JP2934136B2 - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JP2934136B2
JP2934136B2 JP29776193A JP29776193A JP2934136B2 JP 2934136 B2 JP2934136 B2 JP 2934136B2 JP 29776193 A JP29776193 A JP 29776193A JP 29776193 A JP29776193 A JP 29776193A JP 2934136 B2 JP2934136 B2 JP 2934136B2
Authority
JP
Japan
Prior art keywords
circuit
wave signal
sine wave
amplitude
time difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29776193A
Other languages
Japanese (ja)
Other versions
JPH07167698A (en
Inventor
敏広 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP29776193A priority Critical patent/JP2934136B2/en
Publication of JPH07167698A publication Critical patent/JPH07167698A/en
Application granted granted Critical
Publication of JP2934136B2 publication Critical patent/JP2934136B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コリオリ流量計に関
し、より詳細には、測定管に作用するコリオリの力を測
定管の振動検出位置における検出信号の時間差信号とし
て求めるコリオリ流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flowmeter, and more particularly, to a Coriolis flowmeter for determining a Coriolis force acting on a measuring tube as a time difference signal of a detection signal at a vibration detection position of the measuring tube.

【0002】[0002]

【従来の技術】測定管を両端で支持し、支持された測定
管の中央部を軸線に垂直な方向に交番駆動している時、
流体が移動すると、測定管の中央部を中心として、測定
管の流入側と流出側に位相差が生ずる。この位相差は、
コリオリの力に基づくもので、質量流量に比例した値で
あり、前記位相差を検知して質量流量を計測するコリオ
リ流量計は周知である。而して、前記位相差の検知は、
測定管の静止状態における測定管の管軸を通る面を基準
面としてこの基準面を検出位置における測定管が通過す
るときの時間差を測定することにより行われる。具体的
には、時間差は測定管の流入側と流出側の対称位置に取
り付けられた測定管の変位検出器の信号を各々方形波に
波形整形し、整形された各々の方形波の立上げの時間の
時間差の間で計数される一定周波数のクロックの数から
求めている。
2. Description of the Related Art When a measuring tube is supported at both ends and a central portion of the supported measuring tube is driven alternately in a direction perpendicular to an axis,
When the fluid moves, a phase difference occurs between the inflow side and the outflow side of the measurement tube around the center of the measurement tube. This phase difference is
Coriolis flowmeters that are based on Coriolis force and are proportional to the mass flow rate and that measure the mass flow rate by detecting the phase difference are well known. Thus, the detection of the phase difference
The measurement is performed by measuring a time difference when the measurement tube at the detection position passes through the reference plane with a plane passing through the pipe axis of the measurement pipe in a stationary state of the measurement pipe as a reference plane. Specifically, the time difference is obtained by shaping the waveforms of the signals of the displacement detectors of the measurement tubes attached to the symmetrical positions on the inflow side and the outflow side of the measurement tubes into square waves, respectively. It is determined from the number of clocks of a constant frequency counted between time differences.

【0003】[0003]

【発明が解決しようとする課題】コリオリ流量計は、前
述のごとく測定管を2点で支持し、支持された測定管に
対し支持点を節部として支持点まわりの振動を加え、こ
の振動により測定管を流れる流体に作用するコリオリの
力を検出する質量流量計である。しかし、コリオリの力
による測定管の流入側と流出口側の所定対称位置で生ず
る測定管の位相差信号は、測定管の駆動振幅に比べて極
めて小さい量である。従って、位相差信号に比例して検
知される時間差も極めて小さい。この時間差を高い分解
能で測定するためには、クロック周波数を大きくする必
要がある。しかし、コリオリ流量計は上下流の配管の間
に装着されるので配管による外部振動影響やノイズ影響
を受け易く、単に高い分解能をもつクロックを用いたの
では安定した時間差測定は不可能である。
As described above, the Coriolis flowmeter supports the measuring tube at two points, and applies vibration around the supporting point to the supported measuring tube with the supporting point as a node. It is a mass flow meter for detecting Coriolis force acting on a fluid flowing through a measurement tube. However, the phase difference signal of the measurement tube generated at a predetermined symmetrical position between the inflow side and the outflow side of the measurement tube due to the Coriolis force is an extremely small amount compared with the drive amplitude of the measurement tube. Therefore, the time difference detected in proportion to the phase difference signal is also very small. In order to measure this time difference with high resolution, it is necessary to increase the clock frequency. However, since the Coriolis flowmeter is mounted between the upstream and downstream pipes, it is easily affected by external vibration and noise caused by the pipes, and stable time difference measurement cannot be performed by simply using a clock having a high resolution.

【0004】本発明は、時間差測定のためにクロックを
用いることなく、ノイズ影響が少なく平均化された安定
した時間差を求めることを可能とする時間差検出手段を
有するコリオリ流量計を提供することを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to provide a Coriolis flowmeter having a time difference detecting means capable of obtaining an averaged and stable time difference with little noise effect without using a clock for time difference measurement. It is assumed that.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)流体が流れる測定管と、該測定管
を間隔を隔てた流れ方向の2点で支持する支持部材と、
前記測定管を前記支持部材まわりに駆動する駆動手段
と、前記測定管の前記支持部材間対称な位置において、
該測定管の振動を検出する第1検出器および第2検出器
と、該第1検出器および第2検出器で検出された振動信
号から基準時間軸上の時間を検出し、該時間差に比例し
質量流量を求める時間差検出手段を有するコリオリ流量
計において、前記時間差検出手段を、前記第1検出器に
より検出された振動信号を正弦波信号に整形し、整形さ
れた正弦波信号を逆正弦波信号に変換する第1変換回路
と、前記第2検出器により検出された振動信号を正弦波
信号に整形し、整形された正弦波信号を逆正弦波信号に
変換する第2変換回路と、前記第1変換回路から出力さ
れる前記逆正弦波信号の振幅を一定に制御する第1振幅
制御回路と、前記第2変換回路から出力される前記逆正
弦波信号の振幅を前記第1振幅制御回路により制御され
た前記逆正弦波信号の振幅と等しい振幅に制御する第2
振幅制御回路と、前記第1振幅制御回路と、第2振幅制
御回路との各々の出力を減算する減算回路と、前記振動
信号の周期を測定する周期測定回路と、測定された振動
信号の周期と前記減算回路の出力とを乗算する乗算回路
とで構成し、該乗算回路の出力により時間差を求めるこ
と、或いは、(2)前記(1)において、前記時間差検
出手段において、第1変換回路を第1振動信号と同一位
相の三角波信号として出力し、第2変換回路を第2振動
信号と同一位相の三角波信号として出力する波形変換回
路としたこと、或いは、(3)前記(1)又は(2)に
おいて、前記時間差検出手段において、第1振幅制御回
路および第2振動制御回路により一定振幅に制御された
三角波信号を、該三角波信号ピーク電圧よりも小さい電
圧でクリップし、台形波信号として出力することを特徴
とするものである。
In order to solve the above-mentioned problems, the present invention provides (1) a measuring pipe through which a fluid flows, and a supporting member for supporting the measuring pipe at two points in a flow direction at an interval. ,
Driving means for driving the measurement tube around the support member, at a symmetric position between the support members of the measurement tube,
A first detector and a second detector for detecting the vibration of the measuring tube, and detecting a time on a reference time axis from a vibration signal detected by the first detector and the second detector; In a Coriolis flowmeter having time difference detecting means for determining a mass flow rate, the time difference detecting means shapes the vibration signal detected by the first detector into a sine wave signal, and converts the shaped sine wave signal into an inverse sine wave. A first conversion circuit that converts the vibration signal detected by the second detector into a sine wave signal, and converts the shaped sine wave signal into an inverse sine wave signal; A first amplitude control circuit for controlling the amplitude of the inverse sine wave signal output from the first conversion circuit to be constant, and a first amplitude control circuit for controlling the amplitude of the inverse sine wave signal output from the second conversion circuit The inverse sine wave signal controlled by Second controlling the equal amplitude amplitude
An amplitude control circuit, a subtraction circuit for subtracting the output of each of the first amplitude control circuit and the second amplitude control circuit, a cycle measurement circuit for measuring a cycle of the vibration signal, and a cycle of the measured vibration signal And a multiplication circuit for multiplying the output of the subtraction circuit, and obtaining the time difference from the output of the multiplication circuit. (2) In the above (1), the time difference detection means includes a first conversion circuit. (3) The (1) or (3), wherein the second conversion circuit is a waveform conversion circuit that outputs a triangular wave signal having the same phase as the first vibration signal, and outputs the second conversion circuit as a triangular wave signal having the same phase as the second vibration signal. In 2), the time difference detecting means clips the triangular wave signal controlled to a constant amplitude by the first amplitude control circuit and the second vibration control circuit with a voltage smaller than the triangular wave signal peak voltage, Is characterized in that the output as square wave signal.

【0006】[0006]

【作用】測定管の流入口側と流出口側の支持位置から対
称位置で変位検出される各々の正弦波信号を逆正弦波信
号に信号変換して、位相差を有し±(π/2)をピーク
値とする三角波信号とし、これを減算回路に入力し減算
値から位相差を算出し、これに検出された振動信号の正
弦波の周期を乗算してコリオリの力に比例した時間差を
求める。
The respective sine wave signals detected at the symmetrical positions from the support positions on the inflow side and the outflow side of the measuring tube are converted into inverse sine wave signals, and have a phase difference of ± (π / 2 ) Is a triangular wave signal having a peak value, input to a subtraction circuit, calculate a phase difference from the subtraction value, and multiply this by a period of a sine wave of the detected vibration signal to obtain a time difference proportional to the Coriolis force. Ask.

【0007】[0007]

【実施例】本発明によるコリオリ流量計を説明する前
に、まず基本的なコリオリ流量計の構造を説明する。図
4は、本発明に係るコリオリ流量計を説明するための基
本構造図であり、図中、20はコリオリ流量計本体、2
1は基台、22は測定管、23,24は支持部材、25
は駆動手段、26は第1検出器、27は第2検出器であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a Coriolis flow meter according to the present invention, a basic structure of a Coriolis flow meter will be described first. FIG. 4 is a basic structural view for explaining a Coriolis flowmeter according to the present invention, in which reference numeral 20 denotes a Coriolis flowmeter main body,
1 is a base, 22 is a measuring tube, 23 and 24 are support members, 25
Is a driving means, 26 is a first detector, and 27 is a second detector.

【0008】コリオリ流量計本体20は、流体が流れる
測定管22と、測定管22を流れ方向に間隔Lを隔てた
2点で支持する基台21に固着された第1支持部材23
と第2支持部材24と、支持された測定管22の中央部
で測定管22を軸O−Oと直角方向に駆動する駆動手段
25と、駆動手段25の駆動によりコリオリの力により
測定管22に生ずる位相変位を検出する検出器26,2
7とからなっている。
The Coriolis flowmeter main body 20 includes a measurement tube 22 through which a fluid flows, and a first support member 23 fixed to a base 21 supporting the measurement tube 22 at two points separated by a distance L in the flow direction.
, A second support member 24, a driving means 25 for driving the measuring pipe 22 at a central portion of the supported measuring pipe 22 in a direction perpendicular to the axis OO, and the measuring pipe 22 by Coriolis force by the driving of the driving means 25. Detectors 26 and 2 for detecting the phase displacement occurring in
It consists of seven.

【0009】駆動手段25は、例えば、測定管22に固
着された磁性体25aと、磁性体25aと対向して基台
21に固着されたコイル25bとからなり、コイル25
bに正弦波の駆動電流を印加することにより測定管22
は、支持部材23,24まわりに矢印±ω1,ω2方向に
駆動される。
The driving means 25 comprises, for example, a magnetic body 25a fixed to the measuring tube 22 and a coil 25b fixed to the base 21 in opposition to the magnetic body 25a.
b, a sine-wave driving current is applied to
Are driven in the directions of the arrows ± ω 1 and ω 2 around the support members 23 and 24.

【0010】検出器26,27は同一の原理構造をもっ
た同一規格の磁石26a,27aと、検出コイル26
b,27bとからなり、磁石26a,27aは測定管2
2の流入口、流出口からの対称位置に固着され、検出コ
イル26b,27bは基台21に固着されている。
The detectors 26 and 27 are composed of magnets 26a and 27a of the same standard having the same principle structure and detection coils 26 and 27, respectively.
b, 27b, and the magnets 26a, 27a
The detection coils 26b and 27b are fixed to the base 21 at symmetrical positions from the inlet and the outlet.

【0011】以上の構成からなるコリオリ流量計本体2
0を駆動手段25により正弦波駆動すると、検出器2
6,27には、測定管22に作用するコリオリの力によ
る微小な位相差をもった正弦波信号が検出される。流体
が矢印Q方向に流れているとき、測定管22が+ω1
−ω2方向に駆動されたとき、第1検出器26の正弦波
信号は、第2検出器27の正弦波信号に対して、コリオ
リの力に比例する位相遅れが生ずる。逆に、−ω1,−
ω2方向に駆動されたときは反対の位相遅れとなる。
The Coriolis flowmeter main body 2 having the above configuration
0 is sine-wave driven by the driving means 25, the detector 2
Sine wave signals having a small phase difference due to the Coriolis force acting on the measuring tube 22 are detected at 6, 27. When the fluid is flowing in the direction of arrow Q, the measuring tube 22 has + ω 1 ,
When driven - [omega] 2 direction, sine-wave signals of the first detector 26, to the sinusoidal signal of the second detector 27, a phase delay that is proportional to Coriolis forces generated. Conversely, −ω 1 , −
the opposite of the phase lag when driven omega 2 directions.

【0012】本発明は、位相遅れ、すなわち位相差φを
時間差ΔTとして検出するものであり、その原理につい
て説明する。第1検出器26から出力される正弦波信号
をy1、第2検出器27から出力される正弦波信号をy2
とすると、 y1=A1sin ωt (1) y2=A1sin(ωt+φ) (2) 但し、A1,A2は振幅、ωは駆動角速度、tは時間であ
る。
The present invention detects a phase delay, that is, a phase difference φ as a time difference ΔT, and its principle will be described. The sine wave signal output from the first detector 26 is y 1 , and the sine wave signal output from the second detector 27 is y 2
Y 1 = A 1 sin ωt (1) y 2 = A 1 sin (ωt + φ) (2) where A 1 and A 2 are amplitude, ω is drive angular velocity, and t is time.

【0013】(1),(2)式を各々振幅で除算する
と、 sin ωt=y1/A1 (3) sin(ωt+φ)=y2/A2 (4) 式(3),(4)の逆正弦関数をとると、 sin-1(sin ωt)=sin-1(y1/A1)=ωt (5) sin〔sin(ω+φ)〕=sin-1(y2/A2)=ωt+φ (6)
When the equations (1) and (2) are each divided by the amplitude, sin ωt = y 1 / A 1 (3) sin (ωt + φ) = y 2 / A 2 (4) Equations (3) and (4) Sine -1 (sin ωt) = sin -1 (y 1 / A 1 ) = ωt (5) sin [sin (ω + φ)] = sin -1 (y 2 / A 2 ) = ωt + φ (6)

【0014】(5),(6)式から φ=sin-1(y2/A2)−sin-1(y1/A1) (7) ここで、出力信号の周波数をfとすると、時間差ΔTは ΔT=(φ/2π)×(1/f) (8) であるから、(7),(8)より、周期1/f=tfとす
ると、 ΔT=(1/2π)×{sin-1(y2/A2)−sin-1(y1/A1)}×tf (9 ) となり、時間差ΔTを演算することができる。
From equations (5) and (6), φ = sin −1 (y 2 / A 2 ) −sin −1 (y 1 / A 1 ) (7) where f is the frequency of the output signal. Since the time difference ΔT is ΔT = (φ / 2π) × (1 / f) (8), from (7) and (8), if the period is 1 / f = t f , then ΔT = (1 / 2π) × {Sin −1 (y 2 / A 2 ) −sin −1 (y 1 / A 1 )} × t f (9), and the time difference ΔT can be calculated.

【0015】図1は、本発明に係る時間差検出手段の一
例を説明するためのブロック図であり、図中、1は第1
振動信号入力端子、2は第2振動信号入力端子、3は第
1積分回路、4は第2積分回路、5は第1変換回路、6
は第2変換回路、7は第1振幅制御(AGC)回路、8
は第2振幅制御(AGC)回路、9は減算回路、10は
周期測定回路、12は出力端子であり、上記(9)式を
具現するためのブロック回路である。
FIG. 1 is a block diagram for explaining an example of the time difference detecting means according to the present invention.
A vibration signal input terminal, 2 a second vibration signal input terminal, 3 a first integration circuit, 4 a second integration circuit, 5 a first conversion circuit, 6
Is a second conversion circuit, 7 is a first amplitude control (AGC) circuit, 8
Is a second amplitude control (AGC) circuit, 9 is a subtraction circuit, 10 is a period measurement circuit, and 12 is an output terminal, which is a block circuit for implementing the above equation (9).

【0016】第1積分回路3と第2積分回路4とは同じ
回路であり、共に検出器の振動信号に含まれるノイズや
高調波成分を除去し、正弦波に波形整形する。第1変換
回路5と第2変換回路6も同じ回路で、共に波形成形さ
れた正弦波の振動信号を逆正弦波信号に変換する回路で
ある。第1AGC回路7、第2AGC回路8も同じ回路
構成であり、共に第1,第2逆正弦波信号の振幅値を等
しい振幅値に制御するものである。
The first integration circuit 3 and the second integration circuit 4 are the same circuit, and both remove noise and harmonic components contained in the vibration signal of the detector and shape the waveform into a sine wave. The first conversion circuit 5 and the second conversion circuit 6 are the same circuits, and both are circuits that convert a sine wave vibration signal whose waveform is shaped into an inverse sine wave signal. The first AGC circuit 7 and the second AGC circuit 8 have the same circuit configuration, and both control the amplitude values of the first and second inverse sine wave signals to be equal.

【0017】第1振動信号入力端子1、第1積分回路
3、第1変換回路5、第1AGC回路7は直列接続さ
れ、第2振動信号入力端子2側も同じように第2積分回
路4、第2変換回路6、第2AGC回路8が、直列接続
され、第1AGC回路7と第2AGC回路8とは減算回
路9と接続され、減算回路9は乗算回路11の一方の入
力端に接続される。一方、第2変換回路6の第2逆正弦
波信号は周期測定回路10に接続され、測定された振動
信号と等しい周期の周期を乗算回路11の他の入力端子
に接続され位相差信号φと周期tfとが乗算され出力端
子12から出力される。
The first vibration signal input terminal 1, the first integration circuit 3, the first conversion circuit 5, and the first AGC circuit 7 are connected in series, and the second vibration signal input terminal 2 is similarly connected to the second integration circuit 4, The second conversion circuit 6 and the second AGC circuit 8 are connected in series, the first AGC circuit 7 and the second AGC circuit 8 are connected to a subtraction circuit 9, and the subtraction circuit 9 is connected to one input terminal of a multiplication circuit 11. . On the other hand, the second inverse sine wave signal of the second conversion circuit 6 is connected to the cycle measuring circuit 10 and connected to the other input terminal of the multiplying circuit 11 for a cycle having a cycle equal to the measured vibration signal. The signal is multiplied by the period t f and output from the output terminal 12.

【0018】以上の構成を有する図1の時間差測定手段
を、表1と図2に基づいて説明する。表1は振動信号の
位相に対する正弦波と逆正弦波の関係を示し、図2は、
位相差検出の原理を説明する波形図である。第1振動信
号入力端子1から入力された振動信号は、第1積分回路
3により波形整形され、図2(1)に示すsinxの周期
信号となる。正弦波sinxは2/4π、6/4πにピー
ク値をもち、πの整数倍の位相でゼロクロスする周期関
数である。また、正弦波sinxの逆関数であるsin-1(sin
x)は2π/4と6/4πにピーク値±π/2をもち、
πの整数倍の位置でゼロクロスする三角波信号となる。
The time difference measuring means of FIG. 1 having the above configuration will be described with reference to Table 1 and FIG. Table 1 shows the relationship between the sine wave and the inverse sine wave with respect to the phase of the vibration signal, and FIG.
FIG. 4 is a waveform diagram illustrating the principle of phase difference detection. The vibration signal input from the first vibration signal input terminal 1 is shaped by the first integration circuit 3 to become a sinx periodic signal shown in FIG. The sine wave sinx is a periodic function having peak values at 2 / 4π and 6 / 4π and zero-crossing at an integral multiple of π. In addition, sin -1 (sin
x) has peak values ± π / 2 at 2π / 4 and 6 / 4π,
It becomes a triangular wave signal that crosses zero at the position of an integral multiple of π.

【0019】[0019]

【表1】 [Table 1]

【0020】一方、第2振動信号入力端子2から入力さ
れた振動信号は、第1検出器1の振動信号と位相差φを
有しており、位相差φは図2(3)に示すように縦軸上
に表わされる。このため逆正弦波sin-1(sinx+φ)は位
相差φを有し、sin-1(sinx)と同じ三角波信号となる。
On the other hand, the vibration signal input from the second vibration signal input terminal 2 has a phase difference φ with the vibration signal of the first detector 1, and the phase difference φ is as shown in FIG. On the vertical axis. Therefore, the inverse sine wave sin -1 (sinx + φ) has a phase difference φ and becomes the same triangular wave signal as sin -1 (sinx).

【0021】図2(4)は、図2(2)のsin-1(sinx)
と図2(3)のsin-1{sin(x+φ)}を減算回路9によ
り減算して得られた略π/2の整数倍の位相でゼロクロ
スする台形の周期関数であり、台形の高さが2φ、立下
げの時間遅れがΔtで、位相差φに比例して台形の高さ
が変化する。このように位相差信号φは、位相が略πの
時間において高さが一定な位相差信号φとして検出され
るため平均化された位相差φが検出され、従って、周期
fを乗算して得られるコリオリの力に比例した時間差
信号ΔTも平均化され、ノイズ影響のない時間差信号が
検出される。
FIG. 2 (4) shows sin -1 (sinx) of FIG. 2 (2).
2 (3) is a trapezoidal periodic function that zero-crosses at a phase of an integral multiple of substantially π / 2 obtained by subtracting sin -1 {sin (x + φ)} by a subtraction circuit 9, and the height of the trapezoid Is 2φ, the time delay of falling is Δt, and the height of the trapezoid changes in proportion to the phase difference φ. Thus, in the phase difference signal phi, the phase is a phase difference, averaged for height is detected as a constant phase difference signal phi at a time of approximately [pi phi is detected, therefore, by multiplying the period t f The time difference signal ΔT proportional to the obtained Coriolis force is also averaged, and a time difference signal free from noise is detected.

【0022】以上の説明から明らかなように、正弦波si
nxと逆正弦波sin-1(sinx)とは同一周期の周期関数で
あり、逆正弦波sin-1(sinx)は三角波であるから正弦波
sinxを直接三角波に波形変換しても同様の台形波の位
相差信号を検出することができる。すなわち、第1,第
2変換回路5,6を正弦波を同じ周期の三角波に変換す
る波形変換回路にして、他の回路を図1に示した回路と
全く同じように構成することにより時間差信号ΔTが得
られる。また、図3に示すように上記三角波の頂部を一
定電圧でクリップして得られた台形波によっても同様に
位相差φが検出できる。
As is clear from the above description, the sine wave si
nx and the inverse sine wave sin -1 (sinx) are periodic functions having the same period, and since the inverse sine wave sin -1 (sinx) is a triangular wave,
Even if sinx is directly converted into a triangular wave, a similar trapezoidal phase difference signal can be detected. That is, the first and second conversion circuits 5 and 6 are used as waveform conversion circuits for converting a sine wave into a triangular wave having the same period, and the other circuits are configured in exactly the same way as the circuit shown in FIG. ΔT is obtained. Further, as shown in FIG. 3, the phase difference φ can be similarly detected by a trapezoidal wave obtained by clipping the top of the triangular wave with a constant voltage.

【0023】図3は、本発明に係る時間差測定手段の、
他の実施例を説明するための波形図であり、図3(1)
は第1、第2にAGC回路7、8でピーク値が一定に制
御された逆正弦波sin-1(sinx)の頂部を一定電圧、例え
ば、一定な電圧で±Vでクリップし台形波とした波形
で、図3(2)は同様に逆正弦波sin-1{sin(x+φ)}
の頂部を一定電圧±Vでクリップしたもので、位相差φ
は、図3(3)に示すようにクリップされた時間近傍で
0となる高さ±φの台形信号となり、図1の回路と同様
の効果が得られる。なお、以上の説明は図4に示した直
管の測定管について述べたが、測定管は直管である必要
はなく、湾曲管でも同様の時間差検出が適用できる。
FIG. 3 shows a time difference measuring means according to the present invention.
FIG. 3 is a waveform diagram for explaining another embodiment, and FIG.
First, the top of the inverse sine wave sin -1 (sinx) whose peak value is controlled to be constant by the first and second AGC circuits 7 and 8 is clipped at a constant voltage, for example, ± V at a constant voltage to form a trapezoidal wave. FIG. 3 (2) similarly shows the inverse sine wave sin -1 {sin (x + φ)}
Is clipped at a constant voltage ± V, and the phase difference φ
Is a trapezoidal signal having a height ± φ which becomes 0 near the clipped time as shown in FIG. 3C, and the same effect as the circuit of FIG. 1 can be obtained. In the above description, the straight measuring tube shown in FIG. 4 is described. However, the measuring tube does not need to be a straight tube, and the same time difference detection can be applied to a curved tube.

【0024】[0024]

【発明の効果】以上の説明から明らかなように、本発明
によれば、以下の効果がある。 (1)コリオリの力に比例した時間差を検知するためク
ロックを使用する必要がない。 (2)位相差信号は台形波の高さであらわされるため振
動半周期毎に一定高さが得られ、位相差と周期とを乗算
して得られる時間差信号に平均化した値のものが得られ
る。 (3)また、台形波の高さ一定であることからノイズ影
響が受けにくくなる。
As is apparent from the above description, the present invention has the following effects. (1) There is no need to use a clock to detect a time difference proportional to the Coriolis force. (2) Since the phase difference signal is represented by the height of a trapezoidal wave, a constant height is obtained for each half cycle of the vibration, and a value obtained by averaging the time difference signal obtained by multiplying the phase difference and the cycle is obtained. Can be (3) In addition, since the height of the trapezoidal wave is constant, it is hardly affected by noise.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る時間差検出手段の一例を説明す
るためのブロック図である。
FIG. 1 is a block diagram illustrating an example of a time difference detection unit according to the present invention.

【図2】 位相差検出の原理を説明する波形図である。FIG. 2 is a waveform diagram illustrating the principle of phase difference detection.

【図3】 本発明に係る時間差測定手段の他の実施例を
説明するための波形図である。
FIG. 3 is a waveform diagram for explaining another embodiment of the time difference measuring means according to the present invention.

【図4】 本発明に係るコリオリ流量計を説明するため
の基本構造図である。
FIG. 4 is a basic structural diagram for explaining a Coriolis flowmeter according to the present invention.

【符号の説明】[Explanation of symbols]

1…第1振動信号入力端子、2…第2振動信号入力端
子、3…第1積分回路、4…第2積分回路、5…第1変
換回路、6…第2変換回路、7…第1振幅制御(AG
C)回路、8…第2振幅制御(AGC)回路、9…減算
回路、10…周期測定回路、12…出力端子、20…コ
リオリ流量計本体、21…基台、22…測定管、23,
24…支持部材、25…駆動手段、26…第1検出器、
27…第2検出器。
DESCRIPTION OF SYMBOLS 1 ... 1st vibration signal input terminal, 2 ... 2nd vibration signal input terminal, 3 ... 1st integration circuit, 4 ... 2nd integration circuit, 5 ... 1st conversion circuit, 6 ... 2nd conversion circuit, 7 ... 1st Amplitude control (AG
C) circuit, 8 second amplitude control (AGC) circuit, 9 subtraction circuit, 10 cycle measurement circuit, 12 output terminal, 20 body of Coriolis flow meter, 21 base, 22 measurement tube, 23,
24 support member, 25 driving means, 26 first detector,
27 ... second detector.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体が流れる測定管と、該測定管を間隔
を隔てた流れ方向の2点で支持する支持部材と、前記測
定管を前記支持部材まわりに駆動する駆動手段と、前記
測定管の前記支持部材間対称な位置において、該測定管
の振動を検出する第1検出器および第2検出器と、該第
1検出器および第2検出器で検出された振動信号から基
準時間軸上の時間を検出し、該時間差に比例し質量流量
を求める時間差検出手段を有するコリオリ流量計におい
て、前記時間差検出手段を、前記第1検出器により検出
された振動信号を正弦波信号に整形し、整形された正弦
波信号を逆正弦波信号に変換する第1変換回路と、前記
第2検出器により検出された振動信号を正弦波信号に整
形し、整形された正弦波信号を逆正弦波信号に変換する
第2変換回路と、前記第1変換回路から出力される前記
逆正弦波信号の振幅を一定に制御する第1振幅制御回路
と、前記第2変換回路から出力される前記逆正弦波信号
の振幅を前記第1振幅制御回路により制御された前記逆
正弦波信号の振幅と等しい振幅に制御する第2振幅制御
回路と、前記第1振幅制御回路と、第2振幅制御回路と
の各々の出力を減算する減算回路と、前記振動信号の周
期を測定する周期測定回路と、測定された振動信号の周
期と前記減算回路の出力とを乗算する乗算回路とで構成
し、該乗算回路の出力により時間差を求めることを特徴
とするコリオリ流量計。
1. A measuring tube through which a fluid flows, a supporting member for supporting the measuring tube at two points in a flow direction at a distance, a driving means for driving the measuring tube around the supporting member, and the measuring tube A first detector and a second detector for detecting the vibration of the measuring tube at a symmetric position between the support members, and a reference time axis based on the vibration signals detected by the first detector and the second detector. In the Coriolis flowmeter having a time difference detecting means for calculating a mass flow rate in proportion to the time difference, the time difference detecting means shapes the vibration signal detected by the first detector into a sine wave signal, A first conversion circuit for converting the shaped sine wave signal into an inverse sine wave signal, and shaping the vibration signal detected by the second detector into a sine wave signal, and converting the shaped sine wave signal into an inverse sine wave signal A second conversion circuit for converting the A first amplitude control circuit for controlling the amplitude of the inverse sine wave signal output from the first conversion circuit to be constant, and a first amplitude control for controlling the amplitude of the inverse sine wave signal output from the second conversion circuit. A second amplitude control circuit for controlling the amplitude to be equal to the amplitude of the inverse sine wave signal controlled by the circuit, a first amplitude control circuit, and a subtraction circuit for subtracting the output of each of the second amplitude control circuits; A period measuring circuit that measures the period of the vibration signal, and a multiplication circuit that multiplies the measured period of the vibration signal by the output of the subtraction circuit, and obtains a time difference based on the output of the multiplication circuit. Coriolis flowmeter.
【請求項2】 前記時間差検出手段において、第1変換
回路を第1振動信号と同一位相の三角波信号として出力
し、第2変換回路を第2振動信号と同一位相の三角波信
号として出力する波形変換回路としたことを特徴とする
請求項1記載のコリオリ流量計。
2. A waveform converter, wherein the time difference detecting means outputs a first conversion circuit as a triangular wave signal having the same phase as the first vibration signal, and outputs a second conversion circuit as a triangular wave signal having the same phase as the second vibration signal. The Coriolis flowmeter according to claim 1, wherein the Coriolis flowmeter is a circuit.
【請求項3】 前記時間差検出手段において、第1振幅
制御回路および第2振動制御回路により一定振幅に制御
された三角波信号を、該三角波信号ピーク電圧よりも小
さい電圧でクリップし、台形波信号として出力すること
を特徴とした請求項1又は2記載のコリオリ流量計。
3. The triangular wave signal controlled to a constant amplitude by the first amplitude control circuit and the second vibration control circuit is clipped by the time difference detecting means with a voltage smaller than the triangular wave signal peak voltage to generate a trapezoidal wave signal. The Coriolis flowmeter according to claim 1, wherein the Coriolis flowmeter outputs the output.
JP29776193A 1993-11-29 1993-11-29 Coriolis flow meter Expired - Fee Related JP2934136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29776193A JP2934136B2 (en) 1993-11-29 1993-11-29 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29776193A JP2934136B2 (en) 1993-11-29 1993-11-29 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH07167698A JPH07167698A (en) 1995-07-04
JP2934136B2 true JP2934136B2 (en) 1999-08-16

Family

ID=17850835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29776193A Expired - Fee Related JP2934136B2 (en) 1993-11-29 1993-11-29 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP2934136B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3491577B2 (en) 1999-10-27 2004-01-26 株式会社デンソー Rotation angle detector

Also Published As

Publication number Publication date
JPH07167698A (en) 1995-07-04

Similar Documents

Publication Publication Date Title
JP3219122B2 (en) Coriolis mass flowmeter
JP3132628B2 (en) Coriolis mass flowmeter
AU603599B2 (en) Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
EP0359294A2 (en) Coriolis mass flow rate meter and method for producing a mass flow rate signal with reduced harmonic content
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
JPH0337689B2 (en)
CN102007381A (en) Signal processing method, signal processing apparatus, and coriolis flowmeter
CN101910804A (en) Coriolis flowmeter
JPH07181069A (en) Coriolis mass flowmeter
JP2934136B2 (en) Coriolis flow meter
JPH0410011B2 (en)
JP2942140B2 (en) Coriolis flow meter
JP3161664B2 (en) Coriolis mass flowmeter
JPH0438261Y2 (en)
JP3335600B2 (en) Coriolis mass flowmeter
DK1402236T3 (en) METHOD FOR DETERMINING THE MASS FLOW IN A Coriolis mass flowmeter
JP3227691B2 (en) Coriolis mass flowmeter
JPH067324Y2 (en) Mass flow meter
JP2723306B2 (en) Mass flow meter
JP2001116602A (en) Coriolis mass flowmeter
JPS61275621A (en) Mass flowmeter
JP2924342B2 (en) Coriolis mass flowmeter
JP4666245B2 (en) Vortex flow meter
JPH08338750A (en) Converter of mass flowmeter
JP2000111380A (en) Coriolis-type mass flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100528

LAPS Cancellation because of no payment of annual fees