JP2006162355A - Wavelength confirming method of apparatus with built in photometer and autoanalyzer - Google Patents

Wavelength confirming method of apparatus with built in photometer and autoanalyzer Download PDF

Info

Publication number
JP2006162355A
JP2006162355A JP2004351857A JP2004351857A JP2006162355A JP 2006162355 A JP2006162355 A JP 2006162355A JP 2004351857 A JP2004351857 A JP 2004351857A JP 2004351857 A JP2004351857 A JP 2004351857A JP 2006162355 A JP2006162355 A JP 2006162355A
Authority
JP
Japan
Prior art keywords
wavelength
solution
photometer
built
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2004351857A
Other languages
Japanese (ja)
Inventor
Sugio Mabe
杉夫 間部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004351857A priority Critical patent/JP2006162355A/en
Publication of JP2006162355A publication Critical patent/JP2006162355A/en
Revoked legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wavelength confirming method of an apparatus with built in photometer which can be executed on the spot, dispenses with the strict preparation/keeping control of a solution to be used and can be performed without using measuring instruments at all. <P>SOLUTION: In the wavelength confirming method of the apparatus with built in photometer, the characteristic data of a solution known in its spectral absorption characteristics and the actually measured data due to an autoanalyzer are used to confirm whether the wavelength of the photometer, which can extract a plurality of kinds of specific wavelengths in a discontinuous manner, incorporated in the autoanalyzer is changed as compared with the wavelength of the photometer at the time of production. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動分析装置などに搭載される装置組込み型光度計の波長確認方法と、該方法が適用される自動分析装置に関するものである。   The present invention relates to a wavelength confirmation method for a built-in photometer mounted on an automatic analyzer or the like, and an automatic analyzer to which the method is applied.

患者から採取した検体を検査したデータは臨床診断に不可欠であることから、現在、検体検査用の自動分析システムは、病院や検査所の規模の大きさに関わらず広く導入されている。検体の検査データにおける精度は臨床診断の信頼性を左右する重要な要素であり、近年は臨床検査室を試験所として認定するという制度の導入が図られている。   Since data obtained by examining specimens collected from patients is indispensable for clinical diagnosis, automatic analysis systems for specimen examination are now widely used regardless of the scale of hospitals and laboratories. The accuracy in specimen test data is an important factor that affects the reliability of clinical diagnosis, and in recent years, a system has been introduced in which clinical laboratories are authorized as laboratories.

検査室を試験所として認定するにあたっては、国際規格のISO15189を基に認定可否の審査がされる。国際規格の技術的な要求事項の一つとして、機器の機能,試薬,自動分析システムが適切に校正され且つ運用されていることを定期的にモニターし、立証することが求められている。   When accrediting an examination room as a testing laboratory, the examination of whether or not accreditation is possible is conducted based on the international standard ISO15189. One of the technical requirements of international standards is to regularly monitor and verify that instrument functions, reagents and automated analysis systems are properly calibrated and operated.

臨床検査用の自動分析システムでは、自動分析装置や、検査対象物である例えば患者検体と反応する試薬を用いて検査結果を求める。濃度が未知の患者検体を測定し定量するためには、あらかじめ濃度が既知の試料をキャリブレータとして測定し、その測定値を基に患者検体の濃度を算出することが基本である。   In an automatic analysis system for clinical examination, a test result is obtained using an automatic analyzer or a reagent that reacts with, for example, a patient sample as a test object. In order to measure and quantify a patient sample whose concentration is unknown, it is fundamental to measure a sample having a known concentration in advance as a calibrator and calculate the concentration of the patient sample based on the measured value.

一方、キャリブレータが存在しない検査項目では、装置の計量,計測の物理的因子、例えば試料及び試薬の分注量,吸光測定用容器の光路長,測定溶液の分子吸光係数等に基づき算出した係数を使用して測定結果が算出される。ここで分子吸光係数に関わる主な要因は波長及び波長純度であり、分注などと併せて波長などの物理的因子の管理が重要であり、適正な状態のモニターが求められる。   On the other hand, for inspection items that do not have a calibrator, the coefficient calculated based on the instrument's weighing and measurement physical factors, such as the amount of sample and reagent dispensed, the optical path length of the container for absorption measurement, the molecular absorption coefficient of the measurement solution, etc. Used to calculate the measurement result. Here, the main factors related to the molecular extinction coefficient are wavelength and wavelength purity, and management of physical factors such as wavelength is important in combination with dispensing, and monitoring of an appropriate state is required.

自動分析装置を設置した場合、その各機能の性能を確認する方法を示すものとして、日本臨床検査自動化学会から発行された「汎用自動分析装置の性能確認試験法マニュアル」がある。このマニュアルの中には、測光に関わる性能の確認事項として、(1)吸光度の比例性,(2)測光繰り返し精度,(3)見かけのモル吸光係数、そして(4)実測Kファクターが開示されている。これらの確認事項の中で、測光用の光における波長の正確性を推定することの可能性があるのは(3)に示した「見かけのモル吸光係数」だけである。   When an automatic analyzer is installed, there is “Performance Confirmation Test Method Manual for General-purpose Automatic Analyzer” published by the Japan Society for Clinical Laboratory Automation as a method for confirming the performance of each function. This manual discloses (1) proportionality of absorbance, (2) repeatability of photometry, (3) apparent molar extinction coefficient, and (4) measured K-factor as confirmation items for performance related to photometry. ing. Among these confirmation items, only the “apparent molar extinction coefficient” shown in (3) has the possibility of estimating the wavelength accuracy in the light for photometry.

これは規定濃度の反応指示物質を調製し、測定された吸光度からモル吸光係数を算出し、そのモル吸光係数を使用して測定をするというもので、狙いの波長からのズレを求めて波長の校正を実施するというものではなく、ズレがあればその状態での見かけのモル吸光係数を使用するというものである。   This is to prepare a reaction indicator at a specified concentration, calculate the molar extinction coefficient from the measured absorbance, and perform measurement using the molar extinction coefficient, and determine the deviation from the target wavelength. The calibration is not performed, but if there is a deviation, the apparent molar extinction coefficient in that state is used.

一方、通常、分光光度計として市販されているものでは波長校正として水銀の輝線を使用するのが一般的である。JISでは吸光光度分析通則(K0115)において、波長正確さ或いは波長目盛及び波長目盛の校正については低圧水銀ランプ又は重水素放電管から放射される輝線又は波長校正用光学フィルターの吸収曲線の測定による方法が提示されている。輝線では強度が極大を示す波長、吸収曲線では吸収の極大波長を確認するものであり、ガラス光学フィルターとしてはネオジムフィルター、ホルミウムフィルターが、また、溶液フィルターとしてNISTのホルミウム溶液(SRM2034)等がある。   On the other hand, in general, a commercially available spectrophotometer uses an emission line of mercury for wavelength calibration. In JIS, the spectrophotometric analysis general rule (K0115), the wavelength accuracy or wavelength scale and wavelength scale calibration are measured by measuring absorption lines of emission lines emitted from a low-pressure mercury lamp or deuterium discharge tube or an optical filter for wavelength calibration. Is presented. The emission line shows the wavelength at which the intensity is maximum, the absorption curve shows the absorption maximum wavelength, the glass optical filter includes a neodymium filter, a holmium filter, and the solution filter includes a NIST holmium solution (SRM2034). .

特開平6−74823号公報に開示された「分光光度計の波長校正方法」はアレイ型受光素子を備えた装置を用いているが、ほぼ連続的に波長を取り出す分光光度計であり、複数のピークを有する校正用フィルターを使用する方法が示されている。
特開平6−74823号公報
The “spectrophotometer wavelength calibration method” disclosed in Japanese Patent Laid-Open No. 6-74823 uses a device equipped with an array-type light receiving element, and is a spectrophotometer that extracts wavelengths almost continuously. A method of using a calibration filter with a peak is shown.
JP-A-6-74823

従来から用いられている「見かけのモル吸光係数」を求めて波長のズレを予測する方法では、規定濃度の反応指示物質を調製することが大きな技術課題であり、欠点でもある。反応指示物質を精製、秤量し規定濃度に調製すること自体、高い技能レベルが必要であり、しかも調製後の安定性を確保することが困難である。安定性を考慮するならば、測定現場にて調製が必要である。その場合、正しく校正された化学天秤が必要となるが、自動分析装置を導入している施設が全てそのような環境を整えている状況にはない。また、安定性が確保できないことを考慮して現場にて基準となる分光光度計で測定値を得てそれを対照に求めるということも有り得るが、この際には基準となるべき正しく校正された分光光度計が必要になるということで、これまた全ての検査室に求めることは不可能である。   In a conventionally used method of obtaining an “apparent molar extinction coefficient” to predict a wavelength shift, it is a major technical problem and a drawback to prepare a reaction indicator having a specified concentration. Purifying and weighing the reaction indicator substance to prepare a prescribed concentration itself requires a high skill level, and it is difficult to ensure stability after preparation. If stability is taken into consideration, preparation at the measurement site is necessary. In that case, a correctly calibrated chemical balance is required, but not all facilities that have introduced automatic analyzers have such an environment. In addition, taking into account the fact that stability cannot be ensured, it is possible to obtain a measured value with a standard spectrophotometer on the site and obtain it as a control. Because a spectrophotometer is required, it is impossible to find it in all laboratories.

次に、一般の分光光度計の校正方法であるが、分光光度計のようにある波長範囲を連続的にカバーすることを想定した方法であり、自動分析装置に組み込まれた光度計のように特定の波長のみ取り出すものでは水銀などの輝線と一致する波長を有しないものでは利用できない。輝線と同じ波長の取り出しができるものであっても該当する光源及び電源の持ち込みや現場での光源の取り付け作業などには相当の工数が必要となる。また光学フィルターや溶液フィルターの吸収曲線を用いる方法は特定波長しか持たない光度計には適用ができない。   Next, it is a general spectrophotometer calibration method, which is intended to continuously cover a certain wavelength range like a spectrophotometer, like a photometer built into an automatic analyzer. Those that extract only a specific wavelength cannot be used if they do not have a wavelength that matches the emission line such as mercury. Even if the same wavelength as that of the bright line can be taken out, considerable man-hours are required for bringing in the corresponding light source and power source and for attaching the light source in the field. The method using the absorption curve of an optical filter or a solution filter cannot be applied to a photometer having only a specific wavelength.

特開平6−74823号公報に記載された内容も基本的にはほぼ連続的な波長の測定ができる分光光度計であり、校正に特別のフィルターを使用しているが、自動分析装置に組み込まれた光度計には適用が出来ない。   The content described in Japanese Patent Laid-Open No. 6-74823 is basically a spectrophotometer capable of measuring almost continuous wavelengths and uses a special filter for calibration, but is incorporated into an automatic analyzer. It cannot be applied to photometers.

その他、製造時の波長確認に使用している測定機器、例えばスペクトルアナライザーを持ち込むということは機器の特性上、頻繁な輸送は不適であり、加えて自動分析装置を現場で解体し光度計を取り出して測定するというのは現実的ではない。   In addition, bringing in a measuring instrument used for wavelength confirmation during manufacturing, such as a spectrum analyzer, is not suitable for frequent transportation due to the characteristics of the instrument. In addition, the automatic analyzer is dismantled on site and the photometer is taken out. It is not realistic to measure.

本発明の目的は、現場にて簡便に実施できることであり、使用する溶液の調製,保管管理を厳密に行なう必要がなく、また、測定機器類を一切使用せずに実施できる方法を得ることにある。   An object of the present invention is to be able to be easily carried out in the field, and it is not necessary to strictly prepare and store a solution to be used, and to obtain a method that can be carried out without using any measuring instruments. is there.

従来の方法での問題点は、測定溶液(反応指示物質)の厳密な濃度調製と調製後の安定的保存管理及び校正済み測定機器類の必要性等にある。   The problems with the conventional methods are the strict concentration adjustment of the measurement solution (reaction indicator), the stable storage management after the preparation, the necessity of calibrated measuring instruments, and the like.

これらの問題を解決するために、検査室現場に設置されている自動分析装置の現在の波長を直接的に数値で求めるのではなく、初期設定値からの変化量を求めることにしている。また、その変化は極端ではなく、毎日の検査に使用していることから日常の妨げとなることが殆どない、僅かな量であることを想定する。そして波長の変化は各波長で同一方向に同一量であるという条件を設定する。同一方向に同一量の変化と限定したのは波長に関連して調整が可能なものが回折格子で分散された所定の波長を受光するフォトダイオードアレイの位置のみであり、複数の波長に対応したフォトダイオードの間隔は固定され、全体として一方向への移動を調整する構造になっていることによる。   In order to solve these problems, the current wavelength of the automatic analyzer installed at the laboratory site is not directly obtained as a numerical value, but the amount of change from the initial set value is obtained. In addition, it is assumed that the change is not extreme, and is a small amount that hardly interferes with daily life because it is used for daily inspection. And the condition that the change in wavelength is the same amount in the same direction at each wavelength is set. The only amount that can be adjusted in relation to the wavelength in the same direction is the position of the photodiode array that receives the predetermined wavelength dispersed by the diffraction grating, and can handle multiple wavelengths. This is because the interval between the photodiodes is fixed and the movement in one direction is adjusted as a whole.

本法では測定対象である溶液(反応指示物質)の分光吸収特性の活用が一つのポイントである。特に確認対象の波長近傍での波長変化に対する吸収の変化率の利用である。   In this method, one of the points is to use the spectral absorption characteristics of the solution (reaction indicator) to be measured. This is particularly the utilization of the rate of change of absorption with respect to the wavelength change in the vicinity of the wavelength to be confirmed.

反応指示物質と確認波長の関係は測光精度と比べて十分大きな吸光度変化が観測されることが必要であり、波長変化に対して吸収が大きく変化するものを選択することが重要である。また、同一方向への波長変化により吸収が増加するものと、反対に減少する波長が選択できる方が変化の度合いを高感度に検出ができるので好都合である。特に、複数波長での吸光度比を使用するものではこのことが重要である。   Regarding the relationship between the reaction indicator and the confirmation wavelength, it is necessary that a sufficiently large change in absorbance is observed as compared with the photometric accuracy, and it is important to select a substance whose absorption changes greatly with respect to the change in wavelength. Moreover, it is advantageous that the degree of change can be detected with high sensitivity when the wavelength increases in the same direction and when the wavelength that decreases decreases can be selected. This is especially important for those using absorbance ratios at multiple wavelengths.

測定溶液(反応指示物質)の厳密な濃度調製及び調製後の安定的な保存管理を不要とするポイントは複数波長(主には2波長)測定である。これは濃度の異なる溶液をその溶液の吸収がある各波長で測定した時、波長ごとに吸光度比は一定の関係にあることを利用したものである。   The point that does not require strict concentration adjustment of the measurement solution (reaction indicator) and stable storage management after the preparation is measurement of multiple wavelengths (mainly two wavelengths). This is based on the fact that when solutions having different concentrations are measured at each wavelength at which the solution absorbs, the absorbance ratio has a fixed relationship for each wavelength.

以上をふまえ、請求項1に係る発明の装置組込み型光度計の波長確認方法は、自動分析装置に組み込まれた、連続的ではなく特定の複数種類の波長を取り出すことができる光度計の波長が、製造時と比べて変化しているか否かを、分光吸収特性が既知の溶液の特性データと当該自動分析装置による実測データを使用して確認することを特徴とする。   Based on the above, the wavelength check method of the device built-in type photometer of the invention according to claim 1 is that the wavelength of the photometer incorporated in the automatic analyzer and capable of extracting a plurality of specific types of wavelengths is not continuous. It is characterized in that whether or not it has changed compared with the time of manufacture is confirmed by using the characteristic data of a solution having a known spectral absorption characteristic and the actual measurement data by the automatic analyzer.

請求項2に係る発明は、請求項1に記載された装置組込み型光度計の波長確認方法において、上記測定には、使用溶液の最大吸収波長を外し波長変化に対する吸収の変化が大きく得られる複数種類の波長を使用することを特徴とする。   The invention according to claim 2 is the wavelength confirmation method of the device built-in type photometer according to claim 1, wherein the measurement is performed by removing a maximum absorption wavelength of the used solution and obtaining a large change in absorption with respect to wavelength change. It is characterized by using different types of wavelengths.

請求項3に係る発明は、請求項1に記載された装置組込み型光度計の波長確認方法において、製造後、出荷前に溶液の実測データがある場合には、市場に設置の現場での測定データと確認対象の波長近傍での溶液の分光吸収特性から得られる吸収変化率を使用して出荷後の波長の変化量を算出することを特徴とする。   The invention according to claim 3 is the wavelength confirmation method of the device built-in type photometer according to claim 1, in the case where there is actual measurement data of the solution after manufacture and before shipment, the measurement at the installation site in the market The amount of change in wavelength after shipment is calculated using the data and the absorption change rate obtained from the spectral absorption characteristics of the solution near the wavelength to be confirmed.

請求項4に記載された装置組込み型光度計の波長確認方法は、製造時に組込む光度計の波長を別途スペクトルアナライザーなどの計測器を使用して確認したものでは、出荷前に溶液での実測データがなくても、溶液に対して吸収を有する確認対象の波長を含み複数種類の波長による測定吸光度の比と測定溶液の吸収特性から得られる製造時に確認した当該及びその近傍波長での吸光度比を使用して波長変化の程度を算出することを特徴とする。   The wavelength confirmation method for the device built-in type photometer described in claim 4 is that the wavelength of the photometer incorporated at the time of manufacture is confirmed using a separate measuring instrument such as a spectrum analyzer. Even if there is not, the ratio of the absorbance measured at a plurality of wavelengths including the wavelength of the target to be confirmed having absorption for the solution and the absorbance ratio at the wavelength in the vicinity thereof confirmed at the time of manufacture obtained from the absorption characteristics of the measured solution. And calculating the degree of wavelength change.

請求項5に記載された装置組込み型光度計の波長確認方法は、製造時の波長データも出荷前の溶液の実測データもない場合は、確認対象の波長を含み複数種類の波長それぞれの組合せによる吸収特性から求められる吸光度比データを使用して市場で測定した当該複数波長の吸光度比を比較し現状の波長が規格内にあるか否かを判定することを特徴とする。   The wavelength confirmation method for the device built-in photometer according to claim 5 is based on a combination of each of a plurality of types of wavelengths including a wavelength to be confirmed, when there is neither wavelength data at the time of manufacture nor measured data of the solution before shipment. Using the absorbance ratio data obtained from the absorption characteristics, the absorbance ratio of the plurality of wavelengths measured in the market is compared, and it is determined whether or not the current wavelength is within the standard.

請求項6に係る発明は、請求項1乃至5のいずれかに記載の装置組込み型光度計の波長確認方法を適用される自動分析装置において、溶液の吸収特性データ及び製造時の波長確認データを記憶し、運用現場での溶液の測定データから自動的に波長の変化の程度を測定し表示することを特徴とする。   The invention according to claim 6 is an automatic analyzer to which the wavelength confirmation method for an apparatus built-in photometer according to any one of claims 1 to 5 is applied, wherein absorption characteristic data of a solution and wavelength confirmation data at the time of manufacture are obtained. It is memorized, and the degree of change in wavelength is automatically measured and displayed from solution measurement data at the operation site.

本発明においては、近年になり要求されるようになった自動分析装置に組み込まれた光度計の、波長確認について、今後出荷の装置、そのようなことを考慮していないで既に出荷し市場で稼動している装置、製造時のデータが保管されていないような長年に渡り使用されている装置、等それぞれに対応が可能な方法を使い分けて現状の波長状態が現地に設置されている自動分析装置と厳密な濃度管理を必要としない溶液だけを使用して確認ができるので準備及び測定の作業工数を大幅に節減できる。   In the present invention, the wavelength confirmation of a photometer incorporated in an automatic analyzer that has recently been required in recent years will be shipped in the future without considering such devices. Automatic analysis in which the current wavelength state is installed in the field by using different methods that can be used, such as equipment that is in operation, equipment that has been used for many years where no manufacturing data is stored. Since it can be confirmed using only the apparatus and a solution that does not require strict concentration control, the man-hours for preparation and measurement can be greatly reduced.

自動分析装置で波長正確性が重要な検査はキャリブレータがなく、装置で計量、計測の物理的因子をもとに濃度換算係数を定めるものであり、それらは装置定数と呼ばれる。具体的には酵素活性測定で使用されることがある。   The inspection in which the wavelength accuracy is important in the automatic analyzer does not have a calibrator and determines the concentration conversion coefficient based on physical factors of measurement and measurement by the device, and these are called device constants. Specifically, it may be used for enzyme activity measurement.

測定溶液(反応指示物質)としては確認対象の波長の波長変化に対して吸収が大きく変化するものを使用する。   As the measurement solution (reaction indicator), a solution whose absorption changes greatly with respect to the wavelength change of the wavelength to be confirmed is used.

ここでは410nmの波長の変化を確認するために溶液としてパラニトロアニリンを使用した例で説明する。   Here, an example in which paranitroaniline is used as a solution in order to confirm a change in wavelength of 410 nm will be described.

臨床検査の酵素項目の一つにγ−GTPがあり、この基質であるパラニトロアニリンの測定波長は405nmあるいは410nmを使用するのが一般的であるが、ここでは410nmで測定する場合の実施例を説明する。
(実施の形態1)
まず、第1の実施の形態として、自動分析装置の出荷時に、反応指示物質であるパラニトロアニリン,濃度CAの2波長(410nm/340nm)による吸光度測定を行なった場合を示す。
One of the enzyme items in clinical examination is γ-GTP, and the measurement wavelength of paranitroaniline, which is the substrate, is generally 405 nm or 410 nm. In this example, the measurement is performed at 410 nm. Will be explained.
(Embodiment 1)
First, as a first embodiment, at the time of shipment of the automatic analyzer, para-nitroaniline is reacted indicator indicates the case of performing the absorbance measurement with two wavelengths of concentration C A (410nm / 340nm).

図1に示した反応指示物質の分光吸収特性例をモデルとして説明する。   An example of spectral absorption characteristics of the reaction indicator shown in FIG. 1 will be described as a model.

出荷時に測定した自動分析装置での実際の波長は410nm相当がλ1、340nm相当がλ2であったと仮定する。また、パラニトロアニリンの410nm近傍での波長変化に伴う吸収の変化の割合を、パラニトロアニリンの分光吸収特性から事前に求めておき、これをα%/nmとする。 It is assumed that the actual wavelength measured by the automatic analyzer at the time of shipment is λ 1 corresponding to 410 nm and λ 2 corresponding to 340 nm. Further, the ratio of the change in absorption accompanying the wavelength change in the vicinity of 410 nm of paranitroaniline is obtained in advance from the spectral absorption characteristics of paranitroaniline, and this is α% / nm.

同様に340nm近傍での波長変化に伴う吸収の変化の割合としてβ%/nmを求めておく。パラニトロアニリン、濃度CAのλ1,λ2の測定吸光度をEλ1,Eλ2を記録する。測定は多重測定によりその平均値を記録することが望ましい。 Similarly, β% / nm is obtained as the rate of change in absorption accompanying the change in wavelength near 340 nm. Eλ 1 and Eλ 2 are recorded as measured absorbances of λ 1 and λ 2 of paranitroaniline and concentration C A. It is desirable to record the average value of multiple measurements.

出荷後、装置が市場に設置された状態での波長を確認のため、現地にてパラニトロアニリンの測定を行なう。この時の濃度は出荷時に使用したものと合わせる必要はなく、濃度CBとする。装置を設置し使用している間に波長がΔλシフトしたと仮定し、410nm相当はλ1X=λ1+Δλに、また、340nm相当はλ2X=λ2+Δλになっているとする。この状態で測定された吸光度はそれぞれEBλ1X,EBλ2Xである。よって、λ1X及びλ2Xでの出荷時に使用した濃度CAでの吸光度EAλ1X,EAλ2Xは、次の数1,数2で求められる。 After shipment, paranitroaniline is measured on site to confirm the wavelength when the equipment is installed on the market. The density at this time does not need to match that used at the time of shipment, and is set to density C B. Assuming that the wavelength has shifted Δλ while the apparatus is installed and used, assume that the equivalent of 410 nm is λ 1X = λ 1 + Δλ, and the equivalent of 340 nm is λ 2X = λ 2 + Δλ. The absorbances measured in this state are E B λ 1X and E B λ 2X , respectively. Thus, lambda 1X and lambda absorbance E A λ 1X, E A λ 2X at a concentration C A used at the time of shipment at 2X, the number of the next 1, determined by the number 2.

Figure 2006162355
Figure 2006162355

Figure 2006162355
λ1Xにおける溶液の濃度CBとCAの吸光度比はλ2Xにおける吸光度比と同一であることから、数3が成立する。
Figure 2006162355
Since the absorbance ratio of the solution concentrations C B and C A at λ 1X is the same as the absorbance ratio at λ 2X, Equation 3 holds.

Figure 2006162355
これから数4に示すごとく、Δλを求めることができる。
Figure 2006162355
As shown in Equation 4, Δλ can be obtained.

Figure 2006162355
(実施の形態2)
次に、第2の実施の形態として、出荷前におけるパラニトロアニリンの測定データがないもので製造時の波長確認データが保管されている場合を説明する。
Figure 2006162355
(Embodiment 2)
Next, as a second embodiment, a case where there is no measurement data of paranitroaniline before shipment and wavelength confirmation data at the time of production is stored will be described.

波長変化の有無及び、程度を確認する波長を410nmとした時、もう一つの波長は同一波長変化に対して吸収の増減が反対となる波長を設定する。パラニトロアニリンの場合には例えば340nmとする。   When the wavelength for confirming the presence / absence and the degree of the wavelength change is 410 nm, the other wavelength is set to a wavelength at which the increase / decrease in absorption is opposite to the same wavelength change. In the case of paranitroaniline, it is 340 nm, for example.

パラニトロアニリンの分光吸収特性から340nmにおける吸光度と410nm波長における吸光度の比であるAを求めて記録する。次に、同じパラニトロアニリンの分光吸収特性から340−1nm、すなわち339nmにおける吸光度と410−1nm、すなわち409nmにおける吸光度との比であるBを求めて記録する。さらに、340+1nm、すなわち341nmにおける吸光度と410+1nm、すなわち411nmにおける吸光度との比であるCを求めて記録する。   From the spectral absorption characteristics of paranitroaniline, A, which is the ratio of the absorbance at 340 nm to the absorbance at 410 nm wavelength, is recorded. Next, B, which is the ratio between the absorbance at 340-1 nm, that is, 339 nm, and the absorbance at 410-1 nm, that is, 409 nm, is obtained from the spectral absorption characteristics of the same paranitroaniline and recorded. Furthermore, C, which is the ratio of the absorbance at 340 + 1 nm, that is, 341 nm, and the absorbance at 410 + 1 nm, that is, 411 nm, is obtained and recorded.

現地にて任意の濃度のパラニトロアニリンを340nm,410nm相当の波長で測定した吸光度であるDを求める。   D, which is an absorbance obtained by measuring paranitroaniline at an arbitrary concentration on the site at wavelengths corresponding to 340 nm and 410 nm, is obtained.

測定結果DをB,Cと比較し、B≦D≦Cであれば出荷時からの波長変化は±1nm以内に収まっていると考えられる。また、表1に示したごとき“340±k”nmと“440±k”nm(kは変数)の比のテーブルを作成しておき、Dと一致する時のkが波長の変化量であるとしても良い。例えば、表1に示したごとく、製造時の確認波長での吸光度比のデータが0.8931であり、現地に設置した装置の測定データが0.8031であれば、波長の変化量は−2nmとなる。   When the measurement result D is compared with B and C, and B ≦ D ≦ C, the wavelength change from the time of shipment is considered to be within ± 1 nm. Further, as shown in Table 1, a table of the ratio between “340 ± k” nm and “440 ± k” nm (k is a variable) is prepared, and k when it matches D is the change in wavelength. It is also good. For example, as shown in Table 1, if the data of the absorbance ratio at the confirmation wavelength at the time of manufacture is 0.8931 and the measurement data of the device installed in the field is 0.8031, the amount of change in wavelength is -2 nm. It becomes.

Figure 2006162355
(実施の形態3)
さらに、第3の実施の形態として、出荷前のパラニトロアニリンの測定データがなく、製造時の波長確認データも保管されていない場合について説明する。
Figure 2006162355
(Embodiment 3)
Furthermore, as a third embodiment, a case will be described in which there is no measurement data of paranitroaniline before shipment and wavelength confirmation data at the time of manufacture is not stored.

この場合には現状と比較するデータが全く存在しないため、波長の変化量を求めることはできない。パラニトロアニリンの分光吸収特性を用いて、340nm近傍の波長と410nm近傍の波長での吸光度比テーブルを作成する(表2参照)。   In this case, since there is no data to be compared with the current situation, the amount of change in wavelength cannot be obtained. Using the spectral absorption characteristics of paranitroaniline, an absorbance ratio table at a wavelength near 340 nm and a wavelength near 410 nm is created (see Table 2).

Figure 2006162355
表2では例えば製造時の波長正確性規格を340nmと410nmそれぞれ±1nmとして規格内で取り得る340nmと410nm相当波長での吸光度比をテーブルに太線で枠囲みをして示す。現地でパラニトロアニリンを340nmと410nm相当の波長で測定し、その際における吸光度の比をこのテーブル内に当てはめてどのような状態にあるかを推定する。その際、同じ値をとる波長の組合せが複数あるため、各波長が同一方向に同じ量変化するという前提条件を用いて絞り込みを行なう。例えば、現地での測定結果が0.8454だった場合、一つには(339nm,409nm)の組合せであり、これは規格内といえるが、その他にも薄く網掛けした部分で0.8454を取り得る。出荷時に規格内に合った2波長が共に同一方向、同一量変化するという条件に合致するのは表2における破線で囲んだ2箇所だけである。これらは規格からの変化が±1nm以下であることが判定できる。
Figure 2006162355
In Table 2, for example, the wavelength accuracy standards at the time of manufacture are set to ± 1 nm at 340 nm and 410 nm, respectively, and the absorbance ratios at wavelengths corresponding to 340 nm and 410 nm that can be taken within the standard are shown in a table with bold lines. Paranitroaniline is measured on site at wavelengths corresponding to 340 nm and 410 nm, and the ratio of absorbance at that time is applied to this table to estimate the state. At this time, since there are a plurality of combinations of wavelengths having the same value, the narrowing is performed using a precondition that each wavelength changes in the same direction by the same amount. For example, when the measurement result at the site is 0.8454, one is a combination of (339 nm, 409 nm), which can be said to be within the standard, but other than that, a thin shaded portion is 0.8454. I can take it. Only two places surrounded by a broken line in Table 2 meet the condition that two wavelengths that meet the standard at the time of shipment change in the same direction and in the same amount. From these, it can be determined that the change from the standard is ± 1 nm or less.

以上のように、本発明にかかる装置組込み型光度計の波長確認方法及び自動分析装置においては、現状の波長状態が現地に設置されている自動分析装置と厳密な濃度管理を必要としない溶液だけを使用して確認ができるので、準備及び測定の作業工数を大幅に節減できる。   As described above, in the wavelength confirmation method and automatic analyzer of the device built-in type photometer according to the present invention, only the solution in which the current wavelength state does not require strict concentration management with the automatic analyzer installed in the field. Since it can be confirmed by using, it is possible to greatly reduce the man-hours for preparation and measurement.

反応指示物質の分光吸収特性例を示す図Diagram showing examples of spectral absorption characteristics of reaction indicators

Claims (6)

自動分析装置に組み込まれた、連続的ではなく特定の複数種類の波長を取り出すことができる光度計の波長が、製造時と比べて変化しているか否かを、分光吸収特性が既知の溶液の特性データと当該自動分析装置による実測データを使用して確認することを特徴とする、装置組込み型光度計の波長確認方法。   Whether or not the wavelength of a photometer built in an automatic analyzer that can extract a plurality of specific wavelengths rather than continuously has changed compared to the time of manufacture of a solution with a known spectral absorption characteristic. A wavelength confirmation method for a device built-in photometer characterized by confirming using characteristic data and actual measurement data by the automatic analyzer. 上記測定には、使用溶液の最大吸収波長を外し波長変化に対する吸収の変化が大きく得られる複数種類の波長を使用することを特徴とする、請求項1に記載された装置組込み型光度計の波長確認方法。   The wavelength of the photometer with a built-in device according to claim 1, wherein the measurement uses a plurality of types of wavelengths from which the maximum absorption wavelength of the used solution is removed and a large change in absorption with respect to a change in wavelength is obtained. Confirmation method. 製造後、出荷前に溶液の実測データがある場合には、市場に設置の現場での測定データと確認対象の波長近傍での溶液の分光吸収特性から得られる吸収変化率を使用して出荷後の波長の変化量を算出することを特徴とする、請求項1に記載された装置組込み型光度計の波長確認方法。   If there is actual measurement data of the solution after manufacturing and before shipment, use the rate of change in absorption obtained from the measured data at the installation site in the market and the spectral absorption characteristics of the solution near the wavelength to be confirmed. The method for confirming the wavelength of a built-in photometer according to claim 1, wherein the amount of change in wavelength of the device is calculated. 製造時に組込む光度計の波長を別途スペクトルアナライザーなどの計測器を使用して確認したものでは、出荷前に溶液での実測データがなくても、溶液に対して吸収を有する確認対象の波長を含み複数種類の波長による測定吸光度の比と測定溶液の吸収特性から得られる製造時に確認した当該及びその近傍波長での吸光度比を使用して波長変化の程度を算出することを特徴とする、装置組込み型光度計の波長確認方法。   If the wavelength of the photometer incorporated at the time of manufacture is confirmed using a separate measuring instrument such as a spectrum analyzer, the wavelength of the object to be confirmed that has absorption for the solution is included even if there is no measured data on the solution before shipment. Built-in device that calculates the degree of wavelength change using the ratio of absorbance measured at multiple wavelengths and the absorbance ratio at the wavelength in the vicinity of the measured solution obtained from the absorption characteristics of the measurement solution. Wavelength confirmation method for type photometer. 製造時の波長データも出荷前の溶液の実測データもない場合は、確認対象の波長を含み複数種類の波長それぞれの組合せによる吸収特性から求められる吸光度比データを使用して市場で測定した当該複数波長の吸光度比を比較し現状の波長が規格内にあるか否かを判定することを特徴とする、装置組込み型光度計の波長確認方法。   If there is neither wavelength data at the time of manufacture nor actual measured data of the solution before shipment, the multiple measured in the market using absorbance ratio data obtained from the absorption characteristics obtained by combining each of a plurality of types of wavelengths including the wavelength to be confirmed. A method for confirming a wavelength of a built-in photometer, comprising comparing the absorbance ratio of wavelengths and determining whether or not the current wavelength is within a standard. 溶液の吸収特性データ及び製造時の波長確認データを記憶し、運用現場での溶液の測定データから自動的に波長の変化の程度を測定し表示することを特徴とする、請求項1乃至5のいずれかに記載の装置組込み型光度計の波長確認方法を適用される自動分析装置。
The absorption characteristic data of the solution and the wavelength confirmation data at the time of manufacture are stored, and the degree of change in wavelength is automatically measured and displayed from the measurement data of the solution at the operation site. An automatic analyzer to which the wavelength confirmation method for a built-in photometer according to any one of the above is applied.
JP2004351857A 2004-12-03 2004-12-03 Wavelength confirming method of apparatus with built in photometer and autoanalyzer Revoked JP2006162355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004351857A JP2006162355A (en) 2004-12-03 2004-12-03 Wavelength confirming method of apparatus with built in photometer and autoanalyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351857A JP2006162355A (en) 2004-12-03 2004-12-03 Wavelength confirming method of apparatus with built in photometer and autoanalyzer

Publications (1)

Publication Number Publication Date
JP2006162355A true JP2006162355A (en) 2006-06-22

Family

ID=36664546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351857A Revoked JP2006162355A (en) 2004-12-03 2004-12-03 Wavelength confirming method of apparatus with built in photometer and autoanalyzer

Country Status (1)

Country Link
JP (1) JP2006162355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084600A1 (en) 2007-01-12 2008-07-17 Olympus Corporation Method for identifying wavelength and analytical apparatus
JP2010054242A (en) * 2008-08-26 2010-03-11 Aquas Corp Optode for ion measurement, method of measuring ion concentration using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252434A (en) * 1985-08-30 1987-03-07 Shimadzu Corp Absorption photometric analytic method
JPH02201230A (en) * 1989-01-31 1990-08-09 Shimadzu Corp Wavelength calibration for spectroscope
JPH02248821A (en) * 1989-03-22 1990-10-04 Shimadzu Corp Reagent for evaluating accuracy of wavelength
JPH11342123A (en) * 1998-06-03 1999-12-14 Omron Corp Non-invasion organic component measuring device
JP2002518670A (en) * 1998-06-12 2002-06-25 ラジオメーター・メディカル・アクティーゼルスカブ Quality control method for spectrophotometer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6252434A (en) * 1985-08-30 1987-03-07 Shimadzu Corp Absorption photometric analytic method
JPH02201230A (en) * 1989-01-31 1990-08-09 Shimadzu Corp Wavelength calibration for spectroscope
JPH02248821A (en) * 1989-03-22 1990-10-04 Shimadzu Corp Reagent for evaluating accuracy of wavelength
JPH11342123A (en) * 1998-06-03 1999-12-14 Omron Corp Non-invasion organic component measuring device
JP2002518670A (en) * 1998-06-12 2002-06-25 ラジオメーター・メディカル・アクティーゼルスカブ Quality control method for spectrophotometer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008084600A1 (en) 2007-01-12 2008-07-17 Olympus Corporation Method for identifying wavelength and analytical apparatus
US7961324B2 (en) 2007-01-12 2011-06-14 Beckman Coulter, Inc. Wavelength identification method and analyzer
EP2103922A4 (en) * 2007-01-12 2017-09-20 Beckman Coulter, Inc. Method for identifying wavelength and analytical apparatus
JP2010054242A (en) * 2008-08-26 2010-03-11 Aquas Corp Optode for ion measurement, method of measuring ion concentration using the same

Similar Documents

Publication Publication Date Title
US7362438B2 (en) COD measuring method and device
US6980285B1 (en) Method in quality control of a spectrophotometer
TWI449896B (en) Method and apparatus for measuring ph of low alkalinity solutions
US8760645B2 (en) Method of normalizing a fluorescence analyzer
EP3008449B1 (en) Calibration method for photometry and associated analysis system
JP2004132969A (en) Method and system for determining acceptability of signal data collected from prothrombin time test strip
JP6368067B2 (en) Mass spectrometer and mass spectrometry method
US6882425B1 (en) Method and apparatus for examining fluids of biological origin
US9453796B2 (en) Method for calibrating clinical chemistry instruments
JP2006162355A (en) Wavelength confirming method of apparatus with built in photometer and autoanalyzer
JP2005127757A (en) Automatic analyzer
CA2569206A1 (en) Assay system with in situ formation of diazo reagent
CN113777334A (en) Automatic analyzer, light source monitoring method, calibration method and storage medium thereof
JPH07318564A (en) Blood analyzer
CN112881318A (en) Method for detecting content of methanol in transformer insulation paper
CN113777333A (en) Automatic analyzer, method for determining contamination of reaction cup of automatic analyzer, and storage medium
WO2004063393A1 (en) Measurement of analyte concentration
Niculescu Optical method for improving the accuracy of biochemical assays
JPS63129998A (en) Determination of alakaline phosphatase
Buzoianu Measurement uncertainty and its meaning in legal metrology of environmental chemistry and public health
Buzoianu et al. Clinical reference materials for the validation of the performance of photometric systems used for clinical analyses
JP2005274143A (en) Method for analyzing multicomponent aqueous solution
Blijenberg et al. Calibrators and control samples for bilirubinometers
Zimmermann et al. Purity monitoring in medical gas supply lines with quantum cascade laser technology
Schneider et al. Quality Assessment of Spectroscopic Methods in Clinical Laboratories

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090622

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100210

A977 Report on retrieval

Effective date: 20100216

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20100324

Free format text: JAPANESE INTERMEDIATE CODE: A131

AA91 Notification of revocation by ex officio

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20100413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100928