JP2932397B2 - Printed circuit board manufacturing method - Google Patents

Printed circuit board manufacturing method

Info

Publication number
JP2932397B2
JP2932397B2 JP30609690A JP30609690A JP2932397B2 JP 2932397 B2 JP2932397 B2 JP 2932397B2 JP 30609690 A JP30609690 A JP 30609690A JP 30609690 A JP30609690 A JP 30609690A JP 2932397 B2 JP2932397 B2 JP 2932397B2
Authority
JP
Japan
Prior art keywords
substrate
copper
circuit board
printed circuit
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30609690A
Other languages
Japanese (ja)
Other versions
JPH04179296A (en
Inventor
正行 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Shinku Gijutsu KK filed Critical Nihon Shinku Gijutsu KK
Priority to JP30609690A priority Critical patent/JP2932397B2/en
Publication of JPH04179296A publication Critical patent/JPH04179296A/en
Application granted granted Critical
Publication of JP2932397B2 publication Critical patent/JP2932397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、プリント基板の製造方法に関し、詳細には
主として電気・電子機器等のプリント配線板に用いるフ
レキシブルなプリント基板の製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a printed circuit board, and more particularly to a method for manufacturing a flexible printed circuit board mainly used for a printed wiring board of an electric / electronic device or the like.

(従来の技術) 従来、電気・電子機器の小型・軽量化および高温での
信頼性向上のために該機器の制御装置の内部にはポリイ
ミドフィルムから成る基板上に銅箔を接着させたプリン
ト基板が用いられている。
(Prior Art) Conventionally, in order to reduce the size and weight of electric and electronic devices and improve the reliability at high temperatures, a printed circuit board in which a copper foil is adhered on a substrate made of a polyimide film inside a control device of the device. Is used.

かかるプリント基板の製造方法として、ポリイミドフ
ィルムから成る基板上にエポキシ系接着剤またはアクリ
ル系接着剤を塗布した後、銅箔を該接着剤を介して基板
に接着させる方法が行われていた。
As a method for manufacturing such a printed board, a method has been used in which an epoxy-based adhesive or an acrylic-based adhesive is applied to a substrate made of a polyimide film, and then a copper foil is bonded to the substrate via the adhesive.

そして作成されたプリント基板は、その後プリント基
板に電気・電子部品をハンダ付け等で接続する実装工程
を行った後、使用に供するものである。
The printed circuit board thus prepared is subjected to a mounting step of connecting electric and electronic components to the printed circuit board by soldering or the like, and then used.

(発明が解決しようとする課題) しかしながら、前記方法で得られた該プリント基板は
電気・電子部品の接続による実装工程の際、温度250℃
以上の高温に耐える耐熱性が必要であるが、前記接着剤
では十分な耐熱性が得られず、その結果基板と銅箔との
間の引きはがし強さが著しく低いという問題がある。
(Problems to be Solved by the Invention) However, the printed circuit board obtained by the above method has a temperature of 250 ° C. during a mounting step by connecting electric and electronic components.
Although the heat resistance required to withstand the above high temperature is required, the adhesive does not provide sufficient heat resistance, and as a result, there is a problem that the peel strength between the substrate and the copper foil is extremely low.

そこで接着剤を用いずに基板上に蒸着法で銅材を直接
蒸着させて銅膜を形成する方法を試みたが、高温におけ
る基板と銅膜との間の引きはがし強さは前記接着剤を用
いた場合に比して60〜70%と小さく、電気・電子部品を
接続する実装工程の際の高温に耐えられないという問題
がある。
Therefore, an attempt was made to form a copper film by directly depositing a copper material on a substrate by an evaporation method without using an adhesive, but the peeling strength between the substrate and the copper film at a high temperature was determined by using the adhesive. It is as small as 60 to 70% as compared with the case where it is used, and there is a problem that it cannot withstand high temperatures in a mounting process for connecting electric and electronic components.

本発明は、前記問題点を解消した実装工程の際の高温
に耐え、優れた引きはがし強さを有するプリント基板の
製造方法を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method of manufacturing a printed circuit board that can withstand high temperatures during a mounting process and that has excellent peeling strength.

(課題を解決するための手段) 本発明のプリント基板の製造方法は、ポリイミドフィ
ルムから成る基板上にポリイミドの原料モノマーを蒸
着、重合させてポリアミド酸薄膜を形成し、次いで該薄
膜上に蒸着法またはスパッタ法により銅膜を形成した
後、加熱してポリアミド酸薄膜にイミド化処理を施すこ
とを特徴とする。
(Means for Solving the Problems) In a method for manufacturing a printed board according to the present invention, a polyamic acid thin film is formed by depositing and polymerizing a raw material monomer of polyimide on a substrate made of a polyimide film, and then a vapor deposition method is performed on the thin film. Alternatively, after forming a copper film by a sputtering method, the polyamic acid thin film is subjected to an imidization treatment by heating.

基板上に蒸着、重合させるポリアミド酸の膜厚は1000
Å以下とするのが好ましい。基板上に膜厚が1000Åを超
えて蒸着、重合すると、その後加熱して該ポリアミド酸
をイミド化する際、発生する水によりふくれが生じて基
板と銅膜との引きはがし強さが低下する原因となるから
である。
Thickness of polyamic acid deposited and polymerized on the substrate is 1000
Å It is preferable to set the following. When the film thickness is over 1000Å deposited and polymerized on the substrate, when it is heated to imidize the polyamic acid, the generated water causes blistering and the peel strength between the substrate and the copper film is reduced. This is because

(作 用) ポリイミドの原料モノマーは蒸発し、蒸発した該モノ
マーは基板上で蒸着重合し前駆体のポリアミド酸薄膜を
形成する。また、銅材料は蒸着法またはスパッタ法によ
り基板上に前記ポリアミド酸薄膜を介して銅膜を形成す
る。また、基板と銅膜との間のポリアミド酸薄膜は加熱
されてイミド化し、ポリイミド接着層を形成する。この
ポリアミド酸薄膜がイミド化する際、銅との界面で化学
結合が生じる。
(Operation) The raw material monomer of the polyimide evaporates, and the evaporated monomer is vapor-deposited and polymerized on the substrate to form a precursor polyamic acid thin film. The copper material forms a copper film on the substrate via the polyamic acid thin film by a vapor deposition method or a sputtering method. Further, the polyamic acid thin film between the substrate and the copper film is heated to be imidized to form a polyimide adhesive layer. When this polyamic acid thin film is imidized, a chemical bond is formed at the interface with copper.

(実施例) 以下添付図面に従って本発明の実施例について説明す
る。
Embodiment An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明方法を実施する装置の1例を示すもの
で、図示例装置では銅膜を蒸発法により形成するもので
ある。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, in which a copper film is formed by an evaporation method.

図中、1は真空処理室を示す。該真空処理室1内を外
部の真空ポンプその他の真空排気系2に接続すると共
に、真空処理室1内の上方に送出ローラー3と巻取ロー
ラー4とを配置し、両ローラー3,4間にポリアミド酸の
薄膜および銅膜を形成せしめるべき長尺の基板5を張架
し、該基板5を送出ローラー3側から巻取ローラー4側
(矢印X方向)に移動出来るようにした。
In the drawing, reference numeral 1 denotes a vacuum processing chamber. The inside of the vacuum processing chamber 1 is connected to an external vacuum pump or other vacuum evacuation system 2, and a delivery roller 3 and a take-up roller 4 are arranged above the vacuum processing chamber 1. A long substrate 5 on which a polyamic acid thin film and a copper film were to be formed was stretched, and the substrate 5 could be moved from the delivery roller 3 side to the winding roller 4 side (in the direction of arrow X).

また、真空処理室1内の下方の該基板5の通過する位
置にポリアミド酸の原料モノマーAとBを蒸発させるニ
ッケルメッキを内壁に施した鋼製の蒸発源6,6と、該蒸
発源6内の原料モノマーを加熱するヒーター7,7を備え
る原料モノマー蒸発装置8と、銅膜の原料Cを電子銃9
の電子ビームEBで蒸発させる蒸発源10を備える銅蒸発装
置11を配置した。
Further, steel evaporation sources 6, 6 having nickel plating on the inner wall thereof for evaporating the raw materials A and B of polyamic acid at a position in the vacuum processing chamber 1 where the substrate 5 passes, A raw material monomer evaporator 8 having heaters 7 and 7 for heating the raw material monomer therein;
A copper evaporator 11 having an evaporation source 10 for evaporating with the electron beam EB was disposed.

また、前記銅蒸発装置11の上方に基板5の前面に近接
して1対のローラー12,13で移動自在の銅膜パターンの
マスク14を備えるパターン形成装置15を配置した。
Further, a pattern forming apparatus 15 having a copper film pattern mask 14 movable by a pair of rollers 12 and 13 is disposed above the copper evaporator 11 and close to the front surface of the substrate 5.

また、真空処理室1内に基板5の通過する位置に基板
5に蒸着、重合したポリアミド酸をイミド化させてポリ
イミドとするヒーター16を備える加熱装置17を配置し
た。
Further, in the vacuum processing chamber 1, a heating device 17 including a heater 16 which is a polyimide obtained by imidizing and polymerizing a polyamic acid deposited on the substrate 5 and disposed at a position where the substrate 5 passes is disposed.

図中、18は基板5上へポリアミド酸薄膜の形成用ドラ
ム、19は該ポリアミド酸薄膜上への銅膜の形成用ドラ
ム、20は両蒸発源6,6の上方に配置したシャッター、21
は両蒸発源6,6間に設けた仕切板、22は蒸発源10の上方
に配置したシャッター、23は基板5の移動を安定させる
ローラーを示す。
In the figure, 18 is a drum for forming a polyamic acid thin film on the substrate 5, 19 is a drum for forming a copper film on the polyamic acid thin film, 20 is a shutter disposed above both evaporation sources 6, 6, 21
Denotes a partition plate provided between the evaporation sources 6, 6, 22 denotes a shutter disposed above the evaporation source 10, and 23 denotes a roller for stabilizing the movement of the substrate 5.

次に前記装置を用いてプリント基板の製造方法の具体
的実施例を説明する。
Next, a specific embodiment of a method of manufacturing a printed circuit board using the above-described apparatus will be described.

先ず、厚さ25μm、幅250mm、長さ600mのポリイミド
フィルム(デュポン社製、商品名KAPTON)を真空中で10
0℃の熱処理を施して脱ガスして長尺の基板5を用意し
た。
First, a polyimide film (manufactured by DuPont, trade name: KAPTON) having a thickness of 25 μm, a width of 250 mm, and a length of 600 m was vacuumed for 10 minutes.
A long substrate 5 was prepared by performing a heat treatment at 0 ° C. and degassing.

次にこの長尺の基板5を真空処理室1内の送出ローラ
ー3と巻取ローラー4に夫々取り付けして両ローラー3,
4間に張架し、モーター(図示せず)により基板5を送
出ローラー3側より各ドラム18,19および各ローラー23
を経て巻取ローラー4側に移動するようにした。
Next, the long substrate 5 is attached to the delivery roller 3 and the take-up roller 4 in the vacuum processing chamber 1, respectively.
4 and the substrate 5 is driven by a motor (not shown) from the delivery roller 3 side to each of the drums 18, 19 and each roller 23.
And then to the take-up roller 4 side.

続いて原料モノマー蒸発装置8の蒸発源6,6の一方に
原料モノマーAとしてピロメリット酸二無水物と、他方
に原料モノマーBとしてジアミノプロピルテトラメチル
ジシロキサンを、また銅蒸発装置11の蒸発源10に銅膜の
原料Cとして純度99.9%の銅材を夫々充填した後、各蒸
発装置8,11の夫々のシャッター20,22を閉じた状態で真
空処理室1内を真空排気系2を介して1×10-5Torrに設
定した。
Subsequently, pyromellitic dianhydride as the raw material monomer A, diaminopropyltetramethyldisiloxane as the raw material monomer B on one of the evaporation sources 6, 6 of the raw material monomer evaporator 8, and the evaporation source of the copper evaporator 11 10 is filled with copper material having a purity of 99.9% as a raw material C for a copper film, and then the shutters 20 and 22 of the evaporators 8 and 11 are closed. To 1 × 10 -5 Torr.

次に蒸発モニター(図示せず)で蒸発源6,6からの各
原料モノマーA,Bの蒸発両を測定しながらヒーター7,7に
よってピロメリット酸二無水物を温度180±1℃に、ま
たジアミノプロピルテトラメチルジシロキサンを温度45
±1℃に、また原料Cを電子銃9により発生する電子ビ
ームEBで夫々加熱した。
Next, pyromellitic dianhydride was heated to 180 ± 1 ° C. by heaters 7 and 7 while measuring both evaporation of the raw material monomers A and B from the evaporation sources 6 and 6 with an evaporation monitor (not shown). Diaminopropyltetramethyldisiloxane at a temperature of 45
The material C was heated to ± 1 ° C. and the electron beam EB generated by the electron gun 9, respectively.

次いで、原料モノマーA,Bが所定温度に達して所要の
蒸発量が得られた時点でシャッター20を開き、送出ロー
ラー3から巻取ローラー4に移動速度10/分で移動する
基板5上に原料モノマーA,Bを100Å/分の析出速度で蒸
着、重合させて前駆体である厚さ300Åのポリアミド酸
薄膜Pを連続状に形成した。尚、該蒸着、重合中におけ
る真空度は5×10-5Torrとした。
Next, when the raw material monomers A and B reach a predetermined temperature and a required amount of evaporation is obtained, the shutter 20 is opened, and the raw material is placed on the substrate 5 moving from the feed roller 3 to the winding roller 4 at a moving speed of 10 / min. Monomers A and B were vapor-deposited and polymerized at a deposition rate of 100 ° / min to continuously form a 300 ° -thick polyamic acid thin film P as a precursor. The degree of vacuum during the vapor deposition and polymerization was 5 × 10 −5 Torr.

続いて基板5が前記速度で前記ポリアミド酸蒸発装置
8より移動し、銅蒸発装置11に到達した時点でシャッタ
ー22を開き、移動中の基板5上にパターン形成装置15の
マスク14を通して連続的に蒸着させて厚さ0.5μmの所
望形状のパターンを有する銅膜Fを前記ポリアミド酸薄
膜Pを介して形成した。尚、該蒸着中における真空度は
1×10-6Torrとした。
Subsequently, the substrate 5 is moved from the polyamic acid evaporator 8 at the above-mentioned speed, and when reaching the copper evaporator 11, the shutter 22 is opened, and the substrate 5 is continuously moved on the moving substrate 5 through the mask 14 of the pattern forming device 15. By vapor deposition, a copper film F having a pattern of a desired shape having a thickness of 0.5 μm was formed via the polyamic acid thin film P. The degree of vacuum during the deposition was 1 × 10 −6 Torr.

次にポリアミド酸薄膜Pと銅膜Fが形成された基板5
が前記速度で前記銅蒸発装置11より移動し、加熱装置17
内を通過中にヒーター16でポリアミド酸薄膜Pに温度30
0±10℃で加熱処理を施しながら順次イミド化させてポ
リイミドから成る接着層Sを連続状に形成した。尚、該
加熱中における真空度は1×10-5rrとした。
Next, the substrate 5 on which the polyamic acid thin film P and the copper film F are formed
Moves from the copper evaporator 11 at the above speed, and the heating device 17
While passing through the inside, the temperature of the polyamic acid thin film P is
The adhesive layer S made of polyimide was continuously formed by imidization sequentially while performing heat treatment at 0 ± 10 ° C. The degree of vacuum during the heating was 1 × 10 −5 rr.

そして、第2図示のように基板5上にポリイミドから
成る接着層Sを介して銅膜Fを一体に形成したプリント
基板24を巻取ローラー4に長尺に連続状に巻き取った。
Then, as shown in FIG. 2, a printed circuit board 24 integrally formed with a copper film F on a substrate 5 via an adhesive layer S made of polyimide was wound around the winding roller 4 in a long continuous manner.

このようにして作成されたプリント基板24の室温(25
℃)、温度150℃、温度250℃の各温度における基板5と
銅膜Fの引きはがし強さを調べたところ、表に示すよう
な結果が得られた。
The room temperature of the printed circuit board 24 (25
° C), the peel strength between the substrate 5 and the copper film F at the respective temperatures of 150 ° C and 250 ° C was examined, and the results shown in the table were obtained.

尚、各温度における引きはがし強さは引っ張り試験法
により求めた。
The peel strength at each temperature was determined by a tensile test.

前記実施例と比較するために、比較例1として厚さ25
μmのポリミイドフィルム上にアクリル系接着剤を塗布
した後、厚さ10μmの銅箔を接着させてプリント基板を
作成し、該プリント基板の室温(25℃)、温度150℃、
温度250℃の各温度における基板と銅箔の引きはがし強
さを前記実施例と同様の方法により調べ、その結果を表
に示す。
For comparison with the above embodiment, the thickness of the comparative example 1 was 25 mm.
After applying an acrylic adhesive on a μm polyimide film, a 10 μm-thick copper foil is adhered to form a printed circuit board. The printed circuit board has a room temperature (25 ° C.), a temperature of 150 ° C.,
The peel strength between the substrate and the copper foil at each temperature of 250 ° C. was examined by the same method as in the above-mentioned example, and the results are shown in the table.

また、比較例2として厚さ25μmのポリミイドフィル
ム上に直接厚さ0.5μmの銅膜を蒸着法により蒸着させ
てプリント基板を作成し、該プリント基板の室温(25
℃)、温度150℃、温度250℃の各温度における基板と銅
膜の引きはがし強さを前記実施例と同様の方法により調
べ、その結果を示す。
Further, as Comparative Example 2, a 0.5 μm-thick copper film was directly deposited on a 25 μm-thick polyimide film by an evaporation method to prepare a printed circuit board, and the room temperature (25 ° C.)
° C), the peel strength of the substrate and the copper film at each of the temperatures of 150 ° C and 250 ° C were examined by the same method as in the above-mentioned Example, and the results are shown.

表から明らかなように、本発明実施例の方法で作成さ
れたプリント基板は比較例1,2に比して温度150℃、250
℃の高温において引きはがし強さが著しく向上したこと
が認められた。
As is clear from the table, the printed circuit board prepared by the method of the present invention has a temperature of 150 ° C.
It was observed that the peel strength was significantly improved at a high temperature of ° C.

また、本発明実施例の基板から銅膜を引きはがした後
のポリイミド接着層を調べたところ何らふくれは認めら
れなかった。
Further, when the polyimide adhesive layer after peeling the copper film from the substrate of the example of the present invention was examined, no blister was observed.

本発明における銅膜の形成は前記蒸着に限定されるも
のではなく、イオンプレーティング法や、スパッタ法に
よりポリアミド酸薄膜上に銅膜を形成させるようにして
もよい。
The formation of the copper film in the present invention is not limited to the vapor deposition, and the copper film may be formed on the polyamic acid thin film by an ion plating method or a sputtering method.

尚、図示装置のように銅蒸発装置11上方であって、基
板の直前に移動自在に銅膜のパターン形状のマスク14を
備えるパターン形成装置15を配置すれば、基板5上に銅
膜Fは所望のパターン形状に蒸着させることが出来るか
ら、その後のエッチング工程(回路作成工程)が不要と
なって生産性が向上するばかりではなく、パターン形状
が同一或いは異なったプリント基板を連続的に容易に製
造することが出来る。
If a pattern forming apparatus 15 having a mask 14 having a copper film pattern shape is disposed above the copper evaporating apparatus 11 and immediately before the substrate as in the illustrated apparatus, the copper film F is formed on the substrate 5. Since a desired pattern shape can be deposited, a subsequent etching step (circuit forming step) is not required, and not only productivity is improved, but also a printed circuit board having the same or different pattern shape can be continuously and easily formed. Can be manufactured.

また、図示装置では原料モノマー蒸発装置8と、銅蒸
発装置11と、加熱装置17を一つの真空処理室内に配置す
るようにしたが、原料モノマー蒸発装置8と、銅蒸発装
置11と、加熱装置17を夫々別個とし、各装置毎に真空排
気系を設置するようにしてもよいし、或いは例えば原料
モノマー蒸発装置8と、銅蒸発装置11を一つの真空処理
室内に配置し、残りの加熱装置17を別個の真空処理室内
に配置するようにしてもよい。このようにすれば、各装
置内での真空度を任意に設定することが出来、各工程毎
の真空度の調整が不要となって、基板上へのポリアミド
酸薄膜および銅膜の形成、ポリアミド酸薄膜への加熱イ
ミド化を連続的に迅速に行える。
In the illustrated apparatus, the raw material monomer evaporator 8, the copper evaporator 11, and the heating device 17 are arranged in one vacuum processing chamber, but the raw material monomer evaporator 8, the copper evaporator 11, the heating device 17 may be provided separately, and a vacuum exhaust system may be provided for each apparatus. Alternatively, for example, the raw material monomer evaporator 8 and the copper evaporator 11 may be disposed in one vacuum processing chamber, and the remaining heating apparatus may be provided. 17 may be arranged in a separate vacuum processing chamber. In this way, the degree of vacuum in each device can be set arbitrarily, and it is not necessary to adjust the degree of vacuum in each process. The heat imidization into an acid thin film can be continuously and rapidly performed.

(発明の効果) このように本発明によるときは、基板と銅膜との間に
形成されたポリアミド酸薄膜はイミド化される際に銅と
の界面で化学結合が生じて、基板と銅膜との間に耐熱性
と接着性に優れたポリイミド接着層が形成されるから、
高温における引きはがし強さの向上したプリント基板を
容易に製造することが出来る効果を有する。
(Effect of the Invention) As described above, according to the present invention, when the polyamic acid thin film formed between the substrate and the copper film is imidized, a chemical bond occurs at the interface with copper, and the substrate and the copper film are formed. Since a polyimide adhesive layer with excellent heat resistance and adhesiveness is formed between
This has the effect that a printed circuit board with improved peel strength at high temperatures can be easily manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法を実施するための装置の1例の要部
截断面図、第2図は本発明方法で作成されたプリント基
板の截断面図である。 5……基板 24……プリント基板 A,B……ポリイミド原料モノマー C……銅材料 F……銅膜 P……ポリアミド酸薄膜 S……ポリイミド接着層
FIG. 1 is a sectional view of an essential part of an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a sectional view of a printed circuit board produced by the method of the present invention. 5 ... substrate 24 ... printed circuit board A, B ... polyimide raw material monomer C ... copper material F ... copper film P ... polyamide acid thin film S ... polyimide adhesive layer

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ポリイミドフィルムから成る基板上にポリ
イミドの原料モノマーを蒸着、重合させてポリアミド酸
薄膜を形成し、次いで該薄膜上に蒸着法またはスパッタ
法により銅膜を形成した後、加熱してポリアミド酸薄膜
にイミド化処理を施すことを特徴とするプリント基板の
製造方法。
1. A polyamic acid thin film is formed by depositing and polymerizing a raw material monomer of polyimide on a substrate made of a polyimide film, and then a copper film is formed on the thin film by an evaporation method or a sputtering method, and then heated. A method for producing a printed circuit board, comprising imidizing a polyamic acid thin film.
JP30609690A 1990-11-14 1990-11-14 Printed circuit board manufacturing method Expired - Fee Related JP2932397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30609690A JP2932397B2 (en) 1990-11-14 1990-11-14 Printed circuit board manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30609690A JP2932397B2 (en) 1990-11-14 1990-11-14 Printed circuit board manufacturing method

Publications (2)

Publication Number Publication Date
JPH04179296A JPH04179296A (en) 1992-06-25
JP2932397B2 true JP2932397B2 (en) 1999-08-09

Family

ID=17952989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30609690A Expired - Fee Related JP2932397B2 (en) 1990-11-14 1990-11-14 Printed circuit board manufacturing method

Country Status (1)

Country Link
JP (1) JP2932397B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489034B1 (en) * 2000-02-08 2002-12-03 Gould Electronics Inc. Method of forming chromium coated copper for printed circuit boards
JP2001261867A (en) * 2000-03-14 2001-09-26 Dainippon Printing Co Ltd Continuous deposition polymerization process
WO2002094558A1 (en) 2001-05-24 2002-11-28 Toray Industries, Inc. Heat-resistant resin film with metal layer and wiring board, and method for manufacturing them
CN112877650A (en) * 2021-01-06 2021-06-01 慧迈材料科技(广东)有限公司 Preparation method of polyimide evaporation film

Also Published As

Publication number Publication date
JPH04179296A (en) 1992-06-25

Similar Documents

Publication Publication Date Title
JP3173511B2 (en) Adhesive-free flexible laminate and method for producing adhesive-free flexible laminate
JP5552811B2 (en) Polyimide film and wiring board
JPH09136378A (en) Copper thin film board and printed wiring board
JP2932397B2 (en) Printed circuit board manufacturing method
US4802967A (en) Surface treatment of polymers
JP3766453B2 (en) Transparent conductive film and method for producing the same
US5316802A (en) Method of forming copper film on substrate
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
JPH046791B2 (en)
JP7285431B2 (en) Vacuum deposition apparatus and vacuum deposition method
JP3751805B2 (en) Method for forming metal thin film
EP0570618A1 (en) Film forming method and apparatus
JPS61261322A (en) Formation of synthetic resin film
JPS60197730A (en) Formation of polyimide film
JPH01214096A (en) Manufacture of flexible printed circuit board
US5496772A (en) Method of manufacturing film carrier type substrate
JPH0445259A (en) Film forming device
US3912462A (en) Selective dimensional control of fine wire mesh
JPH0523005B2 (en)
KR20200138000A (en) Vacuum deposition apparatus and vacuum deposition method
JPH01147055A (en) Manufacture of metal-coated plastic film
JPH02209797A (en) Manufacture of flexible printed circuit board
JP2002222836A (en) Laminated belt for tab, its manufacturing method, printed wiring board made thereof, and semiconductor device
JPH01111397A (en) Flexible printed circuit board
JPH048507B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090528

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees