JP2928058B2 - Method for manufacturing solid-state imaging device - Google Patents

Method for manufacturing solid-state imaging device

Info

Publication number
JP2928058B2
JP2928058B2 JP5175377A JP17537793A JP2928058B2 JP 2928058 B2 JP2928058 B2 JP 2928058B2 JP 5175377 A JP5175377 A JP 5175377A JP 17537793 A JP17537793 A JP 17537793A JP 2928058 B2 JP2928058 B2 JP 2928058B2
Authority
JP
Japan
Prior art keywords
film
forming
oxide film
silicon
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5175377A
Other languages
Japanese (ja)
Other versions
JPH0730091A (en
Inventor
浩司 田中
茂則 松本
俊寛 栗山
伸一 内田
Original Assignee
松下電子工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 松下電子工業株式会社 filed Critical 松下電子工業株式会社
Priority to JP5175377A priority Critical patent/JP2928058B2/en
Publication of JPH0730091A publication Critical patent/JPH0730091A/en
Application granted granted Critical
Publication of JP2928058B2 publication Critical patent/JP2928058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION
【0001】[0001]
【産業上の利用分野】この発明は、固体撮像装置の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a solid-state imaging device.
【0002】[0002]
【従来の技術】図4は従来の固体撮像装置の単位画素部
の断面模式図である。図4を用いて従来の固体撮像装置
の製造方法を説明する。図4(a)において、P型シリ
コン基板1の表面に、PN接合の光電変換装置(以下フ
ォトダイオードと記す)の電荷蓄積部のN型不純物領域
2と、電荷転送部のN型不純物領域3とを形成する。さ
らに、P型シリコン基板1上に、ゲート絶縁膜として第
1シリコン酸化膜4とシリコン窒化膜5と第2シリコン
酸化膜6を形成し、その上に電荷転送電極の多結晶シリ
コン膜7を形成する。
2. Description of the Related Art FIG. 4 is a schematic sectional view of a unit pixel portion of a conventional solid-state imaging device. A conventional method for manufacturing a solid-state imaging device will be described with reference to FIG. In FIG. 4A, on the surface of a P-type silicon substrate 1, an N-type impurity region 2 of a charge storage portion of a PN junction photoelectric conversion device (hereinafter referred to as a photodiode) and an N-type impurity region 3 of a charge transfer portion are provided. And are formed. Further, a first silicon oxide film 4, a silicon nitride film 5, and a second silicon oxide film 6 are formed as gate insulating films on the P-type silicon substrate 1, and a polycrystalline silicon film 7 of a charge transfer electrode is formed thereon. I do.
【0003】つぎに図4(b)に示すように、多結晶シ
リコン膜7はフォトレジスト膜8で選択ドライエッチン
グされパターン形成される。この時、フォトダイオード
上方の絶縁膜は、ドライエッチングでシリコン酸化膜4
までエッチングされる。エッチング時間やエッチング選
択比の変動に応じて、エッチングで残ったゲート絶縁膜
の膜厚dは変動する。また、ウェーハ面内で膜厚dは1
5nm程度のばらつきが発生し、ロット間ではさらにば
らつきが大きくなる。
[0003] Next, as shown in FIG. 4 (b), the polycrystalline silicon film 7 is selectively dry-etched with a photoresist film 8 to form a pattern. At this time, the insulating film above the photodiode is subjected to dry etching to form a silicon oxide film 4.
Etched until. The thickness d of the gate insulating film remaining after etching varies according to the variation of the etching time and the etching selectivity. The film thickness d is 1 in the wafer plane.
A variation of about 5 nm occurs, and the variation further increases between lots.
【0004】つぎに図4(c)に示すように、ゲート絶
縁膜の残膜dを介してボロン(B+)イオン注入によ
り、フォトダイオード部の直上にP++型の埋め込み領域
(不純物領域)9を形成する。膜厚dが薄くなるとP++
型の埋め込み領域の深さeは深くなる。LSS理論によ
ると、シリコン酸化膜へのボロン注入では、膜厚10n
m増加分はイオン注入エネルギー5KeV増加分に相当
にする。
Next, as shown in FIG. 4C, a P ++ type buried region (impurity region) is formed immediately above the photodiode portion by boron (B + ) ion implantation through the remaining film d of the gate insulating film. ) 9 is formed. When the film thickness d becomes thin, P ++
The depth e of the mold buried region is increased. According to the LSS theory, when boron is implanted into a silicon oxide film,
The increase in m is equivalent to the increase in ion implantation energy of 5 KeV.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、従来の
固体撮像装置の製造方法においては、多結晶シリコン膜
7のドライエッチング量の変動により、フォトダイオー
ド上方のゲート絶縁膜の厚さが変動する。このフォトダ
イオード上のシリコン酸化膜4の厚さが変動することよ
り、フォトダイオード上部のボロン注入によるP++型埋
め込み領域9の濃度に差が生じる。P++型埋め込み領域
9は、N型フォトダイオードの表面近傍を非空乏化領域
にして、表面再結合を抑制するために形成している。し
たがって、P++型埋め込み領域9の濃度の薄い領域では
空乏化領域が拡大し、シリコン表面まで到達するとシリ
コン界面準位の影響を受けて暗電流が生じる。暗電流は
雑音信号となりS/N比を劣化させると同時に、出力画
像では白いキズのように見えて著しく画質を損なうもの
である。このようにP++型埋め込み領域9の濃度は、ボ
ロン注入前の絶縁膜の厚さにより大きく影響を受け、さ
らには暗電流の発生原因となる。
However, in the conventional method of manufacturing a solid-state imaging device, the thickness of the gate insulating film above the photodiode changes due to the change in the amount of dry etching of the polycrystalline silicon film 7. The variation in the thickness of the silicon oxide film 4 on the photodiode causes a difference in the concentration of the P ++ type buried region 9 due to boron implantation above the photodiode. The P ++ type buried region 9 is formed to suppress the surface recombination by making the vicinity of the surface of the N-type photodiode a non-depleted region. Therefore, the depletion region expands in the region where the concentration of the P ++ type buried region 9 is low, and when reaching the silicon surface, a dark current is generated under the influence of the silicon interface state. The dark current becomes a noise signal, deteriorating the S / N ratio, and at the same time, looks like white flaws in the output image and significantly impairs the image quality. As described above, the concentration of the P ++ type buried region 9 is greatly affected by the thickness of the insulating film before boron is implanted, and further causes dark current.
【0006】この発明の目的は、暗電流が極めて低下し
た固体撮像装置の製造方法を提供することである。
An object of the present invention is to provide a method for manufacturing a solid-state imaging device in which dark current is extremely reduced.
【0007】[0007]
【課題を解決するための手段】請求項1の固体撮像装置
の製造方法は、一導電型の半導体基板の主表面に他導電
型の光電変換装置の電荷蓄積部を形成し、半導体基板上
に第1シリコン酸化膜とシリコン窒化膜と第2シリコン
酸化膜を順に成長させて絶縁膜を形成し、絶縁膜上に電
荷転送電極を形成し、フォトレジストをマスクとして電
荷転送電極および第2シリコン酸化膜を選択的にエッチ
ングし、電荷転送電極を熱酸化し、電荷蓄積部の上方の
シリコン窒化膜をウェットエッチで除去し、電荷蓄積部
の直上に一導電型の不純物領域をイオン注入により形成
するものである。
According to a first aspect of the present invention, there is provided a method of manufacturing a solid-state imaging device, comprising: forming a charge accumulation portion of a photoelectric conversion device of another conductivity type on a main surface of a semiconductor substrate of one conductivity type; A first silicon oxide film, a silicon nitride film, and a second silicon oxide film are sequentially grown to form an insulating film, a charge transfer electrode is formed on the insulating film, and the charge transfer electrode and the second silicon oxide film are formed using a photoresist as a mask. The film is selectively etched, the charge transfer electrode is thermally oxidized, the silicon nitride film above the charge storage portion is removed by wet etching, and an impurity region of one conductivity type is formed immediately above the charge storage portion by ion implantation. Things.
【0008】請求項2の固体撮像装置の製造方法は、一
導電型の半導体基板の主表面に他導電型の光電変換装置
の電荷蓄積部を形成し、半導体基板上に第1シリコン酸
化膜とシリコン窒化膜と第2シリコン酸化膜を順に成長
させて絶縁膜を形成し、絶縁膜上に電荷転送電極を形成
し、フォトレジストをマスクとして電荷転送電極と第2
シリコン酸化膜およびシリコン窒化膜を選択的にエッチ
ングし、電荷蓄積部の上方の第1シリコン酸化膜をウェ
ットエッチで除去し、半導体基板の電荷蓄積部の上方に
シリコン酸化膜を形成し、電荷蓄積部の直上に一導電型
の不純物領域をイオン注入により形成するものである。
According to a second aspect of the present invention, there is provided a method for manufacturing a solid-state imaging device, wherein a charge accumulation portion of a photoelectric conversion device of another conductivity type is formed on a main surface of a semiconductor substrate of one conductivity type, and a first silicon oxide film is formed on the semiconductor substrate. A silicon nitride film and a second silicon oxide film are sequentially grown to form an insulating film, a charge transfer electrode is formed on the insulating film, and the charge transfer electrode and the second
The silicon oxide film and the silicon nitride film are selectively etched, the first silicon oxide film above the charge storage portion is removed by wet etching, and a silicon oxide film is formed above the charge storage portion of the semiconductor substrate to store the charge. An impurity region of one conductivity type is formed immediately above the portion by ion implantation.
【0009】請求項3の固体撮像装置の製造方法は、一
導電型の半導体基板の主表面に他導電型の光電変換装置
の電荷蓄積部を形成し、半導体基板上に第1シリコン酸
化膜とシリコン窒化膜と第2シリコン酸化膜を順に成長
させて絶縁膜を形成し、絶縁膜上に電荷転送電極を形成
し、フォトレジストをマスクとしてシリコン窒化膜の膜
厚の90%以上を残して電荷転送電極および第2シリコ
ン酸化膜を選択的にエッチングし、電荷蓄積部の直上に
一導電型の不純物領域をイオン注入により形成し、電荷
蓄積部の上方以外の領域に遮光膜を形成し、電荷蓄積部
の上方のシリコン窒化膜をエッチングするものである。
According to a third aspect of the present invention, there is provided a method for manufacturing a solid-state imaging device, wherein a charge accumulation portion of a photoelectric conversion device of another conductivity type is formed on a main surface of a semiconductor substrate of one conductivity type, and a first silicon oxide film is formed on the semiconductor substrate. A silicon nitride film and a second silicon oxide film are sequentially grown to form an insulating film, a charge transfer electrode is formed on the insulating film, and a charge is left using a photoresist as a mask while leaving 90% or more of the thickness of the silicon nitride film. The transfer electrode and the second silicon oxide film are selectively etched, an impurity region of one conductivity type is formed immediately above the charge storage portion by ion implantation, and a light shielding film is formed in a region other than above the charge storage portion. This is for etching the silicon nitride film above the accumulation part.
【0010】[0010]
【作用】請求項1の固体撮像装置の製造方法によれば、
光電変換装置の電荷蓄積部に一導電型の不純物領域をイ
オン注入する際、半導体基板上に第1シリコン酸化膜が
完全な状態で残っており、フォトダイオード上部の絶縁
膜の膜厚が均一となり、電荷蓄積部に形成する不純物領
域の濃度も均一となる。
According to the method for manufacturing a solid-state imaging device of the first aspect,
When the impurity region of one conductivity type is ion-implanted into the charge storage portion of the photoelectric conversion device, the first silicon oxide film remains in a complete state on the semiconductor substrate, and the thickness of the insulating film on the photodiode becomes uniform. Also, the concentration of the impurity region formed in the charge storage portion becomes uniform.
【0011】請求項2の固体撮像装置の製造方法によれ
ば、光電変換装置の電荷蓄積部に一導電型の不純物領域
をイオン注入する際、半導体基板上にシリコン酸化膜が
形成されており、フォトダイオード上部の絶縁膜の膜厚
が均一となり、電荷蓄積部に形成する不純物領域の濃度
も均一となる。請求項3の固体撮像装置の製造方法によ
れば、光電変換装置の電荷蓄積部に一導電型の不純物領
域をイオン注入する際、半導体基板上にシリコン窒化膜
が完全な状態で残っており、フォトダイオード上部の絶
縁膜の膜厚が均一となり、電荷蓄積部に形成する不純物
領域の濃度も均一となる。
According to the method of manufacturing a solid-state image pickup device of the present invention, a silicon oxide film is formed on a semiconductor substrate when ion-implanting an impurity region of one conductivity type into a charge storage portion of a photoelectric conversion device. The thickness of the insulating film over the photodiode becomes uniform, and the concentration of the impurity region formed in the charge storage portion becomes uniform. According to the method of manufacturing a solid-state imaging device according to claim 3, when the impurity region of one conductivity type is ion-implanted into the charge storage portion of the photoelectric conversion device, the silicon nitride film remains in a perfect state on the semiconductor substrate, The thickness of the insulating film over the photodiode becomes uniform, and the concentration of the impurity region formed in the charge storage portion becomes uniform.
【0012】[0012]
【実施例】【Example】
第1の実施例 この発明の第1の実施例の固体撮像装置の製造方法を、
図1に基づいて説明する。図1(a)において、P型シ
リコン基板(半導体基板)1の表面に、PN接合のフォ
トダイオードの電荷蓄積部のN型不純物領域2と、電荷
転送部のN型不純物領域3とを形成する。さらに、P型
シリコン基板1上に、ゲート絶縁膜として第1シリコン
酸化膜4とシリコン窒化膜5と第2シリコン酸化膜6を
形成し、その上に電荷転送電極の多結晶シリコン膜7を
形成する。
First Embodiment A method for manufacturing a solid-state imaging device according to a first embodiment of the present invention will be described.
A description will be given based on FIG. In FIG. 1A, an N-type impurity region 2 of a charge storage portion of a photodiode having a PN junction and an N-type impurity region 3 of a charge transfer portion are formed on a surface of a P-type silicon substrate (semiconductor substrate) 1. . Further, a first silicon oxide film 4, a silicon nitride film 5, and a second silicon oxide film 6 are formed as gate insulating films on the P-type silicon substrate 1, and a polycrystalline silicon film 7 of a charge transfer electrode is formed thereon. I do.
【0013】つぎに図1(b)に示すように、多結晶シ
リコン膜7をフォトレジスト膜8によりドライエッチン
グし、シリコン窒化膜5は完全に除去しないで一部を残
す。さらに図1(c)に示すように、多結晶シリコン膜
7上に熱酸化膜10を成長させた後に、フォトダイオー
ド上のシリコン窒化膜5をウェットエッチで除去する。
実施例ではシリコン窒化膜5の除去にリン酸を用いた。
リン酸はシリコン酸化膜との選択比が非常に大きいた
め、エッチング時に下地のシリコン酸化膜4はほとんど
エッチングされない。また、シリコン酸化膜4はシリコ
ン基板1に直接成長させているため、シリコン酸化膜4
の膜厚aはウェーハ面内での均一性が5nm程度と良好
である。
Next, as shown in FIG. 1B, the polycrystalline silicon film 7 is dry-etched with a photoresist film 8 to leave a part of the silicon nitride film 5 without completely removing it. Further, as shown in FIG. 1C, after growing a thermal oxide film 10 on the polycrystalline silicon film 7, the silicon nitride film 5 on the photodiode is removed by wet etching.
In the embodiment, phosphoric acid was used to remove the silicon nitride film 5.
Since phosphoric acid has a very high selectivity with respect to the silicon oxide film, the underlying silicon oxide film 4 is hardly etched during etching. Since the silicon oxide film 4 is grown directly on the silicon substrate 1, the silicon oxide film 4
Has a good uniformity in the wafer surface of about 5 nm.
【0014】つぎに図1(d)に示すように、シリコン
酸化膜4の膜厚aを介して、ボロン(B+ )イオン注入
によりフォトダイオード部上にP++型の埋め込み領域
(不純物領域)9を形成する。膜厚aはウェーハ面内で
の均一性が5nm程度と良好であるため、P++型の埋め
込み領域9の濃度の均一性も、ドライエッチの残膜d
(図4参照)と比較して約1/3以下にばらつきが低減
される。
Next, as shown in FIG. 1D, a P ++ type buried region (impurity region) is formed on the photodiode portion by boron (B + ) ion implantation through the thickness a of the silicon oxide film 4. ) 9 is formed. Since the uniformity of the film thickness a in the wafer surface is as good as about 5 nm, the uniformity of the concentration of the P ++ type buried region 9 is also improved by the residual film d of the dry etching.
The variation is reduced to about 1/3 or less as compared with (see FIG. 4).
【0015】第2の実施例 この発明の第2の実施例の固体撮像装置の製造方法を、
図2を用いて説明する。図2(a)は図1(a)と同様
である。図2(b)において、多結晶シリコン膜7はフ
ォトレジスト膜8で選択ドライエッチングされパターン
形成される。この時、フォトダイオード上方の絶縁膜
は、ドライエッチングでシリコン酸化膜4までエッチン
グされる。
Second Embodiment A method of manufacturing a solid-state imaging device according to a second embodiment of the present invention will be described.
This will be described with reference to FIG. FIG. 2A is the same as FIG. 1A. In FIG. 2B, the polycrystalline silicon film 7 is selectively dry-etched with a photoresist film 8 to form a pattern. At this time, the insulating film above the photodiode is etched down to the silicon oxide film 4 by dry etching.
【0016】つぎに図2(c)に示すように、多結晶シ
リコン膜7のドライエッチで生じたシリコン酸化膜4の
残膜b(図2(b))を、ウェットエッチにより完全に
除去する。実施例ではシリコン酸化膜4をバッファード
弗酸でエッチングした。つぎに図2(d)に示すよう
に、再びシリコン基板1上にシリコン酸化膜11を成長
させる。この時のシリコン酸化膜11の厚さcは、シリ
コン基板1に直接シリコン酸化膜11を成長させるた
め、ウェーハ面内での均一性が5nm程度と良好であ
る。その後、シリコン酸化膜11を介してボロン
(B+ )イオン注入により、フォトダイオード部の直上
にP++型の埋め込み領域9を形成する。
Next, as shown in FIG. 2 (c), the remaining film b (FIG. 2 (b)) of the silicon oxide film 4 generated by dry etching of the polycrystalline silicon film 7 is completely removed by wet etching. . In this embodiment, the silicon oxide film 4 is etched with buffered hydrofluoric acid. Next, as shown in FIG. 2D, a silicon oxide film 11 is grown on the silicon substrate 1 again. Since the silicon oxide film 11 is grown directly on the silicon substrate 1, the thickness c of the silicon oxide film 11 at this time is as good as about 5 nm in uniformity on the wafer surface. After that, a P ++ type buried region 9 is formed immediately above the photodiode portion by boron (B + ) ion implantation through the silicon oxide film 11.
【0017】第3の実施例 この発明の第3の実施例の固体撮像装置の製造方法を、
図3を用いて説明する。この実施例は、第1の実施例で
多結晶シリコン膜7のエッチング時に、シリコン窒化膜
5の膜厚の90%以上を残した場合の固体撮像装置の製
造方法である。図3(a)は図1(a)と同様である。
図3(b)の多結晶シリコン膜7のドライエッチング時
に、HBr系のポリシリコンエッチングガスを用いて、
シリコン酸化膜に対するシリコン窒化膜の選択比を上
げ、シリコン窒化膜5の膜厚の90%以上を残す。
Third Embodiment A method of manufacturing a solid-state imaging device according to a third embodiment of the present invention will be described.
This will be described with reference to FIG. This embodiment is a method of manufacturing a solid-state imaging device in a case where 90% or more of the thickness of the silicon nitride film 5 is left when the polycrystalline silicon film 7 is etched in the first embodiment. FIG. 3A is the same as FIG. 1A.
At the time of dry etching of the polycrystalline silicon film 7 in FIG. 3B, an HBr-based polysilicon etching gas is used.
The selectivity of the silicon nitride film to the silicon oxide film is increased, and 90% or more of the thickness of the silicon nitride film 5 is left.
【0018】つぎに図3(c)に示すように、第1シリ
コン酸化膜4とシリコン窒化膜5を介してボロン
(B+ )イオン注入により、フォトダイオード部上にP
++型の埋め込み領域9を形成する。さらに図3(d)に
示すように、絶縁層間膜12を形成後、アルミニウム遮
光膜13を形成し、ドライエッチングで光の入射開口の
パターンを形成する。同時にシリコン窒化膜5もエッチ
ングにより除去することにより、シリコン窒化膜5によ
る透過光の減少も解消される。
Next, as shown in FIG. 3C, boron (B.sup. + ) Ions are implanted through the first silicon oxide film 4 and the silicon nitride film 5 so that P
The ++ type buried region 9 is formed. Further, as shown in FIG. 3D, after forming the insulating interlayer film 12, an aluminum light-shielding film 13 is formed, and a pattern of a light incident opening is formed by dry etching. At the same time, by removing the silicon nitride film 5 by etching, the decrease in transmitted light due to the silicon nitride film 5 is also eliminated.
【0019】[0019]
【発明の効果】この発明の固体撮像装置の製造方法によ
ると、フォトダイオード上部における絶縁膜の膜厚を均
一に形成したので、フォトダイオードのP++型の埋め込
み領域の濃度も均一となり、フォトダイオードの表面再
結合を抑制し、暗電流を低減することができるという効
果が得られる。
According to the method of manufacturing a solid-state imaging device of the present invention, the thickness of the insulating film on the photodiode is made uniform, so that the concentration of the P ++ type buried region of the photodiode becomes uniform, The effect of suppressing the surface recombination of the diode and reducing the dark current can be obtained.
【図面の簡単な説明】[Brief description of the drawings]
【図1】この発明の第1の実施例における固体撮像装置
の製造工程断面図である。
FIG. 1 is a cross-sectional view illustrating a manufacturing process of a solid-state imaging device according to a first embodiment of the present invention.
【図2】この発明の第2の実施例における固体撮像装置
の製造工程断面図である。
FIG. 2 is a sectional view illustrating a manufacturing process of a solid-state imaging device according to a second embodiment of the present invention;
【図3】この発明の第3の実施例における固体撮像装置
の製造工程断面図である。
FIG. 3 is a cross-sectional view illustrating a manufacturing process of a solid-state imaging device according to a third embodiment of the present invention.
【図4】従来例における固体撮像装置の製造工程断面図
である。
FIG. 4 is a cross-sectional view illustrating a manufacturing process of a conventional solid-state imaging device.
【符号の説明】[Explanation of symbols]
1 P型シリコン基板(半導体基板) 2 N型不純物領域(光電変換装置の電荷蓄積部) 4 第1シリコン酸化膜 5 シリコン窒化膜 6 第2シリコン酸化膜 7 多結晶シリコン膜(電荷転送電極) 8 フォトレジスト膜 9 P++型の埋め込み領域(不純物領域) 10,11 シリコン酸化膜(熱酸化膜) 12 絶縁層間膜 13 アルミニウム遮光膜REFERENCE SIGNS LIST 1 P-type silicon substrate (semiconductor substrate) 2 N-type impurity region (charge storage portion of photoelectric conversion device) 4 first silicon oxide film 5 silicon nitride film 6 second silicon oxide film 7 polycrystalline silicon film (charge transfer electrode) 8 Photoresist film 9 P ++ type buried region (impurity region) 10, 11 Silicon oxide film (thermal oxide film) 12 Insulating interlayer film 13 Aluminum light shielding film
───────────────────────────────────────────────────── フロントページの続き (72)発明者 内田 伸一 大阪府門真市大字門真1006番地 松下電 子工業株式会社内 (56)参考文献 特開 平5−6992(JP,A) 特開 平4−56273(JP,A) 特開 平4−335572(JP,A) 特開 平3−181171(JP,A) 特開 昭60−28270(JP,A) 特開 平4−263469(JP,A) 特開 平4−286361(JP,A) (58)調査した分野(Int.Cl.6,DB名) H01L 27/148 H01L 21/265 H01L 21/306 H01L 31/10 ────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinichi Uchida 1006 Kazuma Kadoma, Kazuma, Osaka Prefecture Matsushita Electronics Corporation (56) References JP-A-5-6992 (JP, A) JP-A-4- 56273 (JP, A) JP-A-4-335572 (JP, A) JP-A-3-181171 (JP, A) JP-A-60-28270 (JP, A) JP-A-4-263469 (JP, A) JP-A-4-286361 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) H01L 27/148 H01L 21/265 H01L 21/306 H01L 31/10

Claims (3)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】 一導電型の半導体基板の主表面に他導電
    型の光電変換装置の電荷蓄積部を形成する工程と、前記
    半導体基板上に第1シリコン酸化膜とシリコン窒化膜と
    第2シリコン酸化膜を順に成長させて絶縁膜を形成する
    工程と、前記絶縁膜上に電荷転送電極を形成する工程
    と、フォトレジストをマスクとして前記電荷転送電極お
    よび前記第2シリコン酸化膜を選択的にエッチングする
    工程と、前記電荷転送電極を熱酸化する工程と、前記電
    荷蓄積部の上方の前記シリコン窒化膜をウェットエッチ
    で除去する工程と、前記電荷蓄積部の直上に一導電型の
    不純物領域をイオン注入により形成する工程とを含む固
    体撮像装置の製造方法。
    1. A step of forming a charge storage portion of a photoelectric conversion device of another conductivity type on a main surface of a semiconductor substrate of one conductivity type, and forming a first silicon oxide film, a silicon nitride film, and a second silicon film on the semiconductor substrate. Forming an insulating film by sequentially growing an oxide film; forming a charge transfer electrode on the insulating film; and selectively etching the charge transfer electrode and the second silicon oxide film using a photoresist as a mask. Performing the step of thermally oxidizing the charge transfer electrode; removing the silicon nitride film above the charge storage section by wet etching; and ion-implanting one conductivity type impurity region immediately above the charge storage section. A method of manufacturing a solid-state imaging device including a step of forming by injection.
  2. 【請求項2】 一導電型の半導体基板の主表面に他導電
    型の光電変換装置の電荷蓄積部を形成する工程と、前記
    半導体基板上に第1シリコン酸化膜とシリコン窒化膜と
    第2シリコン酸化膜を順に成長させて絶縁膜を形成する
    工程と、前記絶縁膜上に電荷転送電極を形成する工程
    と、フォトレジストをマスクとして前記電荷転送電極と
    前記第2シリコン酸化膜および前記シリコン窒化膜を選
    択的にエッチングする工程と、前記電荷蓄積部の上方の
    前記第1シリコン酸化膜をウェットエッチで除去する工
    程と、前記半導体基板の前記電荷蓄積部の上方にシリコ
    ン酸化膜を形成する工程と、前記電荷蓄積部の直上に一
    導電型の不純物領域をイオン注入により形成する工程と
    を含む固体撮像装置の製造方法。
    2. A step of forming a charge accumulation portion of a photoelectric conversion device of another conductivity type on a main surface of a semiconductor substrate of one conductivity type, and a first silicon oxide film, a silicon nitride film, and a second silicon film on the semiconductor substrate. Forming an insulating film by sequentially growing an oxide film, forming a charge transfer electrode on the insulating film, using the photoresist as a mask, the charge transfer electrode, the second silicon oxide film, and the silicon nitride film. Selectively etching, the step of removing the first silicon oxide film above the charge storage section by wet etching, and the step of forming a silicon oxide film above the charge storage section of the semiconductor substrate. Forming an impurity region of one conductivity type directly above the charge storage portion by ion implantation.
  3. 【請求項3】 一導電型の半導体基板の主表面に他導電
    型の光電変換装置の電荷蓄積部を形成する工程と、前記
    半導体基板上に第1シリコン酸化膜とシリコン窒化膜と
    第2シリコン酸化膜を順に成長させて絶縁膜を形成する
    工程と、前記絶縁膜上に電荷転送電極を形成する工程
    と、フォトレジストをマスクとして前記シリコン窒化膜
    の膜厚の90%以上を残して前記電荷転送電極および前
    記第2シリコン酸化膜を選択的にエッチングする工程
    と、前記電荷蓄積部の直上に一導電型の不純物領域をイ
    オン注入により形成する工程と、前記電荷蓄積部の上方
    以外の領域に遮光膜を形成する工程と、前記電荷蓄積部
    の上方の前記シリコン窒化膜をエッチングする工程とを
    含む固体撮像装置の製造方法。
    3. A step of forming a charge storage portion of a photoelectric conversion device of another conductivity type on a main surface of a semiconductor substrate of one conductivity type, and forming a first silicon oxide film, a silicon nitride film, and a second silicon film on the semiconductor substrate. Forming an insulating film by sequentially growing an oxide film, forming a charge transfer electrode on the insulating film, and using a photoresist as a mask to leave 90% or more of the thickness of the silicon nitride film. A step of selectively etching the transfer electrode and the second silicon oxide film; a step of forming an impurity region of one conductivity type immediately above the charge storage portion by ion implantation; and a step of forming an impurity region other than above the charge storage portion. A method for manufacturing a solid-state imaging device, comprising: forming a light-shielding film; and etching the silicon nitride film above the charge storage portion.
JP5175377A 1993-07-15 1993-07-15 Method for manufacturing solid-state imaging device Expired - Fee Related JP2928058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5175377A JP2928058B2 (en) 1993-07-15 1993-07-15 Method for manufacturing solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5175377A JP2928058B2 (en) 1993-07-15 1993-07-15 Method for manufacturing solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH0730091A JPH0730091A (en) 1995-01-31
JP2928058B2 true JP2928058B2 (en) 1999-07-28

Family

ID=15995047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5175377A Expired - Fee Related JP2928058B2 (en) 1993-07-15 1993-07-15 Method for manufacturing solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2928058B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5779918A (en) * 1996-02-14 1998-07-14 Denso Corporation Method for manufacturing a photo-sensor
US6306676B1 (en) * 1996-04-04 2001-10-23 Eastman Kodak Company Method of making self-aligned, high-enegry implanted photodiode for solid-state image sensors
KR20020058458A (en) * 2000-12-30 2002-07-12 박종섭 Image sensor capable of increasing effective area of photodiode and method for fabricating the same
KR20040008923A (en) * 2002-07-19 2004-01-31 주식회사 하이닉스반도체 CMOS image sensor with improved dead zone characteristics and the method of fabracating thereof
JP4004484B2 (en) 2004-03-31 2007-11-07 シャープ株式会社 Manufacturing method of solid-state imaging device
JP5500876B2 (en) * 2009-06-08 2014-05-21 キヤノン株式会社 Method for manufacturing photoelectric conversion device
JP2011171575A (en) * 2010-02-19 2011-09-01 Panasonic Corp Solid-state image pickup element and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0730091A (en) 1995-01-31

Similar Documents

Publication Publication Date Title
US8629023B2 (en) CMOS image sensor having double gate insulator therein and method for manufacturing the same
US7910426B2 (en) Pixel and imager device having high-k dielectrics in isolation structures
US20080057612A1 (en) Method for adding an implant at the shallow trench isolation corner in a semiconductor substrate
US8440540B2 (en) Method for doping a selected portion of a device
JP2929419B2 (en) Method for manufacturing semiconductor device
JPH05206434A (en) Solid state image sensor and fabrication thereof
JP2006019752A (en) Cmos image sensor and method of manufacturing same
JP2928058B2 (en) Method for manufacturing solid-state imaging device
KR960014448B1 (en) Method of isolation of a semiconductor device
US7537971B2 (en) Method for fabricating CMOS image sensor
JP2970307B2 (en) Method for manufacturing solid-state imaging device
KR20060132180A (en) Cmos image sensor and method for fabricating of the same
US6982187B2 (en) Methods of making shallow trench-type pixels for CMOS image sensors
JPH05226631A (en) Manufacture of ccd image element
KR20060000322A (en) Cmos image sensor and method for manufacturing thereof
KR20040031119A (en) Image Sensor Having Isolator
US20060186442A1 (en) Image sensor and method for fabricating the same
JP2795241B2 (en) Solid-state imaging device and method of manufacturing the same
US20100015745A1 (en) Method and structure for a cmos image sensor using a triple gate process
CN214542237U (en) Image sensor with a plurality of pixels
JP2959504B2 (en) Method for manufacturing solid-state imaging device
US20190333962A1 (en) Image sensors and forming methods of the same
JPH06268243A (en) Manufacture of semiconductor energy detector
KR0140634B1 (en) The fabrication method of solid state image sensing device
KR100716914B1 (en) Fabrication method of cmos image sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090514

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100514

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110514

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120514

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees