JPS61275621A - Mass flowmeter - Google Patents

Mass flowmeter

Info

Publication number
JPS61275621A
JPS61275621A JP11776085A JP11776085A JPS61275621A JP S61275621 A JPS61275621 A JP S61275621A JP 11776085 A JP11776085 A JP 11776085A JP 11776085 A JP11776085 A JP 11776085A JP S61275621 A JPS61275621 A JP S61275621A
Authority
JP
Japan
Prior art keywords
tube
vibration
coriolis force
fluid
tube body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11776085A
Other languages
Japanese (ja)
Other versions
JPH0454895B2 (en
Inventor
Akira Takada
明 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oval Engineering Co Ltd
Original Assignee
Oval Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oval Engineering Co Ltd filed Critical Oval Engineering Co Ltd
Priority to JP11776085A priority Critical patent/JPS61275621A/en
Publication of JPS61275621A publication Critical patent/JPS61275621A/en
Publication of JPH0454895B2 publication Critical patent/JPH0454895B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/8409Coriolis or gyroscopic mass flowmeters constructional details
    • G01F1/8431Coriolis or gyroscopic mass flowmeters constructional details electronic circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/78Direct mass flowmeters
    • G01F1/80Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
    • G01F1/84Coriolis or gyroscopic mass flowmeters
    • G01F1/845Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
    • G01F1/8468Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
    • G01F1/849Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
    • G01F1/8495Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits with multiple measuring conduits

Abstract

PURPOSE:To take a measurement at low cost with high sensitivity by providing a detecting means which detects a Coriolis force operating fluid flowing in a tube body owing to vibration and measuring a mass flow rate proportional to the Coriolis force. CONSTITUTION:The tube body 2 forms a cantilever which is fixed on a sealed container 1 at a fulcrum, and a driving coil is arranged, nearby an opening end 51 to drive it for single vibration on a YY' axis. The vibration of this conduit is detected by a detector 4 as electric energy proportional to the amplitude. When the fluid flows as shown by an arrow and the tube body is driven as mentioned above, a Coriolis force is generated in the fluid in the tube body. The Coriolis force operates as a vector quantity in a direction proportional to the vector product of the flow vector of the fluid and the vibration vector. Then, the Coriolis force is applied onto the YY' axis in proportional to the vibration frequency and the mass flow rate of the fluid. In this case, the tube body is straight, so it is easily worked and made thin so as to improve the sensitivity, so that the inexpensive, high-sensitivity mass flowmeter is obtained.

Description

【発明の詳細な説明】 (1)産業上の利用分野 本願発明はコリオリの力を利用した質量流量計に関する
DETAILED DESCRIPTION OF THE INVENTION (1) Industrial Application Field The present invention relates to a mass flowmeter that utilizes the Coriolis force.

(2)従来技術 流管を流れる流体流に対して振動を与えると。(2) Conventional technology When vibration is applied to the fluid flow flowing through the flow tube.

流体流の流れの向きと、流管の振動軸とに対して直角方
向にコリオリの力が発生し、このコリオリの力が振動周
波数と流体の質量流量に比例することが知られており、
特開昭54−52570号公報においてコリオリの力を
利用した質量流量計が開示されている。この従来例は支
持部材に入口及び出口部分をもったU字形の管体を固着
した本体形状をしており、流体は入口部よりU字形管体
を通って流出する。U字形管体をU字形管体面に対して
垂直の方向に上記固着に対応する固着線を軸として回転
を与えると、U字形管体を流れる流体によるコリオリの
力が作用し、固着線に対して垂直なU字形管体軸に関し
てコリオリのカに比例した捩り振動が生ずる。このコリ
オリの力を管体が基準面を通過する時間差から求めるも
のである。
It is known that a Coriolis force is generated in a direction perpendicular to the direction of the fluid flow and the vibration axis of the flow tube, and that this Coriolis force is proportional to the vibration frequency and the mass flow rate of the fluid.
JP-A-54-52570 discloses a mass flowmeter that utilizes Coriolis force. This conventional example has a body shape in which a U-shaped tube having an inlet and an outlet is fixed to a support member, and fluid flows out from the inlet through the U-shaped tube. When the U-shaped tube is rotated in a direction perpendicular to the surface of the U-shaped tube about the fixation line corresponding to the fixation mentioned above, Coriolis force due to the fluid flowing through the U-shaped tube acts on the fixation line. A torsional vibration proportional to the Coriolis force occurs about the vertical U-shaped tube axis. This Coriolis force is determined from the time difference when the tube passes through the reference plane.

(3)発明が解決しようとする問題点 上述の従来例はコリオリの力を管体の捩りとして検出す
るものであるが、捩りを生じさせるため流体に往復路を
直通させるU字管体としている。
(3) Problems to be solved by the invention In the conventional example described above, the Coriolis force is detected as the torsion of the tube body, but in order to cause the torsion, the U-shaped tube body is used to pass the reciprocating path directly through the fluid. .

即ち流体は管体に流入するとき及び流出するときに、流
体は直角に曲げられる。コリオリの力を有効的に検出す
るためには、固定線軸まわりの管体の腕の長さを長くし
、U字形管体軸のまわりのモーメントを大きくすること
が必要である。このことはU字形管体の面積を大きくす
る結果を生み。
That is, the fluid is bent at right angles as it enters and exits the tube. In order to effectively detect the Coriolis force, it is necessary to increase the length of the arms of the tube about the fixed line axis and to increase the moment about the U-shaped tube axis. This results in an increase in the area of the U-shaped tube.

流量計の取付面積を大きくする結果となった。また管体
の肉厚は薄くした方が有利であるが、このことは耐圧強
度の低下をまねき高圧の流体針側には不向きであり、更
に固着部分の耐疲労強度が低下し長期間安定な流量計測
ができない等の問題点がある。
This resulted in an increase in the mounting area of the flowmeter. Furthermore, it is advantageous to make the wall thickness of the tube thinner, but this leads to a decrease in pressure resistance, making it unsuitable for the high-pressure fluid needle side.Furthermore, the fatigue resistance of the fixed part decreases, making it unstable over a long period of time. There are problems such as the inability to measure flow rate.

(4)問題解決の手段 本願発明は上述の問題点を解決するためになされたもの
である。即ち流量計の取付面積を小さくするために流体
に振動を与える管体を流体管路に沿った直管としておい
てコリオリの力を測定できるようにし、且つ管体の肉厚
を薄くしても高圧流体の計測にも耐えるように管体を密
閉容器内に内挿した本体形状とするようにしている。
(4) Means for solving the problem The present invention has been made in order to solve the above-mentioned problems. In other words, in order to reduce the installation area of the flowmeter, the tube that vibrates the fluid is made a straight tube along the fluid pipeline, and the Coriolis force can be measured, and even if the wall thickness of the tube is made thinner, The main body shape is such that the tube is inserted into a closed container to withstand measurement of high-pressure fluid.

(実施例) 第1図に本願発明の実施例をしめす。(イ)図は平面図
、 (ロ)図は側面図、 (ハ)図は(ロ)図のAA’
矢視断面をしめす、密閉容器1は図示しない外部流管か
ら流入する流体の流入口5をもち、該密閉容器内に他端
51を開放する管体2を内挿し、流出口6を配設した容
器である。管体2は薄肉円筒状に構成され、N動コイル
によりYY’軸上に単振駆動されるようにされる。従っ
て駆動が電磁的に行われる場合、管体は磁性材料で構成
されるが、駆動コイルと対向する面に磁性片を固着する
ようにする。駆動手段が電磁力によらない。
(Example) FIG. 1 shows an example of the present invention. (A) Figure is a plan view, (B) Figure is a side view, (C) Figure is AA' of (B) figure.
A closed container 1, shown in cross section as viewed from the arrow, has an inlet 5 for a fluid to flow in from an external flow tube (not shown), a tube body 2 with an open other end 51 is inserted into the closed container, and an outlet 6 is provided. It is a container with The tubular body 2 is formed into a thin cylindrical shape, and is driven by an N moving coil on the YY' axis in a single vibration. Therefore, when the drive is performed electromagnetically, the tube is made of a magnetic material, and a magnetic piece is fixed to the surface facing the drive coil. The driving means does not rely on electromagnetic force.

例へば偏心カムを電動機駆動する場合は磁性材料の必要
はない、管体2は密閉容器lとの固着点を支点とした片
持ばりを形成するが、開口端51近傍に駆動コイルを配
設し、 (ハ)図YY’軸上で後述する手段により単振
動駆動する。尚駆動エネルギ効率からみて共振周波数で
駆動するのが好ましい、畝上の導管振動は振幅の大きさ
に比例した電気量として検出器4で検出される。リプ7
は振動方向に対して剛性が小さく、直角方向に大きくし
、外部振動の影響を軽減させるものである。流体が矢印
の方向に流れるとし、管体が上記のように駆動されると
、管体内流体にコリオリの力が発生する。コリオリの力
は流体の流れベクトルと振動ベクトルとのベクトル積に
比例する向きのベクトル量として作用する。振動ベクト
ルは(ハ)図zz′軸上にあるのでコリオリの力はYY
’軸上に振動周波数と流体の質量流量とに比例した大き
さであられれる。即ち振動周波数が一定であれば質量流
量に比例して振幅を減少させるように働く。
For example, when an eccentric cam is driven by an electric motor, there is no need for a magnetic material.The tube body 2 forms a cantilever beam with the point of attachment to the closed container l as a fulcrum, but a drive coil is disposed near the open end 51. , (c) Simple vibration driving is performed on the YY' axis in the figure by means described later. Note that from the viewpoint of drive energy efficiency, it is preferable to drive at a resonant frequency, and the vibration of the conduit on the ridge is detected by the detector 4 as an amount of electricity proportional to the magnitude of the amplitude. Reply 7
The rigidity is small in the direction of vibration and increases in the perpendicular direction to reduce the influence of external vibration. Assuming that the fluid flows in the direction of the arrow and the tube is driven as described above, a Coriolis force is generated in the fluid within the tube. The Coriolis force acts as a vector quantity whose direction is proportional to the vector product of the fluid flow vector and the vibration vector. Since the vibration vector is on the (c) zz′ axis, the Coriolis force is YY
' A magnitude proportional to the vibration frequency and the mass flow rate of the fluid is formed on the axis. That is, if the vibration frequency is constant, it works to reduce the amplitude in proportion to the mass flow rate.

第2図は振幅の変化をなくすように帰還を施し。In Figure 2, feedback is applied to eliminate changes in amplitude.

質量流量に比例した帰還量を指示させる手段をしめずブ
ロック図である。管体の振動は検出器4により電気量と
して検出され、移相回路101により検出信号の位相を
所定量移相し、増幅器102と駆動コイル3とからなる
閉ループが共振するように設定する。移相された検出器
出力は抵抗R,,R。
FIG. 3 is a block diagram showing a means for instructing a feedback amount proportional to a mass flow rate. The vibration of the tube body is detected as an electric quantity by the detector 4, and the phase of the detection signal is shifted by a predetermined amount by the phase shift circuit 101, so that the closed loop consisting of the amplifier 102 and the drive coil 3 is set to resonate. The phase-shifted detector outputs are resistors R,,R.

により分圧され増幅器102に入力されるが、増幅器1
02の入力は可変抵抗R,を変化させることにより、管
体の振幅、即ち検出信号を一定にするようにする。可変
抵抗R,は例へば光・抵抗変換器103を用いている。
The voltage is divided by and input to the amplifier 102, but the amplifier 1
The input of 02 changes the variable resistor R, so that the amplitude of the tube body, that is, the detection signal, is kept constant. For example, a light/resistance converter 103 is used as the variable resistor R.

該光・抵抗変換素子103は。The light/resistance conversion element 103 is.

検出信号を整流器104により整流した所の検出信号に
比例した直流電圧と基準直流電圧105を希望する振幅
値になるように分圧器106で分圧した直流電圧と比較
した偏差信号107を増幅する比較増幅器108に負荷
として接続される。質量流量が増大して管体振幅が減少
すると光量が増大し、抵抗R3が減少し増幅器102の
ゲインを上げ、振幅を増大させる。比較増幅器108の
出力はコリオリの力に比例することになるので指示計1
09でこれを表示する。
Comparison to amplify the deviation signal 107 obtained by comparing the DC voltage proportional to the detection signal obtained by rectifying the detection signal by the rectifier 104 and the DC voltage obtained by dividing the reference DC voltage 105 by the voltage divider 106 so as to have a desired amplitude value. It is connected to amplifier 108 as a load. When the mass flow rate increases and the tube amplitude decreases, the amount of light increases, and the resistance R3 decreases, increasing the gain of the amplifier 102 and increasing the amplitude. Since the output of the comparator amplifier 108 is proportional to the Coriolis force, the indicator 1
Display this in 09.

畝上の方法は一興体例であるが指示方式は本願による解
決課題ではなく上記以外の他の手段でも可能である。尚
畝上の説明においては管体断面を円としているが、これ
をZ軸方向の辺が長い矩形断面とすることにより、管体
の曲げ剛性を小さくでき、検出感度をあげることができ
る。更にZ軸方向の剛性が大きくなるので信号検出に不
要な2軸方向振動影響を軽減できる。
Although the ridge method is an example, the instruction method is not a problem to be solved by the present application, and other means other than the above are also possible. In the explanation on the ridge, the cross section of the tube is circular, but by making it a rectangular cross section with long sides in the Z-axis direction, the bending rigidity of the tube can be reduced and the detection sensitivity can be increased. Furthermore, since the rigidity in the Z-axis direction is increased, it is possible to reduce the influence of vibration in two-axis directions that are unnecessary for signal detection.

第3図は本願発明の他の実施例であり第1図と同一番号
の構成要素は同一としてしめす、上記第1図の実施例に
対して管体2と同形同大の管体21を追加し、該管体2
1を管体2に対し並列に配設したものである。密閉容器
1内には支切板8を流入流体に対向し、流体室9を形成
するように密閉容器内壁に固着している。該支切板8に
は管体2及び21を貫通固着する等大の貫通孔53.5
4が穿孔されている。また各々の貫通孔の位置は管体2
及び21に等流量が流れるよう流入口に対して等間隔に
する方がよい、駆動手段3は電磁石で導管開口部51.
52近傍中間部に配設され。
FIG. 3 shows another embodiment of the present invention, in which components having the same numbers as those in FIG. 1 are shown as being the same. Add the pipe body 2
1 are arranged in parallel with the tube body 2. Inside the closed container 1, a dividing plate 8 is fixed to the inner wall of the closed container so as to face the inflowing fluid and form a fluid chamber 9. The dividing plate 8 has equal-sized through holes 53.5 through which the tubes 2 and 21 are fixed.
4 is perforated. Also, the position of each through hole is
The drive means 3 is electromagnetically connected to the conduit openings 51 .
It is arranged in the middle part near 52.

各々の管体をYY’軸上で単振動駆動する。検出器4及
び41は管体の振幅を検出する検出器であるが、各管体
が全く等しい振幅で振動する場合はいずれか一方のみで
よい0通常、管体の各々に同一流量が流れているときは
、この条件を充たしている。従って第2図と同様な計測
手段を適用することが可能である。畝上第3図の実施例
においては管体が並列になっているので、流体の圧力損
失が1/4となり効果的である。従って同一の圧力損失
では4倍の流量が得られる。同様に管体を多数の並列配
管で行えば、圧損効果は更に向上する。
Each tube is driven in simple harmonic motion on the YY' axis. Detectors 4 and 41 are detectors that detect the amplitude of the tubes, but if each tube vibrates with exactly the same amplitude, only one of them is needed.Normally, the same flow rate flows through each tube. When there is, this condition is met. Therefore, it is possible to apply a measuring means similar to that shown in FIG. In the embodiment shown in Fig. 3, the pipe bodies are arranged in parallel, so the pressure loss of the fluid is reduced to 1/4, which is effective. Therefore, four times the flow rate can be obtained with the same pressure loss. Similarly, if the pipe body is constructed with a large number of parallel pipes, the pressure drop effect will be further improved.

(6)効果 以上説明したように本発明によれば、流体の流れ方向に
コリオリの力を発生する管体が配設されるので、計測の
ため流体を曲げることがなく、圧力損失も少なく取付面
積も小さくなる。更に管体は直管であるため加工し易く
、感度を高めるための薄肉管とすることができ、しかも
この管体は密閉容器内に開口しているため流体圧力の影
響を受ける心配がないので安価で高感度の質量流量計を
提供できる。
(6) Effects As explained above, according to the present invention, a pipe body is provided that generates Coriolis force in the direction of fluid flow, so there is no need to bend the fluid for measurement, and installation is possible with less pressure loss. The area also becomes smaller. Furthermore, since the tube is a straight tube, it is easy to process and can be made into a thin-walled tube to increase sensitivity.Furthermore, since the tube opens into a sealed container, there is no need to worry about it being affected by fluid pressure. It is possible to provide an inexpensive and highly sensitive mass flow meter.

また管体が単純な直管であるため流量計測範囲を拡大す
る場合に同形同大の並列管体を構成することも容易で適
用範囲の拡大を容易に可能とする。
Furthermore, since the tube is a simple straight tube, when expanding the flow rate measurement range, it is easy to configure parallel tubes of the same shape and size, making it easy to expand the range of application.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本願発明の実施例であり、(イ)は平面図、 
(ロ)は側面図、 (ハ)は正面図である。 第2図は第1図の振動、検出指示等本願発明を具現する
ための計測手段説明するブロック図、第3図は本発明の
他の実施例をしめすものである。 図中、1は密閉容器、2は管体、3は駆動コイル、4は
検出器、5は流入口、6は流出口を表す。 特許出願人  オーバル機器工業株式会社代理人弁理士
 森 1) 寛(外2名)’f+I!!1 yf32国 第 3m Cイ)
FIG. 1 shows an embodiment of the present invention, (A) is a plan view,
(B) is a side view, and (C) is a front view. FIG. 2 is a block diagram illustrating a measuring means for implementing the present invention such as vibration and detection instructions shown in FIG. 1, and FIG. 3 shows another embodiment of the present invention. In the figure, 1 is a closed container, 2 is a tube body, 3 is a drive coil, 4 is a detector, 5 is an inlet, and 6 is an outlet. Patent applicant Oval Equipment Industry Co., Ltd. Patent attorney Mori 1) Hiroshi (2 others) 'f+I! ! 1 yf32nd country 3rd m C a)

Claims (5)

【特許請求の範囲】[Claims] (1)流入口および流出口を配設した容器と、該容器内
に上記流入口に一端が連通固着しかつ他端が開口する管
体を配設した本体部と、該管体の固着点近傍を軸として
該管体を振動させる駆動手段と、該振動により管体内を
流れる流体に作用するコリオリの力を検出する検出手段
とをそなえ、上記コリオリの力に比例する質量流量を測
定することを特徴とする質量流量計。
(1) A container provided with an inlet and an outlet, a main body provided with a tube inside the container, one end of which is fixed in communication with the inlet and the other end is open, and a fixing point of the tube. A method comprising: a drive means for vibrating the tube body around a nearby axis; and a detection means for detecting the Coriolis force acting on the fluid flowing inside the tube due to the vibration; and measuring a mass flow rate proportional to the Coriolis force. A mass flow meter featuring:
(2)管体を複数とし該管体を音叉を形成するように並
列に配設し、該管体開口部を反対位相で駆動する駆動手
段を配設したことを特徴とする特許請求の範囲第(1)
項記載の質量流量計。
(2) A claim characterized in that a plurality of tube bodies are arranged in parallel to form a tuning fork, and driving means for driving the tube openings in opposite phases is provided. No. (1)
Mass flow meter as described in section.
(3)管体の断面形状を矩形としたことを特徴とする特
許請求の範囲第(1)項または第(2)項記載の質量流
量計。
(3) A mass flowmeter according to claim (1) or (2), characterized in that the pipe body has a rectangular cross-sectional shape.
(4)管体の固着近傍において、該管体の振動方向及び
振動方向と直角方向に管体軸に平行して該管体と容器と
に連結するリブを固着したことを特徴とする特許請求の
範囲第(1)項ないし第(3)項のいずれか記載の質量
流量計。
(4) A patent claim characterized in that a rib connecting the tube and the container is fixed in the vibration direction of the tube and in a direction perpendicular to the vibration direction and parallel to the tube axis in the vicinity of the fixation of the tube. The mass flowmeter according to any one of items (1) to (3).
(5)検出手段からの検出信号を上記駆動手段側に帰還
させ、上記管体の駆動を制御するようにしたことを特徴
とする特許請求の範囲第(1)項ないし第(4)項のい
ずれか記載の質量流量計。
(5) The detection signal from the detection means is fed back to the driving means to control the driving of the tubular body. Any of the mass flowmeters described.
JP11776085A 1985-05-31 1985-05-31 Mass flowmeter Granted JPS61275621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11776085A JPS61275621A (en) 1985-05-31 1985-05-31 Mass flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11776085A JPS61275621A (en) 1985-05-31 1985-05-31 Mass flowmeter

Publications (2)

Publication Number Publication Date
JPS61275621A true JPS61275621A (en) 1986-12-05
JPH0454895B2 JPH0454895B2 (en) 1992-09-01

Family

ID=14719643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11776085A Granted JPS61275621A (en) 1985-05-31 1985-05-31 Mass flowmeter

Country Status (1)

Country Link
JP (1) JPS61275621A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449917A (en) * 1987-08-20 1989-02-27 Tokico Ltd Mass flowmeter
DE4138840C2 (en) * 1991-11-26 2003-02-06 Abb Patent Gmbh Holder for a pipe to be flowed through in a mass flow meter
JP2010019847A (en) * 2001-08-29 2010-01-28 Micro Motion Inc Sensor apparatus, methods, and computer program products employing vibrational shape control

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6449917A (en) * 1987-08-20 1989-02-27 Tokico Ltd Mass flowmeter
JPH0749980B2 (en) * 1987-08-20 1995-05-31 トキコ株式会社 Vibration measuring device
DE4138840C2 (en) * 1991-11-26 2003-02-06 Abb Patent Gmbh Holder for a pipe to be flowed through in a mass flow meter
JP2010019847A (en) * 2001-08-29 2010-01-28 Micro Motion Inc Sensor apparatus, methods, and computer program products employing vibrational shape control
JP4837889B2 (en) * 2001-08-29 2011-12-14 マイクロ・モーション・インコーポレーテッド Sensor device, method and computer program product using vibration shape control

Also Published As

Publication number Publication date
JPH0454895B2 (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US4777833A (en) Ferromagnetic drive and velocity sensors for a coriolis mass flow rate meter
US4420983A (en) Mass flow measurement device
US4823614A (en) Coriolis-type mass flowmeter
US4831885A (en) Acoustic wave supressor for Coriolis flow meter
EP0359294B1 (en) Coriolis mass flow rate meter and method for producing a mass flow rate signal with reduced harmonic content
US2865201A (en) Gyroscopic mass flowmeter
EP0109218B1 (en) Parallel path coriolis mass flow rate meter
US5321991A (en) Coriolis effect mass flowmeter
US4747312A (en) Double-loop Coriolis type mass flowmeter
US5347874A (en) In-flow coriolis effect mass flowmeter
US4934195A (en) Coriolis mass flowmeter
JP2575203B2 (en) Mass flow meter with improved accuracy by compensating for asymmetry and viscous damping
PL198415B1 (en) Method for the determination of mass flow rate using the coriolis force, apparatus for the determination of mass flow rate equipped with mass flow control module and mass flow rate control module using the coriolis force
EP0381302A1 (en) Measuring mass flow rates of fluid flows
US4984472A (en) Apparatus for mass flow rate and density measurement
JPS61275621A (en) Mass flowmeter
JPH0242319A (en) Fluid measuring device
JPS62170819A (en) Mass flow meter
JPH0678923B2 (en) Anomaly detector in mass flowmeter
WO2024072431A1 (en) Flowmeter magnetic shielding apparatus and method
JP3224442B2 (en) Coriolis flow meter
JPH03199922A (en) Coriolis mass flowmeter
JPH05248910A (en) Coriolis flow meter
WO2023239353A1 (en) Coriolis flowmeter with detection of an external magnetic field
JPH032525A (en) Coriolis flowmeter