JPH0523005B2 - - Google Patents

Info

Publication number
JPH0523005B2
JPH0523005B2 JP14591784A JP14591784A JPH0523005B2 JP H0523005 B2 JPH0523005 B2 JP H0523005B2 JP 14591784 A JP14591784 A JP 14591784A JP 14591784 A JP14591784 A JP 14591784A JP H0523005 B2 JPH0523005 B2 JP H0523005B2
Authority
JP
Japan
Prior art keywords
film
metal
thickness
etching
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14591784A
Other languages
Japanese (ja)
Other versions
JPS6127012A (en
Inventor
Masao Horiguchi
Akio Nojiri
Nobumitsu Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP14591784A priority Critical patent/JPS6127012A/en
Publication of JPS6127012A publication Critical patent/JPS6127012A/en
Publication of JPH0523005B2 publication Critical patent/JPH0523005B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、テープ電線の製造方法に係り、特に
基体プラスチツクフイルムに強固に金属が蒸着さ
れた可撓性を有するテープ状又はシート状の電線
の製造方法に関するものである。 従来この種のテープ電線、つまりテープ状又は
シート状の電気回路は、(イ)テープに薄い銅箔を張
り付けてエツチングにより電気回路を形成して得
られるか、又は(ロ)フラツトな金属導体をシート等
に整列させて張りつけて得ていた。しかしなが
ら、この場合に用いられる導体の厚さは18μ以上
となり、それよりも薄い導体をフイルムやシート
に張り付けてエツチングすることは、取扱上、限
界があつた。 最近、エレクトロニツクスの分野において、極
めて厚さの薄いテープ状又はシート状の電気回路
が要望されている。発明者らはこの要望に答える
べく鋭意研究の結果、本発明方法を確立したもの
である。 すなわち、本発明方法は、(い)普通の方法で
プラスチツクフイルムに金属をいちいち張り付け
る必要がなく、(ろ)極薄なテープ電線が容易に
得られる。(は)特別な前処理によつて、基材と
金属との密着力に優れ、さらに、(に)連続生産
を可能にして、いわゆるハンドリング上の問題を
解消したテープ電線の製造方法を提供しようとす
るものである。 本発明によるテープ電線の製造方法は、10-1
ール(Torr)以下の圧力下で、プラスチツクフ
イルムに加熱による脱ガス処理を行ない、次いで
ボンバードでフイルム表面にミクロエツチング処
理を行なつた後、蒸発粒子エネルギーが1eV以上
の物理的蒸着手段により、前記フイルム表面に金
属を300Å〜50000Åの厚さに付着せしめ、次いで
エツチングにより導体部を形成することを特徴と
する。 本発明における基体となる前記プラスチツク
は、例えばポリエステル、ポリアミド、ポリイミ
ド、ポリアミドイミド、ポリカーボネート、フツ
素系樹脂、ポリオレフインその他等の熱可塑性や
熱硬化性の樹脂などが使用できるが、特にフツ素
系樹脂が好ましい。 なお基体フイルムの厚さは2〜100μで、通常
は5〜50μ程度のものが用いられる。 本発明における物理的蒸着手段とは、通常の真
空蒸着、スパツタリング、イオンプレーテイング
等の化学変化を伴なわない各種の金属蒸気による
コーテイング方法を指すもので通常10-3Torr以
下の真空度の真空中で何等かの手段により金属を
原子状態あるいは分子状態でイオン化しつつ、あ
るいは原子のままで飛ばすことにより基体フイル
ム上にコーテイングするものである。蒸発粒子の
エネルギーは方法により異なるが、1eV以上とす
るとスパツタリング法、イオンプレーテイング法
等が相当する方法となる。 これらの蒸着方法において、本発明では、プラ
スチツクフイルム上に金属を強い付着力をもつて
付着させるため粒子の有するエネルギーが大きい
ことが望ましいのはそのためである。しかし、さ
らに、基体の清浄化が極めて重要である。物理的
蒸着手段に先立ち基体に金属を密着性よく付着さ
せるには、先ず、10-1Torr以下の真空の圧力下
で、基体フイルムを加熱することにより、基体フ
イルム中の水分、ガス、モノマー等を脱ガス処理
する。この時の基体フイルムの加熱温度は60℃以
上にすることが望ましく、できるだけ基体フイル
ムに影響を与えない程度に温度を高くすることが
望ましい。又、加熱時間は15秒〜5分が望まし
い。次にボンバードによりフイルム表面にミクロ
エツチング処理を行なうが、加熱脱ガス処理同
様、10-1Torr以下の真空の圧力下で、基体フイ
ルムをヘリウムアルゴンネオンやちつ素、酸素の
RFプラズマ、DCグロー放電等の1種又は2種以
上にて処理する。基体フイルムをプラズマ中に入
れると、基体フイルムの表面は電子やイオンによ
りボンバードされ、ミクロエツチングされる。こ
れによりこの基体表面に金属を蒸着せしめた時、
高い付着力を発揮できるのである。ボンバード時
間は10秒〜6分程度で、僅かな時間でも処理する
ことにより付着力は極めて高くなるものである。
特に、フツ素樹脂、例えばフツ化エチレン−プロ
ピレン共重合体(FEP)等への付着力を高める
手段として最適である。よつて本発明では、物理
的蒸着手段に先立つて、真空中で基体フイルムを
加熱脱ガス処理を行ない、次いでボンバードで基
体フイルム表面を処理し、蒸発粒子エネルギーが
1eV以上の物理的蒸着手段により基体表面に金属
を300Å〜50000Åの厚さで付着せしめるものであ
る。さらに、エツチングにより導体部を形成し、
テープ状あるいはシート状の、いわゆるテープ電
線を得るものである。前記の物理的蒸着手段によ
る金属層の厚みは300Å〜50000Åであるが、300
Å以上にするのは、導体の電気特性上からであ
り、又50000Åを越えると、歪が生じたり、屈曲
性が悪くなる。通常、金属層の厚さは500Å〜
20000Åである。 本発明における前記のエツチングとは、フイル
ム基体表面上にスパツターされた金属薄層の導体
を、必要部に残して、取り去ることを意味する。
エツチングは、通常のフオトレジストエツチング
法等によるが、導体の厚さが300Å〜50000Åのた
め、エツチング時間が短かく、微細なパターンを
形成することができる。 次に本発明をさらに実施例にて説明する。 実施例 表−1に示す基体プラスチツクフイルム(厚さ
25μ)を10-3Torrの真空槽内で、(A)シーズ・ヒー
タ加熱(100℃、2分間)、(B)DCグロー放電(2
分)、(C)は、(A)と(B)を別々に処理した後、銅をス
パツタリングすることにより2500Åの厚さに連続
的にコートした。 比較例 前記実施例と同じプラスチツクフイルムを、
10-3Torrの真空槽内で何らの前処理を施こさず
に銅をスパツタリングにより2500Åの厚さに連続
的にコートした。以上、実施例及び比較例にて得
られた銅蒸着フイルムについて第1図に示す付着
力測定方法によつて銅の密着性を測定した。その
結果を表1に示す。 なお、付着力の測定は基体であるプラスチツク
フイルム2と、この上に付着された金属の導体層
3とから成る各サンプル1の導体層3の表面にエ
ポキシセメダインによる接着層4を介して円筒棒
5を接着させ、この円筒棒5を引張り、導体層が
基体フイルムから剥がれる際の引張力(Kgf/
mm2)を測定したものである。
The present invention relates to a method for manufacturing a tape electric wire, and more particularly to a method for manufacturing a flexible tape-like or sheet-like electric wire in which a metal is firmly deposited on a base plastic film. Conventionally, this type of tape electric wire, that is, a tape-shaped or sheet-shaped electric circuit, was obtained by (a) pasting a thin copper foil on a tape and forming an electric circuit by etching, or (b) forming a flat metal conductor. They were obtained by arranging them and pasting them on sheets, etc. However, the thickness of the conductor used in this case is 18 μm or more, and there is a limit in handling when a conductor thinner than that is attached to a film or sheet for etching. Recently, in the field of electronics, there has been a demand for extremely thin tape- or sheet-shaped electrical circuits. In order to meet this demand, the inventors conducted extensive research and established the method of the present invention. That is, in the method of the present invention, (a) there is no need to attach metal to a plastic film one by one using the usual method, and (b) an extremely thin tape electric wire can be easily obtained. (2) To provide a method for manufacturing tape electric wire that has excellent adhesion between the base material and metal through special pretreatment, and that (2) enables continuous production and eliminates so-called handling problems. That is. The method for producing a tape electric wire according to the present invention involves degassing a plastic film by heating under a pressure of 10 -1 Torr or less, then micro-etching the film surface using a bombardment, and then evaporating the film. The method is characterized in that a metal is deposited on the surface of the film to a thickness of 300 Å to 50,000 Å using physical vapor deposition means with a particle energy of 1 eV or more, and then a conductor portion is formed by etching. The plastic serving as the substrate in the present invention may be a thermoplastic or thermosetting resin such as polyester, polyamide, polyimide, polyamideimide, polycarbonate, fluororesin, polyolefin, etc., but especially fluororesin. is preferred. The thickness of the base film is from 2 to 100 .mu.m, and usually about 5 to 50 .mu.m. The physical vapor deposition means in the present invention refers to coating methods using various metal vapors that do not involve chemical changes, such as ordinary vacuum vapor deposition, sputtering, and ion plating, and usually at a vacuum level of 10 -3 Torr or less. The metal is coated on the base film by ionizing the metal in the atomic or molecular state by some means, or by blowing the metal in the atomic state. The energy of the evaporated particles differs depending on the method, but if it is 1 eV or more, the sputtering method, ion plating method, etc. are equivalent methods. This is why, in these vapor deposition methods, in the present invention, it is desirable that the particles have large energy in order to deposit the metal onto the plastic film with strong adhesion. However, in addition, cleaning of the substrate is extremely important. In order to adhere metal to a substrate with good adhesion prior to physical vapor deposition, first heat the substrate film under a vacuum pressure of 10 -1 Torr or less to remove moisture, gas, monomers, etc. in the substrate film. Degassed. The heating temperature of the base film at this time is desirably 60° C. or higher, and it is desirable to raise the temperature to a degree that does not affect the base film as much as possible. Moreover, the heating time is preferably 15 seconds to 5 minutes. Next, a micro-etching process is performed on the film surface by bombardment, but as with the thermal degassing process, the base film is exposed to helium, argon, neon, nitrogen, and oxygen under a vacuum pressure of less than 10 -1 Torr.
Treatment is performed using one or more of RF plasma, DC glow discharge, etc. When the base film is placed in plasma, the surface of the base film is bombarded with electrons and ions and micro-etched. As a result, when metal is deposited on the surface of this substrate,
It can exhibit high adhesion. The bombardment time is about 10 seconds to 6 minutes, and even if the treatment is carried out for a short period of time, the adhesion becomes extremely high.
In particular, it is optimal as a means for increasing the adhesion to fluororesins such as fluorinated ethylene-propylene copolymer (FEP). Therefore, in the present invention, prior to physical vapor deposition, the base film is heated and degassed in vacuum, and then the surface of the base film is treated with bombardment to remove the energy of the evaporated particles.
Metal is deposited on the surface of a substrate to a thickness of 300 Å to 50,000 Å using physical vapor deposition means of 1 eV or higher. Furthermore, a conductor part is formed by etching,
A so-called tape electric wire in the form of a tape or sheet is obtained. The thickness of the metal layer by said physical vapor deposition means is 300 Å to 50000 Å, but 300 Å to 50000 Å.
The reason why the thickness should be more than 50,000 Å is due to the electrical characteristics of the conductor, and if it exceeds 50,000 Å, distortion may occur and flexibility may deteriorate. Usually the metal layer thickness is 500Å~
It is 20000Å. The above-mentioned etching in the present invention means removing the thin metal layer conductor sputtered on the surface of the film substrate, leaving it in the necessary areas.
Etching is carried out by the usual photoresist etching method, but since the thickness of the conductor is 300 Å to 50,000 Å, the etching time is short and a fine pattern can be formed. Next, the present invention will be further explained with reference to Examples. Example Base plastic film (thickness
25μ) in a 10 -3 Torr vacuum chamber, (A) heating with a sheathed heater (100℃, 2 minutes), (B) DC glow discharge (2 minutes),
(C) was coated continuously to a thickness of 2500 Å by sputtering copper after processing (A) and (B) separately. Comparative Example The same plastic film as in the above example was used.
Copper was continuously coated to a thickness of 2500 Å by sputtering in a vacuum chamber at 10 -3 Torr without any pretreatment. The copper adhesion of the copper-deposited films obtained in Examples and Comparative Examples was measured by the adhesion measurement method shown in FIG. 1. The results are shown in Table 1. The adhesion force was measured by attaching a cylindrical rod to the surface of the conductor layer 3 of each sample 1 consisting of a plastic film 2 as a base and a metal conductor layer 3 adhered thereon via an adhesive layer 4 made of epoxycemedine. 5 and pull this cylindrical rod 5 to obtain the tensile force (Kgf/
mm 2 ).

【表】 以上実施例から明らかなように、真空中で加
熱、及びボンバードで処理し、金属を付着せしめ
ることにより基体フイルムと蒸着金属間が極めて
高い付着力を有するテープ電線が得られる。
[Table] As is clear from the above examples, by heating and bombarding in vacuum to adhere metal, a tape electric wire having extremely high adhesion between the base film and the deposited metal can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法にて行つた蒸着金属とプラ
スチツクフイルムとの付着力測定方法を示す説明
略図である。 1……サンプル、2……プラスチツクフイル
ム、3……金属の導体層、4……接着剤層、5…
…円筒棒。
FIG. 1 is a schematic explanatory diagram showing a method for measuring the adhesion force between a vapor-deposited metal and a plastic film, which is carried out according to the method of the present invention. DESCRIPTION OF SYMBOLS 1...Sample, 2...Plastic film, 3...Metal conductor layer, 4...Adhesive layer, 5...
...Cylindrical rod.

Claims (1)

【特許請求の範囲】[Claims] 1 10-1Torr以下の圧力下で、プラスチツクフ
イルムに加熱による脱ガス処理を行ない、次いで
ボンバードでフイルム表面にミクロエツチング処
理を行なつた後、蒸発粒子エネルギーが1eV以上
の物理的蒸着手段により前記フイルム表面の金属
を300Å〜50000Åの厚さに付着せしめ、次いでエ
ツチングにより導体部を形成することを特徴とす
るテープ電線の製造方法。
The plastic film is degassed by heating under a pressure of 1 10 -1 Torr or less, and then the film surface is micro-etched using a bombardment. A method for manufacturing a tape electric wire, which comprises depositing metal on the surface of a film to a thickness of 300 Å to 50,000 Å, and then forming a conductor portion by etching.
JP14591784A 1984-07-16 1984-07-16 Method of producing taped wire Granted JPS6127012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14591784A JPS6127012A (en) 1984-07-16 1984-07-16 Method of producing taped wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14591784A JPS6127012A (en) 1984-07-16 1984-07-16 Method of producing taped wire

Publications (2)

Publication Number Publication Date
JPS6127012A JPS6127012A (en) 1986-02-06
JPH0523005B2 true JPH0523005B2 (en) 1993-03-31

Family

ID=15396061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14591784A Granted JPS6127012A (en) 1984-07-16 1984-07-16 Method of producing taped wire

Country Status (1)

Country Link
JP (1) JPS6127012A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01214096A (en) * 1988-02-22 1989-08-28 Furukawa Electric Co Ltd:The Manufacture of flexible printed circuit board

Also Published As

Publication number Publication date
JPS6127012A (en) 1986-02-06

Similar Documents

Publication Publication Date Title
US4091138A (en) Insulating film, sheet, or plate material with metallic coating and method for manufacturing same
EP0840676B1 (en) Adhesiveless flexible laminate and process for making adhesiveless flexible laminate
US4720401A (en) Enhanced adhesion between metals and polymers
US6284329B1 (en) Method of forming adherent metal components on a polyimide substrate
US4865711A (en) Surface treatment of polymers
US4917963A (en) Graded composition primer layer
US20060191783A1 (en) Method and apparatus for forming adherent metal film on a polymer substrate
US6060175A (en) Metal-film laminate resistant to delamination
US4802967A (en) Surface treatment of polymers
CA1276088C (en) Enhanced adhesion between metals and polymers
US6787441B1 (en) Method for pretreating a polymer substrate using an ion beam for subsequent deposition of indium oxide or indium tin oxide
US4913762A (en) Surface treatment of polymers for bonding by applying a carbon layer with sputtering
US5484517A (en) Method of forming multi-element thin hot film sensors on polyimide film
JPH05259596A (en) Board for flexible printed wiring
JPH0983134A (en) Flexible printed circuit board
JPH0523005B2 (en)
US3374111A (en) Method for depositing thin dielectric polymer films
JP3286467B2 (en) Method for producing composite film of polyimide film and metal thin film
US5496772A (en) Method of manufacturing film carrier type substrate
JPS63107088A (en) Manufacture of copper-plated film
JP2932397B2 (en) Printed circuit board manufacturing method
JPH01214096A (en) Manufacture of flexible printed circuit board
JPH07122133B2 (en) Ion plating method and apparatus
JPS6164011A (en) Method of producing tape wire
JPS63270455A (en) Manufacture of metal-coated plastic film