JP2942140B2 - Coriolis flow meter - Google Patents

Coriolis flow meter

Info

Publication number
JP2942140B2
JP2942140B2 JP6935294A JP6935294A JP2942140B2 JP 2942140 B2 JP2942140 B2 JP 2942140B2 JP 6935294 A JP6935294 A JP 6935294A JP 6935294 A JP6935294 A JP 6935294A JP 2942140 B2 JP2942140 B2 JP 2942140B2
Authority
JP
Japan
Prior art keywords
wave signal
sine wave
circuit
fundamental frequency
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6935294A
Other languages
Japanese (ja)
Other versions
JPH07280614A (en
Inventor
敏広 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOBARU KK
Original Assignee
OOBARU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOBARU KK filed Critical OOBARU KK
Priority to JP6935294A priority Critical patent/JP2942140B2/en
Publication of JPH07280614A publication Critical patent/JPH07280614A/en
Application granted granted Critical
Publication of JP2942140B2 publication Critical patent/JP2942140B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、コリオリ流量計に関
し、より詳細には、測定管に作用する質量流量に比例し
たコリオリの力を、測定管の振動検出位置における検出
信号の時間差から求めるコリオリ流量計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Coriolis flowmeter, and more particularly, to a Coriolis flowmeter which determines a Coriolis force proportional to a mass flow rate acting on a measuring tube from a time difference of a detection signal at a vibration detecting position of the measuring tube. It relates to a flow meter.

【0002】[0002]

【従来の技術】測定管を両端で支持し、支持された測定
管の中央部を管軸に垂直な方向に交番駆動している時、
流体が移動すると、測定管の中央部を中心として、測定
管の流入側と流出側との間に位相差が生ずる。この位相
差は、コリオリの力に基づくもので、質量流量に比例し
た値であり、前記位相差を検知して質量流量を計測する
コリオリ流量計は周知である。而して、前記位相差は、
測定管が静止しているとき、測定管の管軸を通る面を基
準面として、測定管に定められた2つの検出位置が基準
面を通過するときの検出位置間の時間差から測定され
る。従来、時間差は、測定管の流入側と流出側の対称位
置に取り付けられた測定管の変位検出器の信号を各々方
形波に波形整形し、整形された各々の方形波の立上げの
時間差の間で計数される一定周波数のクロックの数から
求めている。
2. Description of the Related Art When a measuring tube is supported at both ends and a central portion of the supported measuring tube is alternately driven in a direction perpendicular to the tube axis,
When the fluid moves, a phase difference occurs between the inflow side and the outflow side of the measurement tube around the center of the measurement tube. This phase difference is based on the Coriolis force and is a value proportional to the mass flow rate. Coriolis flow meters that detect the phase difference and measure the mass flow rate are well known. Thus, the phase difference is
When the measurement tube is stationary, the measurement is performed from the time difference between the detection positions when the two detection positions defined on the measurement tube pass through the reference surface, with the plane passing through the tube axis of the measurement tube as the reference plane. Conventionally, the time difference is obtained by shaping the waveforms of the displacement detector signals of the measurement tubes attached to the symmetrical positions on the inflow side and the outflow side of the measurement tubes into square waves, respectively, and calculating the time difference between the rise times of the shaped square waves. It is obtained from the number of clocks of a constant frequency counted between them.

【0003】[0003]

【発明が解決しようとする課題】前述のごとく、コリオ
リ流量計は、測定管を2点で支持し、支持された測定管
に対し支持点を節部として支持点まわりに所定周波数
(基本周波数)の振動を加え、この振動により測定管を
流れる流体に作用するコリオリの力を検出して質量流量
を求める質量流量計である。しかし、コリオリの力によ
り生ずる測定管の位相差信号は、測定管の駆動振幅に比
べて極めて小さい量である。従って、位相差信号に比例
して検知される時間差も極めて小さい。この時間差を高
い分解能で測定するためには、クロック周波数を大きく
する必要がある。しかし、コリオリ流量計は上下流の配
管の間に装着されるので配管による外部振動影響やノイ
ズ影響を受け易く、単に高い分解能をもつクロックを用
いたのでは安定した時間差測定は不可能である。
As described above, the Coriolis flowmeter supports the measuring tube at two points, and the supporting point is a node with respect to the supported measuring tube at a predetermined frequency (fundamental frequency) around the supporting point. The mass flow meter obtains a mass flow rate by detecting the Coriolis force acting on the fluid flowing through the measurement tube by the vibration. However, the phase difference signal of the measuring tube caused by the Coriolis force is extremely small compared to the driving amplitude of the measuring tube. Therefore, the time difference detected in proportion to the phase difference signal is also very small. In order to measure this time difference with high resolution, it is necessary to increase the clock frequency. However, since the Coriolis flowmeter is mounted between the upstream and downstream pipes, it is easily affected by external vibration and noise caused by the pipes, and stable time difference measurement cannot be performed by simply using a clock having a high resolution.

【0004】本発明は、時間差測定のためにクロックを
用いることなく、ノイズ影響が少なく平均化された安定
した時間差を高感度で求めることを可能とする時間差検
出手段を有するコリオリ流量計を提供することを目的と
するものである。
The present invention provides a Coriolis flow meter having a time difference detecting means capable of obtaining an averaged stable time difference with high sensitivity without a noise effect without using a clock for the time difference measurement. The purpose is to do so.

【0005】[0005]

【課題を解決するための手段】本発明は、上記課題を解
決するために、(1)流体が流れる測定管と、該測定管
を間隔を隔てた流れ方向の2点で支持する支持部材と、
前記測定管を前記支持部材まわりに基本周波数で駆動す
る駆動手段と、前記測定管の前記支持部材間対称な位置
において、該測定管の振動を検出する第1検出器および
第2検出器と、該第1検出器および第2検出器で検出さ
れた振動信号から基準時間軸上の時間差を検出し、該時
間差に比例して質量流量を求める時間差検出手段を有す
るコリオリ流量計において、前記時間差検出手段を、前
記第1検出器により検出された前記基本周波数の正弦波
信号をN逓倍する第1逓倍回路と、逓倍された正弦波信
号を該正弦波信号に同期した三角波信号に変換する第1
波形変換回路と、前記第2検出器により検出された前記
基本周波数の正弦波信号をN逓倍する第2逓倍回路と、
逓倍された正弦波信号を該正弦波信号に同期した三角波
信号に変換する第2波形変換回路と、前記第1波形変換
回路の出力から前記第2波形変換回路の出力を減算する
減算回路と、前記基本周波数の周期を計測する周期測定
回路と、計測された基本周波数の周期と前記減算回路の
出力とを乗算する乗算回路とで構成したことを特徴とす
るものである。
In order to solve the above-mentioned problems, the present invention provides (1) a measuring pipe through which a fluid flows, and a supporting member for supporting the measuring pipe at two points in a flow direction at an interval. ,
Driving means for driving the measurement tube around the support member at a fundamental frequency, a first detector and a second detector for detecting vibration of the measurement tube at a symmetric position between the support members of the measurement tube, A Coriolis flowmeter having time difference detecting means for detecting a time difference on a reference time axis from the vibration signals detected by the first detector and the second detector and obtaining a mass flow rate in proportion to the time difference. Means for multiplying the sine wave signal of the fundamental frequency detected by the first detector by N, and a first circuit for converting the multiplied sine wave signal into a triangular wave signal synchronized with the sine wave signal
A waveform conversion circuit, a second multiplier circuit for multiplying the sine wave signal of the fundamental frequency detected by the second detector by N,
A second waveform conversion circuit that converts the multiplied sine wave signal into a triangular wave signal synchronized with the sine wave signal, a subtraction circuit that subtracts the output of the second waveform conversion circuit from the output of the first waveform conversion circuit, A cycle measuring circuit for measuring the cycle of the fundamental frequency, and a multiplying circuit for multiplying the measured cycle of the fundamental frequency by the output of the subtraction circuit.

【0006】[0006]

【作用】測定管に定められた2つの検出位置で検出され
た位相の異なる基本正弦波信号を、各々N倍の周波数の
正弦波信号に変換し、逓倍された正弦波信号を正弦波信
号に同期した三角波信号に変換する。位相の異なる三角
波信号は、減算され、基本正弦波信号で求めた位相差に
対し、N倍の位相差に比例した振幅をもつ台形波信号と
する。この台形波信号に基本正弦波信号の周期を乗算し
て時間差を求める。
The fundamental sine wave signals having different phases detected at two detection positions defined in the measuring tube are converted into sine wave signals having N times the frequency, and the multiplied sine wave signal is converted into a sine wave signal. Convert to synchronized triangular wave signal. The triangular wave signals having different phases are subtracted to form a trapezoidal wave signal having an amplitude proportional to the phase difference N times the phase difference obtained from the basic sine wave signal. The time difference is obtained by multiplying the trapezoidal wave signal by the period of the basic sine wave signal.

【0007】[0007]

【実施例】本発明によるコリオリ流量計を説明する前
に、まず基本的なコリオリ流量計の構造を説明する。図
4は、本発明に係るコリオリ流量計を説明するための基
本構造図であり、図中、20はコリオリ流量計本体、2
1は基台、22は測定管、23,24は支持部材、25
は駆動手段、26は第1検出器、27は第2検出器であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Before describing a Coriolis flow meter according to the present invention, a basic structure of a Coriolis flow meter will be described first. FIG. 4 is a basic structural view for explaining a Coriolis flowmeter according to the present invention, in which reference numeral 20 denotes a Coriolis flowmeter main body,
1 is a base, 22 is a measuring tube, 23 and 24 are support members, 25
Is a driving means, 26 is a first detector, and 27 is a second detector.

【0008】コリオリ流量計本体20は、流体が流れる
測定管22と、測定管22を流れ方向に間隔Lを隔てた
2点で支持する基台21に固着された第1支持部材23
と第2支持部材24と、支持された測定管22の中央部
で測定管22を軸O−Oと直角方向に所定の基本周波数
で駆動する駆動手段25と、駆動手段25の駆動により
コリオリの力により測定管22に生ずる位相変位を検出
する第1検出器26,第2検出器27とからなってい
る。
The Coriolis flowmeter main body 20 includes a measurement tube 22 through which a fluid flows, and a first support member 23 fixed to a base 21 supporting the measurement tube 22 at two points separated by a distance L in the flow direction.
, A second support member 24, a driving unit 25 for driving the measuring tube 22 at a central portion of the supported measuring tube 22 at a predetermined fundamental frequency in a direction perpendicular to the axis OO, It comprises a first detector 26 and a second detector 27 for detecting a phase displacement generated in the measuring tube 22 by a force.

【0009】駆動手段25は、例えば、測定管22に固
着された磁性体25aと、磁性体25aと対向して基台
21に固着されたコイル25bとからなり、コイル25
bに正弦波の駆動電流を印加することにより測定管22
は、基本周波数で支持部材23,24まわりに矢印±ω
1,ω2方向に駆動される。
The driving means 25 comprises, for example, a magnetic body 25a fixed to the measuring tube 22 and a coil 25b fixed to the base 21 in opposition to the magnetic body 25a.
b, a sine-wave driving current is applied to
Is an arrow ± ω around the support members 23 and 24 at the fundamental frequency.
1, it is driven in omega 2 directions.

【0010】第1,第2検出器26,27は同一の原理
構造をもった同一規格の磁石26a,27aと、検出コ
イル26b,27bとからなり、磁石26a,27aは
測定管22の流入口、流出口からの対称位置に固着さ
れ、検出コイル26b,27bは基台21に固着されて
いる。
The first and second detectors 26 and 27 are composed of magnets 26a and 27a having the same principle structure and the same standard, and detection coils 26b and 27b. The magnets 26a and 27a are connected to the inlet of the measuring tube 22. The detection coils 26b and 27b are fixed to the base 21 at symmetric positions from the outlet.

【0011】以上の構成からなるコリオリ流量計本体2
0を、駆動手段25により基本周波数で正弦波駆動する
と、第1,第2検出器26,27には、測定管22に作
用する質量流量mと基本周波数fのベクトル積に比例し
たコリオリの力による微小な位相差をもった正弦波信号
が検出される。流体が矢印Q方向に流れて、測定管22
が+ω1,+ω2方向に駆動されたとき、第1検出器26
の正弦波信号は、第2検出器27の正弦波信号に対し
て、コリオリの力に比例する位相遅れが生ずる。逆に、
−ω1,−ω2方向に駆動されたときは反対の位相遅れと
なる。
The Coriolis flowmeter main body 2 having the above configuration
Is driven by the driving means 25 at a fundamental frequency, the Coriolis force proportional to the vector product of the mass flow rate m acting on the measuring tube 22 and the fundamental frequency f is applied to the first and second detectors 26 and 27. A sine wave signal having a small phase difference due to the above is detected. Fluid flows in the direction of arrow Q, and
Is driven in the directions of + ω 1 and + ω 2 , the first detector 26
Has a phase delay proportional to the Coriolis force with respect to the sine wave signal of the second detector 27. vice versa,
When driven in the −ω 1 and −ω 2 directions, they have opposite phase delays.

【0012】本発明は、位相遅れ、すなわち位相差φを
時間差ΔTとして検出するものであり、その原理につい
て説明する。第1検出器26から出力される基本周波数
f=ω/2πの正弦波信号をy1、第2検出器27から
出力される正弦波信号をy2とすると、 y1=A1sin ωt (1) y2=A2sin(ωt+φ) (2) 但し、A1,A2は振幅、ωは駆動角速度、tは時間であ
る。
The present invention detects a phase delay, that is, a phase difference φ as a time difference ΔT, and its principle will be described. Assuming that a sine wave signal output from the first detector 26 at a fundamental frequency f = ω / 2π is y 1 and a sine wave signal output from the second detector 27 is y 2 , y 1 = A 1 sin ωt ( 1) y 2 = A 2 sin (ωt + φ) (2) where A 1 and A 2 are amplitude, ω is drive angular velocity, and t is time.

【0013】(1),(2)式を各々振幅で除算する
と、 sin ωt=y1/A1 (3) sin(ωt+φ)=y2/A2 (4) (1),(2)式で示した正弦波信号に同期した三角波
信号とするために、例えば、式(3),(4)の逆正弦
関数をとると、 sin-1(sin ωt)=sin-1(y1/A1)=ωt (5) sin〔sin(ω+φ)〕=sin-1(y2/A2)=ωt+φ (6)
When the equations (1) and (2) are each divided by the amplitude, sin ωt = y 1 / A 1 (3) sin (ωt + φ) = y 2 / A 2 (4) Equations (1) and (2) In order to obtain a triangular wave signal synchronized with the sine wave signal represented by the following equation, for example, taking the inverse sine function of equations (3) and (4), sin -1 (sin ωt) = sin -1 (y 1 / A 1 ) = ωt (5) sin [sin (ω + φ)] = sin −1 (y 2 / A 2 ) = ωt + φ (6)

【0014】(5),(6)式から φ=sin-1(y2/A2)−sin-1(y1/A1) (7) 一方、正弦波信号の基本周波数をf(周期T)とする
と、正弦波信号y1とy2との時間差ΔTは ΔT=(φ/2π)×(1/f) =(φ/2π)×T (8) で与えられるから、(8)式に(7)式を代入すること
により、時間差ΔTを求めることができる。また、同様
にy1,y2の基本周波数に同期し、逓倍させた時の時間
差△T1も△T1=△T=(φ1/2π)/T1で与えられ
る。
From equations (5) and (6), φ = sin −1 (y 2 / A 2 ) −sin −1 (y 1 / A 1 ) (7) On the other hand, the fundamental frequency of the sine wave signal is represented by f (period) T), the time difference ΔT between the sine wave signals y 1 and y 2 is given by ΔT = (φ / 2π) × (1 / f) = (φ / 2π) × T (8). By substituting equation (7) into the equation, the time difference ΔT can be obtained. Similarly, the time difference ΔT 1 when synchronized with the fundamental frequencies of y 1 and y 2 and multiplied is also given by ΔT 1 = ΔT = (φ 1 / 2π) / T 1 .

【0015】逆正弦関数は、正弦波信号に同期した三角
波となるが、(5),(6)式で求められる三角波信号
のピーク値は小さい。この結果、(7)式で求められる
位相差φ信号のレベルも小さく、これを高精度で測定す
ることは困難である。
Although the inverse sine function is a triangular wave synchronized with the sine wave signal, the peak value of the triangular wave signal obtained by the equations (5) and (6) is small. As a result, the level of the phase difference φ signal obtained by the equation (7) is also small, and it is difficult to measure this signal with high accuracy.

【0016】このため、入力信号である(1),(2)
式の基本周波数の正弦波信号y1,y2を入力信号に同期
したN逓倍の正弦波信号に変換すると、(8)式より、 ΔT=(φ/2π)×T=(φ1/2π)×T1 (9) 但し、T:入力信号(基本周波数)の周期 φ:入力正弦波信号y1,y2の位相差 T1:N逓倍した正弦波信号の周期 φ1:N逓倍した正弦波信号y1,y2の位相差 が得られる。ここで、 φ1=Nφ (10) T=NT1 (11) であるから、(9)式より時間遅れΔTは、 ΔT=((φ1/2π)×T)×1/N (12) が得られ、N逓倍したときの位相差信号φ1は、基本周
波数の場合の位相差信号φに対してN倍に拡大される。
For this reason, the input signals (1) and (2)
When the sine wave signals y 1 and y 2 of the fundamental frequency in the equation are converted into sine wave signals of N times synchronized with the input signal, from equation (8), ΔT = (φ / 2π) × T = (φ 1 / 2π ) × T 1 (9) where T: period of input signal (basic frequency) φ: phase difference between input sine wave signals y 1 and y 2 T 1 : period of sine wave signal multiplied by N φ 1 : multiplied by N The phase difference between the sine wave signals y 1 and y 2 is obtained. Here, since φ 1 = Nφ (10) T = NT 1 (11), from equation (9), the time delay ΔT is ΔT = ((φ 1 / 2π) × T) × 1 / N (12) Is obtained, and the phase difference signal φ 1 when multiplied by N is expanded N times to the phase difference signal φ in the case of the fundamental frequency.

【0017】実施例1(請求項1に対応) 図1は、本発明によるコリオリ流量計の時間差検出回路
の一実施例を説明するためのブロック図であり、図中、
1,5は第1,第2正弦波信号の入力端子、2,6は第
1,第2積分増幅回路、3,7は第1,第2N逓倍回
路、4,8は第1,第2波形変換回路、9は減算回路、
10は周期測定回路、11は乗算回路、12は1/N逓
減回路である。
Embodiment 1 (corresponding to claim 1) FIG. 1 is a block diagram for explaining an embodiment of a time difference detection circuit of a Coriolis flowmeter according to the present invention.
1, 5 are input terminals for the first and second sine wave signals, 2, 6 are first and second integrating amplifier circuits, 3, 7 are first and second N-multiplier circuits, and 4, 8 are first and second A waveform conversion circuit, 9 is a subtraction circuit,
Reference numeral 10 denotes a cycle measuring circuit, 11 denotes a multiplying circuit, and 12 denotes a 1 / N step-down circuit.

【0018】図1に示したブロック図は、(12)式を
具現するためのもので、コリオリ流量計の第1検出器か
ら出力される基本周波数の第1正弦波信号を入力端子1
に入力する。第1正弦波信号には、高調波が含まれてい
るので、この高周波を第1積分増幅回路で取除き、所定
電圧レベルに増幅する。増幅された第1正弦波信号は、
第1N逓倍回路3に入力し、N倍の正弦周波数信号に変
換される。
The block diagram shown in FIG. 1 is for realizing the equation (12). The first sine wave signal of the fundamental frequency output from the first detector of the Coriolis flowmeter is supplied to the input terminal 1.
To enter. Since the first sine wave signal contains harmonics, the high frequency is removed by the first integration amplifier circuit and amplified to a predetermined voltage level. The amplified first sine wave signal is
The signal is input to the first N multiplier circuit 3 and is converted into an N-fold sine frequency signal.

【0019】逓倍回路は、例えば、周知のPLL(Phas
e-Locked Loop)回路であり、PC(位相比較器),L
PF(低域フィルタ),VCO(電圧制御発振器)、お
よび、分周器からなるフィードバックループで構成され
る。PLL回路では、入力信号周波数を分周器の分周比
に比例した周波数に逓倍する。
The multiplication circuit is, for example, a well-known PLL (Phas
e-Locked Loop) circuit, PC (phase comparator), L
It is configured by a feedback loop including a PF (low-pass filter), a VCO (voltage controlled oscillator), and a frequency divider. In the PLL circuit, the input signal frequency is multiplied to a frequency proportional to the frequency division ratio of the frequency divider.

【0020】逓倍された第1正弦信号は、第1波形変換
回路4に入力され、N逓倍された第1正弦信号周波数に
同期した三角波信号に変換される。波形変換回路の回路
方式は、正弦波信号を矩形波に変換する矩形波変換回路
と積分回路とを組合せる方式や逆正弦波変換回路を用い
てもよい。
The multiplied first sine signal is input to the first waveform conversion circuit 4 and is converted into a triangular wave signal synchronized with the N-multiplied first sine signal frequency. As a circuit method of the waveform conversion circuit, a method of combining a rectangular wave conversion circuit for converting a sine wave signal into a rectangular wave and an integration circuit, or an inverse sine wave conversion circuit may be used.

【0021】入力端子5に入力された第2検出器からの
第2正弦波信号に対しても、上述した第1正弦波検出信
号に対する波形変換操作と同様で、第2正弦波信号は第
2積分増幅回路7,第2波形変換回路8を介して、第2
正弦波信号の周波数信号をN逓倍して得られた正弦波信
号に同期した三角波信号が得られる。
For the second sine wave signal from the second detector input to the input terminal 5, the same as the above-described waveform conversion operation for the first sine wave detection signal, the second sine wave signal is the second sine wave signal. Through the integrating amplifier circuit 7 and the second waveform conversion circuit 8, the second
A triangular wave signal synchronized with the sine wave signal obtained by multiplying the frequency signal of the sine wave signal by N is obtained.

【0022】第1波形変換回路4と第2波形変換回路8
の各々の三角波信号は減算回路9で減算される。減算出
力は、振幅が位相差φ1(=Nφ)に比例した電圧レベ
ルの台形波信号となる。この台形波信号の電圧レベルは
逓倍しない場合の電圧レベルに比べてN倍の大きさをも
っている。
The first waveform conversion circuit 4 and the second waveform conversion circuit 8
Are subtracted by the subtraction circuit 9. The subtraction output is a trapezoidal wave signal having a voltage level whose amplitude is proportional to the phase difference φ 1 (= Nφ). The voltage level of this trapezoidal wave signal is N times larger than the voltage level when no multiplication is performed.

【0023】一方、基本周波数信号の周期は、波形整形
された第2積分増幅回路6の出力信号を対象として周期
測定回路10により測定される。周期測定回路10は、
例えば、基本周波数信号に同期した矩形波信号の立上げ
で作動する積分回路信号が立下げと一致するときの電圧
レベルや短形波信号の立上げ立下げ間に入力されるクロ
ックの数等でアナログ,ディジタル的に計測される。
On the other hand, the period of the fundamental frequency signal is measured by the period measuring circuit 10 for the output signal of the second integrating amplifier circuit 6 whose waveform has been shaped. The cycle measuring circuit 10
For example, the voltage level when the integrator signal operating at the rise of the square wave signal synchronized with the fundamental frequency signal coincides with the fall or the number of clocks input during the rise and fall of the square wave signal, etc. It is measured in analog and digital.

【0024】計測された周期T1は、乗算回路11に入
力され、乗算回路11により周期T1と位相差信号φ1
乗算され、第1,第2入力信号の時間差に比例した値N
ΔTが得られる。乗算回路11の出力信号を逓減回路1
2により1/Nに逓減することにより、コリオリの力に
比例した高精度な時間差信号が得られる。但し、逓減回
路12はN倍された位相差信号φ1を逓減するもので信
号操作上好ましくなく、正確な時間差を求めるとき以外
は必要としない。
The measured period T 1 is input to the multiplication circuit 11, where the multiplication circuit 11 multiplies the period T 1 by the phase difference signal φ 1 to obtain a value N proportional to the time difference between the first and second input signals.
ΔT is obtained. The output signal of the multiplication circuit 11 is reduced by the
By reducing to 1 / N by 2, a highly accurate time difference signal proportional to the Coriolis force can be obtained. However, decreasing circuit 12 is not preferable on the signal operating at which decreasing the phase difference signal phi 1, which is N times, do not require, except when determining the accurate time difference.

【0025】以上の構成を有する図1の時間差測定手段
を、表1と図2に基づいて説明する。表1は正弦波信号
の位相に対する正弦波と逆正弦波の関係を示し、図2
は、位相差検出の原理を説明する波形図である。入力端
子1から入力された第1正弦波信号は、第1積分増幅回
路2により波形整形され、波形整形された第1正弦波信
号はN逓倍回路3によりN逓倍され、図2(1)に示す
sinxの周期信号となる。N逓倍された正弦波sinxは2
π/4、6π/4にピーク値をもち、πの整数倍の位相
でゼロクロスする周期関数である。また、正弦波sinx
の逆関数であるsin-1(sinx)は2π/4と6π/4にピ
ーク値±π/2をもち、πの整数倍の位置でゼロクロス
する三角波信号となる。
The time difference measuring means of FIG. 1 having the above configuration will be described with reference to Table 1 and FIG. Table 1 shows the relationship between the sine wave and the inverse sine wave with respect to the phase of the sine wave signal.
FIG. 4 is a waveform diagram illustrating the principle of phase difference detection. The first sine wave signal input from the input terminal 1 is waveform-shaped by the first integration amplifier circuit 2, and the waveform-shaped first sine wave signal is multiplied by N by the N-multiplier circuit 3, as shown in FIG. Show
It becomes a periodic signal of sinx. The sine wave sinx multiplied by N is 2
This is a periodic function having peak values at π / 4 and 6π / 4 and zero-crossing at an integral multiple of π. Also, sine wave sinx
Sin -1 (sinx), which is the inverse function of, has a peak value of ± π / 2 at 2π / 4 and 6π / 4, and becomes a triangular wave signal that crosses zero at a position of an integral multiple of π.

【0026】[0026]

【表1】 [Table 1]

【0027】一方、入力端子2から入力された第2正弦
波信号を増幅整形(6)後、N逓倍(7)された各々の
正弦波信号は、第1検出器1の正弦波をN逓倍した正弦
波信号と位相差Nφを有しており、位相差Nφは図2
(3)に示すように縦軸上に表わされる。このため逆正
弦波sin-1(sinx+φ)は位相差Nφを有し、sin-1(sin
x)と同じ三角波信号となる。
On the other hand, after amplifying and shaping (6) the second sine wave signal inputted from the input terminal 2, each sine wave signal multiplied by N (7) is obtained by multiplying the sine wave of the first detector 1 by N. The sine wave signal and the phase difference Nφ
As shown in (3), it is represented on the vertical axis. Therefore, the inverse sine wave sin -1 (sinx + φ) has a phase difference Nφ, and sin -1 (sin x
It becomes the same triangular wave signal as x).

【0028】図2(4)は、図2(2)のsin-1(sinx)
と図2(3)のsin-1{sin(x+φ)}を減算回路9によ
り減算して得られた略π/2の整数倍の位相でゼロクロ
スする台形の周期関数であり、台形の高さが2Nφ、立
下げの時間遅れがΔtで、位相差Nφに比例して台形の
高さが変化する。このように位相差信号Nφは、位相が
略πの時間において高さが一定な位相差信号Nφとして
検出されるため平均化された位相差Nφが検出され、従
って、基本周波数fの周期T1を乗算して得られるコリ
オリの力に比例した時間差信号ΔTも平均化され、ノイ
ズ影響のない時間差信号が検出される。
FIG. 2 (4) shows sin -1 (sinx) of FIG. 2 (2).
2 (3) is a trapezoidal periodic function that zero-crosses at a phase of an integral multiple of substantially π / 2 obtained by subtracting sin -1 {sin (x + φ)} by a subtraction circuit 9, and the height of the trapezoid Is 2Nφ, the time delay of falling is Δt, and the height of the trapezoid changes in proportion to the phase difference Nφ. As described above, since the phase difference signal Nφ is detected as the phase difference signal Nφ having a constant height at a time when the phase is substantially π, an averaged phase difference Nφ is detected, and therefore, the period T 1 of the fundamental frequency f Are also averaged, and a time difference signal free from noise is detected.

【0029】以上の説明から明らかなように、正弦波si
nxと逆正弦波sin-1(sinx)とは同一周期の周期関数で
あり、逆正弦波sin-1(sinx)は三角波であるから正弦波
sinxを直接三角波に波形変換しても同様の台形波の位
相差信号を検出することができる。すなわち、第1,第
2変換回路4,8を正弦波信号と同じ周期の三角波信号
に変換する波形変換回路にして、他の回路を図1に示し
た回路と全く同じように構成することにより時間差信号
ΔTが得られる。また、上記三角波の頂部を一定電圧で
クリップして得られた台形波によっても同様に位相差N
φが検出できる。
As is clear from the above description, the sine wave si
nx and the inverse sine wave sin -1 (sinx) are periodic functions having the same period, and since the inverse sine wave sin -1 (sinx) is a triangular wave,
Even if sinx is directly converted into a triangular wave, a similar trapezoidal phase difference signal can be detected. That is, the first and second conversion circuits 4 and 8 are converted into a triangular wave signal having the same cycle as the sine wave signal, and the other circuits are configured in exactly the same manner as the circuit shown in FIG. A time difference signal ΔT is obtained. Similarly, the phase difference N can also be obtained by a trapezoidal wave obtained by clipping the top of the triangular wave with a constant voltage.
φ can be detected.

【0030】図3は、図1に示した減算回路9の位相差
信号出力特性の実験例を示すもので、図3(1)は基本
周波数f=500Hzの場合、図3(2)は逓倍率N=1
0の場合、図3(3)は逓倍率N=20の場合の台形波
の高さをもった位相差信号で、三角波の電圧はすべて同
じ19.2VP-Pである。
FIG. 3 shows an experimental example of the output characteristics of the phase difference signal of the subtraction circuit 9 shown in FIG. 1. FIG. 3 (1) shows a case where the fundamental frequency f = 500 Hz, and FIG. Rate N = 1
In the case of 0, FIG. 3 (3) is a phase difference signal having a trapezoidal wave height when the multiplying factor is N = 20, and the voltages of all the triangular waves are the same 19.2 V PP .

【0031】図から明らかなように、測定管が駆動され
る図3(1)の基本周波数f=500Hzの場合の位相差
信号レベル0.486vに対して、図3(2)のN=1
0,Nf=500Hzの場合は約10倍の4.72v、図
3(3)のN=20,Nf=10000Hzの場合は20倍の
9.44vとなっており、逓倍数に比例した位相差信号
レベルが得られることが解る。
As is apparent from the figure, for the phase difference signal level of 0.486 V in the case where the fundamental frequency f = 500 Hz in FIG. 3A where the measuring tube is driven, N = 1 in FIG.
In the case of 0, Nf = 500 Hz, it is 4.72v, which is about 10 times, and in the case of N = 20, Nf = 10000 Hz in FIG. 3 (3), it is 9.44v, which is 20 times. It can be seen that a signal level can be obtained.

【0032】上述の如く、基本周波数をN倍に逓倍する
ことにより、検出信号間の位相差信号の電圧レベルはN
倍となり、時間差信号ΔTの分解能がN倍向上し、信頼
性も、この倍率に従って向上する。
As described above, by multiplying the fundamental frequency by N times, the voltage level of the phase difference signal between the detection signals becomes N
And the resolution of the time difference signal ΔT is improved by N times, and the reliability is also improved in accordance with this magnification.

【0033】[0033]

【発明の効果】以上の説明から明らかなように、本発明
によると、測定管の一対の検出位置において、測定管が
基準面を通過する時に生ずるコリオリの力に比例する位
相差を、台形波の高さであらわし、しかも台形波の高さ
は測定管を駆動する基本周波数の場合の高さに比べて、
基本周波数の逓倍数Nに比例して高くなるので、N倍高
感度となり、しかも台形波の一定レベル電圧高さが計測
されるので、測定管の外部振動影響による検出誤差が生
じない。このため、信頼性の高い位相差を検出すること
ができる。従って、この位相差に基本周波数の周期を乗
算して得られたコリオリの力も、高感度で信頼性の高い
値が得られる。
As is apparent from the above description, according to the present invention, the phase difference proportional to the Coriolis force generated when the measuring tube passes through the reference plane at the pair of detection positions of the measuring tube is represented by a trapezoidal wave. And the height of the trapezoidal wave is smaller than the height of the fundamental frequency for driving the measuring tube.
Since the sensitivity is increased in proportion to the multiplication number N of the fundamental frequency, the sensitivity becomes N times higher, and the constant level voltage height of the trapezoidal wave is measured. Therefore, a highly reliable phase difference can be detected. Therefore, the Coriolis force obtained by multiplying the phase difference by the period of the fundamental frequency also has a highly sensitive and highly reliable value.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明によるコリオリ流量計の時間差検出回
路の一実施例を説明するためのブロック図である。
FIG. 1 is a block diagram for explaining an embodiment of a time difference detection circuit of a Coriolis flowmeter according to the present invention.

【図2】 位相差検出の原理を説明する波形図である。FIG. 2 is a waveform diagram illustrating the principle of phase difference detection.

【図3】 図1に示した減算回路9の位相差信号出力特
性の実験例を示すものである。
FIG. 3 shows an experimental example of a phase difference signal output characteristic of the subtraction circuit 9 shown in FIG.

【図4】 本発明に係るコリオリ流量計を説明するため
の基本構造図である。
FIG. 4 is a basic structural diagram for explaining a Coriolis flowmeter according to the present invention.

【符号の説明】[Explanation of symbols]

1,5…第1,第2正弦波信号の入力端子、2,6…第
1,第2積分増幅回路、3,7…第1,第2N逓倍回
路、4,8…第1,第2波形変換回路、9…減算回路、
10…周期測定回路、11…乗算回路、12…1/N逓
減回路。
1,5 ... input terminals of first and second sine wave signals, 2,6 ... first and second integral amplifier circuits, 3,7 ... first and second N-multiplier circuits, 4,8 ... first and second Waveform conversion circuit, 9 subtraction circuit,
10: cycle measuring circuit, 11: multiplying circuit, 12: 1 / N multiplying circuit.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 流体が流れる測定管と、該測定管を間隔
を隔てた流れ方向の2点で支持する支持部材と、前記測
定管を前記支持部材まわりに基本周波数で駆動する駆動
手段と、前記測定管の前記支持部材間対称な位置におい
て、該測定管の振動を検出する第1検出器および第2検
出器と、該第1検出器および第2検出器で検出された振
動信号から基準時間軸上の時間差を検出し、該時間差に
比例して質量流量を求める時間差検出手段を有するコリ
オリ流量計において、前記時間差検出手段を、前記第1
検出器により検出された前記基本周波数の正弦波信号を
N逓倍する第1逓倍回路と、逓倍された正弦波信号を該
正弦波信号に同期した三角波信号に変換する第1波形変
換回路と、前記第2検出器により検出された前記基本周
波数の正弦波信号をN逓倍する第2逓倍回路と、逓倍さ
れた正弦波信号を該正弦波信号に同期した三角波信号に
変換する第2波形変換回路と、前記第1波形変換回路の
出力から前記第2波形変換回路の出力を減算する減算回
路と、前記基本周波数の周期を計測する周期測定回路
と、計測された基本周波数の周期と前記減算回路の出力
とを乗算する乗算回路とで構成したことを特徴とするコ
リオリ流量計。
1. A measuring tube through which a fluid flows, a supporting member for supporting the measuring tube at two points in a flow direction at an interval, and driving means for driving the measuring tube around the supporting member at a fundamental frequency; A first detector and a second detector for detecting vibration of the measurement tube at a position symmetrical between the support members of the measurement tube; and a reference based on the vibration signals detected by the first and second detectors. In a Coriolis flowmeter having a time difference detecting means for detecting a time difference on a time axis and obtaining a mass flow rate in proportion to the time difference, the time difference detecting means may be the first type.
A first frequency multiplier for multiplying the sine wave signal of the fundamental frequency detected by the detector by N, a first waveform converter for converting the multiplied sine wave signal into a triangular wave signal synchronized with the sine wave signal, A second multiplying circuit for multiplying the sine wave signal of the fundamental frequency detected by the second detector by N, and a second waveform conversion circuit for converting the multiplied sine wave signal into a triangular wave signal synchronized with the sine wave signal; A subtraction circuit for subtracting an output of the second waveform conversion circuit from an output of the first waveform conversion circuit, a cycle measurement circuit for measuring a cycle of the fundamental frequency, and a cycle of the measured fundamental frequency and the subtraction circuit. A Coriolis flowmeter comprising a multiplication circuit for multiplying an output.
JP6935294A 1994-04-07 1994-04-07 Coriolis flow meter Expired - Fee Related JP2942140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6935294A JP2942140B2 (en) 1994-04-07 1994-04-07 Coriolis flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6935294A JP2942140B2 (en) 1994-04-07 1994-04-07 Coriolis flow meter

Publications (2)

Publication Number Publication Date
JPH07280614A JPH07280614A (en) 1995-10-27
JP2942140B2 true JP2942140B2 (en) 1999-08-30

Family

ID=13400088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6935294A Expired - Fee Related JP2942140B2 (en) 1994-04-07 1994-04-07 Coriolis flow meter

Country Status (1)

Country Link
JP (1) JP2942140B2 (en)

Also Published As

Publication number Publication date
JPH07280614A (en) 1995-10-27

Similar Documents

Publication Publication Date Title
US3885432A (en) Vortex-type mass flowmeters
US5767665A (en) Phase difference measuring apparatus and mass flowmeter thereof
CN101910804B (en) Coriolis flowmeter
EP0083144B1 (en) Improved method and apparatus for mass flow measurement
JP4436882B1 (en) Signal processing method, signal processing apparatus, and Coriolis flow meter
JPH0862014A (en) Mass flowmeter operating on coriolis principle
JP3058074B2 (en) Vibration type measuring instrument
US8700343B2 (en) Signal processing method, signal processing apparatus, and Coriolis flowmeter
JPH07181069A (en) Coriolis mass flowmeter
JP2942140B2 (en) Coriolis flow meter
US4026150A (en) Mass flow meter
JP2934136B2 (en) Coriolis flow meter
JP3252641B2 (en) Phase difference measuring device
JP3335600B2 (en) Coriolis mass flowmeter
JP3161664B2 (en) Coriolis mass flowmeter
JPH06147949A (en) Mass flowmeter
JPH08338750A (en) Converter of mass flowmeter
RU2145060C1 (en) Device for determination of mass flow rate of fluid media
JPH055504Y2 (en)
JP3137211B2 (en) Coriolis mass flowmeter
JP2580755B2 (en) Mass flow meter
JP2786815B2 (en) Mass flow meter converter
JPH06323885A (en) Coriolis mass flowmeter
JPH0875520A (en) Coriolis mass flowmeter
JPH06300601A (en) Coriolis mass flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090618

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100618

LAPS Cancellation because of no payment of annual fees