吸光度の変化状態を積算する吸光度積算装
置と;この吸光度積算装置の出力を受け、分光波長の吸
光度を所定のタイミングでプロットして反応曲線を作成
するとともに、該吸光度を平滑化し、その最大の微分絶
対値に基づいて閾値を設け、該反応曲線の定常状態の反
応領域を判定するマイクロプロセッサ装置と;このマイ
クロプロセッサ装置による判定結果を、所定の形式によ
り出力する周辺機器と;を備え、前記判定結果が、閾値
を越えたときは、定常状態における反応ではない旨の信
号を前記吸光度積算装置に出力して、一連の制御動作を
自動的に中止するように駆動制御するよう構成したこと
を特徴とする自動分析装置。
1. A reaction vessel which moves intermittently at a constant speed; a pipette for adding a specimen and a reagent to the reaction vessel; and a permeation through the reaction vessel containing the specimen and the reagent added by the pipette. A photometer that converts the converted luminous flux into a voltage and converts the converted voltage into a voltage; an AD converter that converts the converted voltage output from the photometer into a pulse signal and outputs the pulse signal;
An absorbance integrating device that receives a pulse signal from the AD converter and integrates the change in the absorbance of the transmitted light flux based on the pulse signal; and receives the output of the absorbance integrater and plots the absorbance of the spectral wavelength at a predetermined timing. A microprocessor device for creating a reaction curve, smoothing the absorbance, setting a threshold based on the maximum differential absolute value, and determining a steady-state reaction region of the reaction curve; and a determination result by the microprocessor device And a peripheral device that outputs a signal in a predetermined format. When the determination result exceeds a threshold value, a signal indicating that the reaction is not a reaction in a steady state is output to the absorbance integrating device, and a series of control operations are performed. An automatic analyzer configured to perform drive control so as to automatically stop the operation.
JP15988390A 1990-06-20 1990-06-20 Automatic analyzer Expired - Lifetime JP2934653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15988390A JP2934653B2 (en) 1990-06-20 1990-06-20 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15988390A JP2934653B2 (en) 1990-06-20 1990-06-20 Automatic analyzer

Publications (2)

Publication Number Publication Date
JPH0450752A JPH0450752A (en) 1992-02-19
JP2934653B2 true JP2934653B2 (en) 1999-08-16

Family

ID=15703275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15988390A Expired - Lifetime JP2934653B2 (en) 1990-06-20 1990-06-20 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP2934653B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19640121B4 (en) * 1996-09-28 2007-04-26 Dade Behring Marburg Gmbh Method for determining a time-dependent variable to be measured
JP4925124B2 (en) * 2007-10-02 2012-04-25 富士フイルム株式会社 Misalignment determination method and apparatus
JP2009250720A (en) * 2008-04-03 2009-10-29 Olympus Corp Autoanalyzer and method for analyzing liquid sample
JP5193937B2 (en) * 2009-05-08 2013-05-08 株式会社日立ハイテクノロジーズ Automatic analyzer and analysis method
JP5193940B2 (en) 2009-05-11 2013-05-08 株式会社日立ハイテクノロジーズ Automatic analyzer
CN112964673B (en) * 2021-01-29 2024-02-27 深圳市科曼医疗设备有限公司 Method and device for identifying abnormality of specific protein response curve

Also Published As

Publication number Publication date
JPH0450752A (en) 1992-02-19

Similar Documents

Publication Publication Date Title
EP1460414B1 (en) Concentration measuring method
US10646445B2 (en) Analysis compensation including segmented signals converted into signal processing parameters for describing a portion of total error
US7727769B2 (en) Measurement result correction method, urine analysis system, and urine analyzer
JP2009109196A (en) Dilution ratio deriving method, quantity determination method and analyzer
KR101244068B1 (en) A method for measuring concentration of air and water pollutants
JP2934653B2 (en) Automatic analyzer
JP3203798B2 (en) How to measure chromogen
US11644434B2 (en) Biosensor system analyte measurement
JPS6332132B2 (en)
Peake et al. Bilirubin measured on a blood gas analyser: a suitable alternative for near-patient assessment of neonatal jaundice?
JPS6252434A (en) Absorption photometric analytic method
JP7015521B2 (en) Whole blood albumin analyzer and whole blood albumin analysis method
JPS6118982B2 (en)
JPH0943242A (en) Method for measuring concentration of glucose
JPH0257863B2 (en)
EP3532828B1 (en) Detection of ascorbic acid in a urine sample
JPS6082865A (en) Automatic chemical analysis apparatus
JPS6119933B2 (en)
JPS6060558A (en) Analyzing method for plural measurements
JPH0213269B2 (en)
KR20000016035A (en) Process to eliminate haemoglobin errors during the determination of albumin
JPS62179639A (en) Multi-item biochemical analysis
JPH06180285A (en) Absorptiometry in automatic analyzer
Joyner Reagent-Strip Method of Blood Glucose Determination: Evaluation in an Industrial Population
JPH09127026A (en) Fluorescent x-ray analytical method