JPS6252434A - Absorption photometric analytic method - Google Patents
Absorption photometric analytic methodInfo
- Publication number
- JPS6252434A JPS6252434A JP19164285A JP19164285A JPS6252434A JP S6252434 A JPS6252434 A JP S6252434A JP 19164285 A JP19164285 A JP 19164285A JP 19164285 A JP19164285 A JP 19164285A JP S6252434 A JPS6252434 A JP S6252434A
- Authority
- JP
- Japan
- Prior art keywords
- wavelength
- ratio
- absorption
- reaction liquid
- absorbance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
【発明の詳細な説明】
(イ)産業上の利用分野
本発明は、吸光光度分析法に関し、特に、血液、血漿、
血清、尿、その他体液、分泌液等の検体及びその他生化
学的試料についての吸光光度分析法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to spectrophotometric analysis, particularly for blood, plasma,
This book relates to spectrophotometric analysis of specimens such as serum, urine, other body fluids, secretions, and other biochemical samples.
また、本発明は、自動化学分析装置における検体及びそ
の他生化学的試料についての吸光光度分析法に関する。The present invention also relates to a spectrophotometric analysis method for specimens and other biochemical samples in an automatic chemical analyzer.
(ロ)従来の技術
吸光光度分析法は、最も一般に用いられる分析技術の一
つであり、高感度かつ選択性の高い試薬の開発に伴い、
種々の自動分析装置に採用されている。(b) Conventional technology Spectrophotometric analysis is one of the most commonly used analytical techniques, and with the development of highly sensitive and highly selective reagents,
It is used in various automatic analyzers.
このような吸光光度分析法を採用する自動化学分析装置
は、例えば、血漿、血清、尿、その他体液、分泌液等の
検体について、各成分の分析に使用されており、その分
析値は、診断、治療指針等に利用される関係上、常に正
確度及び迅速さが要求される。Automated chemical analyzers that employ such spectrophotometric analysis are used, for example, to analyze each component of samples such as plasma, serum, urine, other body fluids, and secretions, and the analytical values are used for diagnostic purposes. Since it is used for treatment guidelines, etc., accuracy and speed are always required.
しかし、血漿、血清、尿、その他体液及び分泌液等の検
体についての吸光光度測定値は、クロモゲン、例えば、
黄痕におけるビリルビン、溶血によるヘモグロビン、乳
ビ等によって影響を受ける場合があるので、このような
場合には、正確な吸光度測定ができず、したがって、総
ての検体について、常に一定の正確度で分析することが
できず問題であった。However, spectrophotometric measurements on specimens such as plasma, serum, urine, and other body fluids and secretions are based on chromogens, e.g.
It may be affected by bilirubin in the yellow stain, hemoglobin due to hemolysis, chyle, etc. In such cases, it is not possible to measure absorbance accurately, and therefore all samples can always be measured with a certain degree of accuracy. This was a problem because it could not be analyzed.
このような試料中の共存成分の干渉の他にも、測定セル
の汚れ又は傷、或は反応液中に混入する気泡や固形物に
よる干渉を受けて、測光値に誤差を生じる原因となって
いる。In addition to such interference from coexisting components in the sample, dirt or scratches on the measurement cell, or interference from air bubbles or solid matter mixed in the reaction solution can cause errors in photometric values. There is.
そこで従来は、このような誤差を避けるために、検体ブ
ランク液を別に調製して、同一測定条件で得た測定結果
より検体反応液の測定検体を補正する又は所謂二波長法
により行っている。Conventionally, in order to avoid such errors, a sample blank solution is prepared separately and the measurement sample of the sample reaction solution is corrected from the measurement results obtained under the same measurement conditions, or the so-called dual wavelength method is used.
(ハ)発明が解決しようとするH照点
しかし、検体毎に又は測定セル毎に、検体ブランク液を
設けることは、その分検体処理量を低下して好ましいこ
とでなく、また、分析手順も繁雑となるので問題が残る
ことになる。また、二波長法では、測定に使用される二
種類の波長の光について概ね同等と見なしうる見掛けの
吸光度を示すもの、例えば1.試料液中の固形物、微気
泡、測定セル表面の傷に対しては補正効果がある。しか
し、ビリルビン、ヘモグロビン、乳ビの原因であるカイ
ロミクロン等のクロモゲンについては、これらの二波長
においてその影響が相違するために、二波長法でも正し
い分析値を得ることが困難である。(c) H target point to be solved by the invention However, providing a sample blank solution for each sample or for each measurement cell is not preferable as it reduces the amount of sample throughput, and it also changes the analysis procedure. Problems will remain as it becomes complicated. In addition, in the two-wavelength method, the two wavelengths of light used in the measurement have an apparent absorbance that can be considered to be roughly equivalent, such as 1. It has a corrective effect on solids in the sample liquid, microbubbles, and scratches on the surface of the measurement cell. However, with regard to chromogens such as bilirubin, hemoglobin, and chylomicron, which is the cause of chyle, the influence of these two wavelengths is different, so it is difficult to obtain accurate analytical values even with the two-wavelength method.
本発明は、このような従来の吸光光度分析法における妨
害成分や妨害物質等による測定値の異常による分析精度
及び正確さの低下を解消するものである。The present invention is intended to eliminate the decrease in analytical precision and accuracy due to abnormalities in measured values due to interfering components and substances in the conventional spectrophotometric analysis method.
(ニ)問題点を解決す6だめの手段
本発明は、吸光度測定が、試料中、特に検体中の妨害成
分により影響を受けた場合に、これを検出し、再分析、
或は補正を行うように報知或は指示する吸光光度分析法
を提供するものである。(d) Six ways to solve the problem The present invention detects when absorbance measurement is affected by interfering components in the sample, particularly in the specimen, and performs re-analysis.
Alternatively, it provides an absorption photometric analysis method that notifies or instructs to perform correction.
本発明は、りaモダンの妨害がなければ、測光対象物質
の吸収スペクトル上の二波艮の吸光度間の比率が常に一
定になる。αに着目してなされたものである。In the present invention, the ratio between the absorbances of two waves on the absorption spectrum of the substance to be measured is always constant unless there is any interference. This was done by focusing on α.
すなわち、本発明は、任意の液層長を有する試料反応液
について、測光対象物質の吸収スペクトル上の二種類の
波長の透過光の吸光度を測定し、この測定された二つの
吸光度を対比させ、また、一方において、前記試料液と
同一のwL/l艮を有する標準液反応液に、iq記二種
類の光と同−波長の光を透過させて、夫々の波長の光に
ついての標準液反応液の吸光度を測定し、この測定され
た二つの吸光度を対比させ、該試料反応液の吸光度間の
比率と該標準液反応液の吸光度間の比率を対比して、試
料反応液の測定値における妨害物質の影響の有無を検出
することを特徴とする吸光光度分析法にある。That is, the present invention measures the absorbance of transmitted light at two different wavelengths on the absorption spectrum of the photometric target substance for a sample reaction liquid having an arbitrary liquid layer length, and compares the two measured absorbances. On the other hand, light having the same wavelength as the two types of light described in iq is transmitted through a standard solution reaction solution having the same wL/l as the sample solution, and the standard solution reaction for each wavelength of light is measured. Measure the absorbance of the solution, compare the two measured absorbances, compare the ratio between the absorbances of the sample reaction solution and the absorbance of the standard solution reaction solution, and determine the difference in the measured value of the sample reaction solution. This spectrophotometric analysis method is characterized by detecting the presence or absence of the influence of interfering substances.
本発明において使用される二種類の波長の光は、測光対
象物質についての、吸光度が測定できる領域の二種類の
波長の光であれば、いずれの波長の光も使用できるが、
二種類の波長の光の中、一方の波長の光として、測光対
象物質の吸収ス゛ベクトルにおける吸収極大波長の光を
選び、他の波長の光として非吸収極大波長の光を選」こ
のが使用する光の種類が少くなるので好ましい。ここで
、この吸収極大波長の光とは測光対象物質の吸収スペク
トルにおける吸収極大の波長の光をいい、一定測定条件
の下では物質に固有のものである。また、非吸収極大波
長の光とは測光対象物質の吸収スペクトルの中で吸収極
大の波長以外の吸収波長の光をいうが、吸収極大波長の
光と対比してその比が明確に現われる波長の光が好まし
い。例えば、測光対象物質について、吸収極大波長の吸
光度と非吸収極大波長の吸光度の比は、非吸収極大波長
として常に同一の波長を選択する限り一定であるから、
分析項目毎に予め非吸収極大波長を定めておくのが好ま
しい。もとより、この吸光度比は、測光NflL物質に
固有のものであるから、一つの非吸収極大波長について
その吸光度比を求めれば充分であるが、複数、例えば二
つの非吸収極大彼氏についての吸光度比を使用すること
ができる。The two wavelengths of light used in the present invention can be any of the two wavelengths that fall within the range where the absorbance of the substance to be measured can be measured.
Among the two wavelengths of light, select the light with the maximum absorption wavelength in the absorption vector of the substance to be measured as the light of one wavelength, and select the light with the non-absorption maximum wavelength as the light of the other wavelength. This is preferable because there are fewer types of light. Here, the light with the maximum absorption wavelength refers to the light with the maximum absorption wavelength in the absorption spectrum of the substance to be measured, and is unique to the substance under certain measurement conditions. In addition, light with a non-absorbing maximum wavelength refers to light with an absorption wavelength other than the maximum absorption wavelength in the absorption spectrum of the photometric target substance, but it also refers to light with an absorption wavelength other than the maximum absorption wavelength in the absorption spectrum of the substance to be measured. Light is preferred. For example, for a photometric target substance, the ratio of the absorbance at the maximum absorption wavelength to the absorbance at the maximum non-absorption wavelength is constant as long as the same wavelength is always selected as the maximum non-absorption wavelength.
It is preferable to determine the maximum non-absorption wavelength for each analysis item in advance. Of course, this absorbance ratio is unique to the photometric NflL substance, so it is sufficient to find the absorbance ratio for one non-absorbing maximum wavelength, but it is sufficient to calculate the absorbance ratio for multiple, for example, two non-absorbing maximum wavelengths. can be used.
本発明において、標準液には、当該分析の測定対象物質
の溶液が使用される。したがって、例えば、検量線作成
に使用する標準液等を使用することができる。また、本
発明においては、試薬ブランク値を、例えば、測光対象
物質の吸収極大波長の光及び使用される非吸収極大波長
の光について求め、夫々の波長の試薬ブランク値とする
。In the present invention, a solution of a substance to be measured in the analysis is used as the standard solution. Therefore, for example, a standard solution used for creating a calibration curve can be used. Furthermore, in the present invention, reagent blank values are determined for, for example, light at the absorption maximum wavelength of the photometric target substance and light at the non-absorption maximum wavelength used, and used as reagent blank values for the respective wavelengths.
(ホ)作 用
本発明においては、標準液反応液中の測光対象物質につ
いての吸収極大波長の吸光度と非吸収極大波長の吸光度
との比、すなわち標準液反応液の吸光度比を標準とし、
測光試料液反応液中の該測光N象物質についての吸収極
大波長の吸光度と非吸収極大波長の吸光度との比、すな
わち測光試料液反応液の吸光度比を、前記標準と対比し
て、測光試料液反応液についての測定値の異常を検出す
。(E) Function In the present invention, the ratio of the absorbance at the absorption maximum wavelength and the absorbance at the non-absorption maximum wavelength of the photometric target substance in the standard solution reaction solution, that is, the absorbance ratio of the standard solution reaction solution, is used as the standard,
The ratio of the absorbance at the absorption maximum wavelength to the absorbance at the non-absorption maximum wavelength for the photometric N-parallel in the photometric sample liquid reaction liquid, that is, the absorbance ratio of the photometric sample liquid reaction liquid, is compared with the standard, and the photometric sample is determined. Detects abnormalities in measured values for liquid reaction liquids.
るものである。したがって、本発明においては、試料の
測定値毎に、該測光試料液反応液の吸光度比が標準液反
応液の吸光度比と対比される。このか↑比において、当
該測光試料液反応液の吸光度比と標i?!液反応液の吸
光度比との比又は差が閾値を越えるときは、妨害物質に
よる影響つまり異常が測定値に現われていることを示す
ものであり、当該分析値が不正確になることを意味する
。It is something that Therefore, in the present invention, the absorbance ratio of the photometric sample liquid reaction liquid is compared with the absorbance ratio of the standard liquid reaction liquid for each measured value of the sample. In this ↑ ratio, the absorbance ratio of the photometric sample solution and the mark i? ! When the ratio or difference with the absorbance ratio of the reaction solution exceeds a threshold value, it indicates that an influence or abnormality due to an interfering substance appears in the measured value, and it means that the analytical value concerned will be inaccurate. .
(へ)実施例
以下、添付図面を参照して、本発明の実施の一態様を説
明するが、本発明は、この説明によって何ら限定される
ものではない。(F) Example Hereinafter, one embodiment of the present invention will be described with reference to the accompanying drawings, but the present invention is not limited in any way by this description.
図は、本発明の吸光光度分析法の原理を説明するための
吸光スペクトル図である。The figure is an absorption spectrum diagram for explaining the principle of the absorption photometric analysis method of the present invention.
測定対象成分のみ含有する標準液の所定量を測光用反応
管に採り、これに反応試薬の所定量を加え、所定の条件
の下に所定時間反応させて、測光対象物質である目的の
反応生成物を生成させる。A predetermined amount of a standard solution containing only the component to be measured is placed in a photometric reaction tube, a predetermined amount of a reaction reagent is added to it, and the reaction is allowed to occur under predetermined conditions for a predetermined time to generate the desired reaction product, which is the photometric target substance. generate things.
次いで、この反応後の測光用反応管を測光部に送り、そ
こで、前記反応生成物の吸収極大波長大、及び非吸収極
大波長λ2夫々の波長についての標準液反応液吸光度A
stλ1及びAstλ2を測定する。次いで、前記標準
液の代わりに同量の純水を他の測光用反応管に採り、こ
れに前記試薬の所定量を分注し、この試薬を入れた測光
用反応管を測光部に送る。そこで測光用反応管について
府記吸収極大波氏λ1及び非吸収極大波長λ2夫々の波
長についての、試薬ブランク吸光度AI)λ。Next, the reaction tube for photometry after this reaction is sent to the photometry section, where the standard solution reaction solution absorbance A is measured for each of the maximum absorption wavelength and non-absorption maximum wavelength λ2 of the reaction product.
Measure stλ1 and Astλ2. Then, instead of the standard solution, the same amount of pure water is placed in another photometric reaction tube, a predetermined amount of the reagent is dispensed therein, and the photometric reaction tube containing this reagent is sent to the photometric section. Therefore, for the photometric reaction tube, the reagent blank absorbance AI) λ is determined for each of the wavelengths of absorption maximum wavelength λ1 and non-absorption maximum wavelength λ2.
及vAbλ2を測定する。and vAbλ2 are measured.
したがって、妨害因子が存在しないときの、目的反応生
成物についての標準液吸光度比Vstは、次の式により
求められる。Therefore, the standard solution absorbance ratio Vst for the target reaction product in the absence of interfering factors is determined by the following equation.
式 また、濃度換算係数には、次式により求められる。formula Further, the concentration conversion coefficient is determined by the following formula.
K=Cst/ (Astλ、A s Lλ2 )−(A
I:lλ、 −All)λ2)
〔式中Cstは、測定対象物質標準液濃度である。:つ
いで、所定量の検体を、測定用反応管に分注し、これに
前記所定量の反応試薬を分注し、所定の条件の下に所定
時間反応させ目的の反応を行わせて測光部に送る。測光
部に送られた反応管に、前記反応生成物の吸収極大波長
λ1及び非吸収極大波長λ2の夫々の波長について検体
吸光度Aspλ1及びAspλ2を測定し、その検体吸
光度比Vspを次式により求める。K=Cst/(Astλ, As Lλ2)−(A
I:lλ, -All)λ2) [In the formula, Cst is the concentration of the standard solution of the substance to be measured. :Next, a predetermined amount of the sample is dispensed into a measurement reaction tube, and the predetermined amount of the reaction reagent is dispensed into this, and the reaction is allowed to occur under predetermined conditions for a predetermined period of time to perform the desired reaction. send to Specimen absorbances Aspλ1 and Aspλ2 are measured for the absorption maximum wavelength λ1 and non-absorption maximum wavelength λ2 of the reaction product in the reaction tube sent to the photometry section, respectively, and the analyte absorbance ratio Vsp is determined by the following formula.
式
そこで、標準液反応液吸光度比V s t t:対する
検体吸光度比Vspに比を求め、その比(Vsp/ V
s t )が0.95〜1.05の閾値内にあるとき
は、検体中の測定対象物質濃度C3p=K[: (A
sp入I Aspλ2) (Ahλ1−Al)
λ2)〕となる。しかし、比V s p / V s
tが0.95〜1.05の閾値の外にあるときは、測定
値異常を示すものであり、再分析又は注意のマーク又は
コメントを付すことになる。Then, calculate the ratio of the absorbance ratio of the standard solution and the reaction solution, V s t t: to the absorbance ratio of the sample, Vsp, and calculate the ratio (Vsp/V
s t ) is within the threshold of 0.95 to 1.05, the concentration of the substance to be measured in the sample C3p=K[: (A
sp included I Aspλ2) (Ahλ1-Al)
λ2)]. However, the ratio V s p / V s
When t is outside the threshold of 0.95 to 1.05, it indicates an abnormality in the measured value and requires re-analysis or a caution mark or comment.
このように、標準液吸光度比VStに対する検体吸光度
比Vspの比を求めることにより、検体測定値の異常を
容易に検出することができる。検体測定値の異常が検出
されない場合は、通常の吸光光度法すなわち一波長また
は二波民吸光光度法により測定値を求める。In this manner, by determining the ratio of the sample absorbance ratio Vsp to the standard solution absorbance ratio VSt, an abnormality in the sample measurement value can be easily detected. If no abnormality in the sample measurement value is detected, the measurement value is determined by normal spectrophotometry, that is, one-wavelength or two-wave absorption spectrophotometry.
妨害成分のスペクトルが検体測定値に影響するケースを
図に示す。本例において、検体反応液の吸光スペクトル
曲線dは、これと等濃度の標準液反応液のスペクトル曲
#iaに妨害成分のスペクトル曲線Cが加わって形成さ
れている。The figure shows a case where the spectrum of the interfering component affects the measured value of the analyte. In this example, the absorption spectrum curve d of the sample reaction solution is formed by adding the spectrum curve C of the interfering component to the spectrum curve #ia of the standard solution reaction solution at the same concentration.
この場合、妨害成分の吸光スペクトルCにおける前記吸
収極大波長λ1及び非吸収極大波長大。In this case, the maximum absorption wavelength λ1 and the maximum non-absorption wavelength in the absorption spectrum C of the interfering component.
の妨害成分吸光度を夫々A!λ1及びAIλ2とし、本
例においてはAt λ2は零である。検体反応液吸光度
比Vspは、
一方、標準液反応液吸光度比Vstは、したがって、標
準液反応液吸光度比Vstに対する検体反応液吸光度比
Vspの比V s p / V s tは、
となり、検体中の妨害成分の波長λ1の吸光度At λ
1が太き(なって無視できない値になると、比V s
p / V s tの値は1より大きな値となり、測定
値の異常を知ることができる。The absorbance of the interfering component is A! λ1 and AIλ2, and in this example, At λ2 is zero. The absorbance ratio Vsp of the sample reaction solution is, On the other hand, the absorbance ratio Vst of the standard solution reaction solution is, therefore, the ratio of the absorbance ratio Vsp of the sample reaction solution to the absorbance ratio Vst of the standard solution reaction solution V sp / V st is as follows. The absorbance of the interference component at wavelength λ1 At λ
1 becomes thick (when it becomes a value that cannot be ignored, the ratio V s
The value of p/V s t becomes a value greater than 1, and an abnormality in the measured value can be known.
また、図の例とは逆に妨害成分の波長λ1の吸光度AI
λ1が零で、波長λ2の吸光度が大きいと軽は、
」b」−一 −一−Jい工大!二二り呂」−一一−Vs
t Astλ2 +A Iλ2−Abλ2となI
)、検体中の妨害成分の波長λ2の吸光魔人 λ2が大
きくなって無視できない値になると、比V s p /
V s tの値は、1より小さな値となり、これによ
り測定値の異常を知ることができる。Also, contrary to the example in the figure, the absorbance AI of the wavelength λ1 of the interference component is
When λ1 is zero and the absorbance at wavelength λ2 is large, the light is ``b'' - 1 - 1 - J engineering university! Nijiro”-11-Vs
t Astλ2 +A Iλ2−Abλ2 and I
), the absorption magician of the wavelength λ2 of the interfering component in the sample. When λ2 increases to a value that cannot be ignored, the ratio V s p /
The value of V s t becomes a value smaller than 1, which makes it possible to know whether there is an abnormality in the measured value.
(ト)発明の効果
本発明は、標準液反応液の吸光度比を標準として、これ
と測定試料反応液の吸光度比を対比するものであり、従
来の吸光光度法に比較して、クロモダン等の測光妨害成
分或は測光妨害物質による分析異常が現われている測定
値を簡単に判別できるようになり、したがって、これら
測光妨害成分或は測光妨害物質による不正確な分析値の
検出が可能となり分析値の信頼性向上が期待でさる。(g) Effects of the invention The present invention uses the absorbance ratio of a standard solution reaction solution as a standard and compares it with the absorbance ratio of a measurement sample reaction solution. It is now possible to easily identify measurement values in which analytical abnormalities due to photometric interference components or photometric interference substances have appeared, and it is therefore possible to detect inaccurate analysis values due to these photometry interference components or photometry interference substances. It is hoped that the reliability will improve.
図は、本発明の吸光光度分析法の原理を説明するための
吸収スペクトル図である。
図中、aは標準液反応液の吸収スペクトル、bは試薬ブ
ランク液の吸収スペクトル、Cは検体反応液中の妨害成
分の吸収スペクトル、dは検体反応液の吸収スペクトル
、λ1は吸収極大波長、λ2は非吸収極大彼氏である。
代 理 人The figure is an absorption spectrum diagram for explaining the principle of the spectrophotometric analysis method of the present invention. In the figure, a is the absorption spectrum of the standard solution reaction solution, b is the absorption spectrum of the reagent blank solution, C is the absorption spectrum of the interfering component in the sample reaction solution, d is the absorption spectrum of the sample reaction solution, λ1 is the absorption maximum wavelength, λ2 is the non-absorbing maximum boyfriend. Agent
Claims (1)
収スペクトル上の二種類の波長の透過光の吸光度を測定
し、この測定された二つの吸光度を対比させ、また、一
方において、前記試料反応液と同一の液層長を有する標
準液反応液に、前記二種類の波長の透過光において標準
液反応液の吸光度を測定し、この測定された二つの吸光
度を対比させ、試料反応液の吸光度間の比率と標準液反
応液の吸光度間の比率を対比して、試料反応液の測定値
における妨害物質の影響の有無を検出することを特徴と
する吸光光度分析法。The absorbance of transmitted light at two wavelengths on the absorption spectrum of the photometric target substance is measured in a sample reaction solution having an arbitrary liquid layer length, and the two measured absorbances are compared. The absorbance of the standard solution reaction solution having the same liquid layer length as that of the sample reaction solution is measured in the transmitted light of the two types of wavelengths, and the two measured absorbances are compared. A spectrophotometric analysis method, which is characterized in that the presence or absence of an influence of an interfering substance on the measured value of a sample reaction solution is detected by comparing the ratio between the absorbance of a standard solution and the absorbance of a reaction solution.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19164285A JPS6252434A (en) | 1985-08-30 | 1985-08-30 | Absorption photometric analytic method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19164285A JPS6252434A (en) | 1985-08-30 | 1985-08-30 | Absorption photometric analytic method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6252434A true JPS6252434A (en) | 1987-03-07 |
Family
ID=16278047
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19164285A Pending JPS6252434A (en) | 1985-08-30 | 1985-08-30 | Absorption photometric analytic method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6252434A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0409898A1 (en) * | 1988-04-13 | 1991-01-30 | International Integrated Systems, Inc. | System of fluid inspection and/or identification |
JPH03100444A (en) * | 1989-09-13 | 1991-04-25 | Hitachi Ltd | Device and method for automatic analysis for clinical examination |
GR890100651A (en) * | 1989-06-08 | 1991-11-15 | Int Integrated Systems In | System for the detection or and determination of a fluid |
JP2002082047A (en) * | 2000-09-08 | 2002-03-22 | Matsushita Electric Ind Co Ltd | Urinalysis device |
JP2006162355A (en) * | 2004-12-03 | 2006-06-22 | Olympus Corp | Wavelength confirming method of apparatus with built in photometer and autoanalyzer |
JP2011122987A (en) * | 2009-12-11 | 2011-06-23 | Sharp Corp | Metal concentration measuring method, and automatic management device for metal concentration |
WO2019239980A1 (en) * | 2018-06-15 | 2019-12-19 | ジーニアルライト株式会社 | Body fluid analysis device |
-
1985
- 1985-08-30 JP JP19164285A patent/JPS6252434A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0409898A1 (en) * | 1988-04-13 | 1991-01-30 | International Integrated Systems, Inc. | System of fluid inspection and/or identification |
GR890100651A (en) * | 1989-06-08 | 1991-11-15 | Int Integrated Systems In | System for the detection or and determination of a fluid |
JPH03100444A (en) * | 1989-09-13 | 1991-04-25 | Hitachi Ltd | Device and method for automatic analysis for clinical examination |
JP2002082047A (en) * | 2000-09-08 | 2002-03-22 | Matsushita Electric Ind Co Ltd | Urinalysis device |
JP4507373B2 (en) * | 2000-09-08 | 2010-07-21 | パナソニック株式会社 | Urinalysis device |
JP2006162355A (en) * | 2004-12-03 | 2006-06-22 | Olympus Corp | Wavelength confirming method of apparatus with built in photometer and autoanalyzer |
JP2011122987A (en) * | 2009-12-11 | 2011-06-23 | Sharp Corp | Metal concentration measuring method, and automatic management device for metal concentration |
WO2019239980A1 (en) * | 2018-06-15 | 2019-12-19 | ジーニアルライト株式会社 | Body fluid analysis device |
US11313788B2 (en) | 2018-06-15 | 2022-04-26 | Genial Light Co., Ltd. | Body fluid analysis device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2016390B1 (en) | A method and a system for quantitative hemoglobin determination | |
US6831733B2 (en) | Analysis method and system therefor | |
US4125372A (en) | Method and device for testing liquids | |
EP2063252B1 (en) | Transmission spectroscopy system for use in the determination of analytes in body fluid | |
US6195158B1 (en) | Apparatus and method for rapid spectrophotometric pre-test screen of specimen for a blood analyzer | |
US7663738B2 (en) | Method for automatically detecting factors that disturb analysis by a photometer | |
US20040157275A1 (en) | Method for reducing effect of hematocrit on measurement of an analyte in whole blood, and test kit and test article useful in the method | |
JP2009109196A (en) | Dilution ratio deriving method, quantity determination method and analyzer | |
Levinson et al. | Measuring hemoglobin in plasma by reaction with tetramethylbenzidine. | |
JPS6252434A (en) | Absorption photometric analytic method | |
KR100730900B1 (en) | How to improve the accuracy of quasi-quantitative measurements of analytes in body fluid samples | |
WO2018017199A1 (en) | System and method for optical whole blood hemolysis detection | |
JPH0666808A (en) | Chromogen measurement method | |
Ng et al. | The Technicon RA-1000 evaluated for measuring sodium, potassium, chloride, and carbon dioxide. | |
US4329149A (en) | Method for spectrophotometric compensation for colorimetric reagent variation | |
Park | Improvement of biosensor accuracy using an interference index detection system to minimize the interference effects caused by icterus and hemolysis in blood samples | |
JPS6118982B2 (en) | ||
JPH0514855B2 (en) | ||
JP5057226B2 (en) | Microchip for blood test and method of using the same | |
RU2300771C2 (en) | Method for determination of hemoglobin in biological fluids | |
EP0433629B1 (en) | A method for the qualitative and quantitative determination of antibodies against bacterial antigens by means of the photometric measurement of agglutination | |
Schotters et al. | Determination of five protein analytes using the beckman array™ and the behring nephelometer system | |
JPH06180285A (en) | Absorptiometry in automatic analyzer | |
JPH01101447A (en) | Method for measuring turbidity in absorptiometric analysis | |
JPS6119933B2 (en) |