JP2924714B2 - Distributed feedback semiconductor laser device - Google Patents

Distributed feedback semiconductor laser device

Info

Publication number
JP2924714B2
JP2924714B2 JP7151968A JP15196895A JP2924714B2 JP 2924714 B2 JP2924714 B2 JP 2924714B2 JP 7151968 A JP7151968 A JP 7151968A JP 15196895 A JP15196895 A JP 15196895A JP 2924714 B2 JP2924714 B2 JP 2924714B2
Authority
JP
Japan
Prior art keywords
diffraction grating
laser device
semiconductor laser
distributed feedback
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7151968A
Other languages
Japanese (ja)
Other versions
JPH098396A (en
Inventor
一誠 向原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP7151968A priority Critical patent/JP2924714B2/en
Publication of JPH098396A publication Critical patent/JPH098396A/en
Application granted granted Critical
Publication of JP2924714B2 publication Critical patent/JP2924714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分布帰還型半導体レー
ザー素子に関し、特に電流と光出力との直線的な関係を
実現する回折格子を設けた分布帰還型半導体レーザ素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a distributed feedback semiconductor laser device, and more particularly to a distributed feedback semiconductor laser device provided with a diffraction grating for realizing a linear relationship between current and light output.

【0002】[0002]

【従来技術】分布帰還型(以下「DFB」とする)半導
体レーザは、内部に備えた回折格子の波長選択性により
単一波長が発振でき、特に近年、長距離高速光通信の光
源として用いられてきている。
2. Description of the Related Art Distributed feedback (hereinafter referred to as "DFB") semiconductor lasers can oscillate at a single wavelength due to the wavelength selectivity of a diffraction grating provided therein, and have recently been used as a light source for long-distance high-speed optical communication. Is coming.

【0003】図に、従来のDFB半導体レーザ素子の
製造方法の一例を示す。
FIG. 5 shows an example of a method of manufacturing a conventional DFB semiconductor laser device.

【0004】まず、n型InP基板1上に干渉露光、エ
ッチングの技術を用い回折格子15を形成し、回折格子
15に接してn−InGaAsPガイド層3、InGa
AsP活性層4、p−InGaAsPガイド層5を順次
成長させる。エッチング、及びp−InP、n−InP
の結晶成長により光閉じ込め・電流ブロック構造を形成
した後、p−InP層6、p+ −InGaAsP層7を
結晶成長させ、p側電極8、n型電極9を形成する。そ
して劈開、反射コーティング、無反射コーティング等を
行なって共振器を形成し、DFB半導体レーザ素子を形
成していた。
First, a diffraction grating 15 is formed on an n-type InP substrate 1 by using interference exposure and etching techniques, and the n-InGaAsP guide layer 3 and the InGa
An AsP active layer 4 and a p-InGaAsP guide layer 5 are sequentially grown. Etching, p-InP, n-InP
After the light confinement / current block structure is formed by crystal growth of p, the p-InP layer 6 and the p + -InGaAsP layer 7 are crystal-grown to form the p-side electrode 8 and the n-type electrode 9. Cleavage, reflection coating, non-reflection coating, and the like are performed to form a resonator, thereby forming a DFB semiconductor laser device.

【0005】又、図(a)〜()に他の従来例(EL
ECTRONICS LETTERS 25,220-221(1989))を示す。
[0005] Also, another conventional (EL in Figure 6 (a) ~ (c)
ECTRONICS LETTERS 25, 220-221 (1989)).

【0006】これはまず、図(a)のようにp−In
P基板16に接してp−InPガイド層17、InGa
AsP活性層18、n−InPバリア層19、n−In
GaAsPガイド層20を結晶成長させた後、図
(b)のようにエッチングによりn−InGaAsPガ
イド層20を回折格子21に加工する。次に図(c)
のようにn−InPクラッド層22を成長させ、エッチ
ングによってメサ構造の形成を行ない、電流ブロック構
造を形成してDFB半導体レーザ素子を製造していた。
[0006] First, figure6As shown in FIG.
P-InP guide layer 17 in contact with P substrate 16;
AsP active layer 18, n-InP barrier layer 19, n-In
After crystal growth of the GaAsP guide layer 20, FIG.6
The n-InGaAsP gas is etched by etching as shown in FIG.
The id layer 20 is processed into a diffraction grating 21. Next figure6(C)
The n-InP cladding layer 22 is grown as shown in FIG.
The mesa structure is formed by
A DFB semiconductor laser device was manufactured by forming a structure.

【0007】DFB半導体レーザは、特に光CATV等
のアナログ変調で用いた場合、加えられた電流値と光出
力値の関係が直線的な関係であることが非常に重要とな
り、所定の条件を満たすように製造しなければならな
い。DFB半導体レーザの電流と光出力特性(I−L特
性)を決定する主な要因としては、共振器長Lと回折格
子に対する光結合係数κの積κLが知られている。又光
結合係数κは、回折格子と回折格子に接する物質すなわ
ち図においては、n型InP基板1とn−InGaA
sPガイド層3との間の等価屈折率の差Δnに比例し、
κ=π・Δn/λB で表される。ここで、πは円周率、
λB はブラッグ波長である。更に、等価屈折率差Δnと
結合係数κは、回折格子の高さaと関係があり、回折格
子の高さがほぼ400Å以下のときは、結合係数κと回
折格子の高さaは比例関係を有することがわかってい
る。
When a DFB semiconductor laser is used in analog modulation such as optical CATV, it is very important that the relationship between the applied current value and the optical output value is a linear relationship, and satisfies predetermined conditions. Must be manufactured as follows. As a main factor that determines the current and optical output characteristics (IL characteristics) of a DFB semiconductor laser, a product κL of a cavity length L and an optical coupling coefficient κ with respect to a diffraction grating is known. The Matahikari coupling coefficient kappa, in substance, or 5 in contact with the diffraction grating and the diffraction grating, n-type InP substrate 1 and the n-InGaAs
proportional to the difference Δn in equivalent refractive index between the sP guide layer 3 and
κ = π · Δn / λ B Where π is the pi,
λ B is the Bragg wavelength. Further, the equivalent refractive index difference Δn and the coupling coefficient κ have a relationship with the height a of the diffraction grating. When the height of the diffraction grating is approximately 400 ° or less, the coupling coefficient κ and the height a of the diffraction grating are proportional. Is known to have

【0008】[0008]

【発明が解決しようとする課題】光出力特性(I−L特
性)が良好なDFB半導体レーザ素子を製造するために
は、従来からκLの値を0.8〜1に制御するのが最適
とされている。例えば、共振器長Lが300μmの光C
ATV用1.3μm帯アナログDFB半導体レーザの場
合、光結合効率κが27〜33cm-1となることが望ま
れ、回折格子を挟むn−InP基板1と1.15μm組
成のInGaAsPとの等価屈折率差Δnは1.1×1
-3〜1.5×10-3の範囲に抑える必要があった。そ
して、この場合、回折格子の高さaが約200Åとな
り、その時の精度は±25Åが必要とされる。ところ
が、回折格子15に接してn−InGaAsPガイド層
3を結晶成長させるとき、回折格子15の形状が変化さ
れるため、実際の回折格子15の高さの制御精度は±5
0Å程度が限界で、高さを200±25Åの精度で形成
にすることは極めて困難であり、良好なI−L特性が得
られず製品歩留が40%となっていた。
In order to manufacture a DFB semiconductor laser device having good light output characteristics (IL characteristics), it is conventionally optimal to control the value of κL to 0.8 to 1. Have been. For example, light C having a cavity length L of 300 μm
In the case of a 1.3 μm band analog DFB semiconductor laser for ATV, it is desired that the optical coupling efficiency κ is 27 to 33 cm −1 , and the equivalent refraction between the n-InP substrate 1 sandwiching the diffraction grating and InGaAsP having a composition of 1.15 μm. The rate difference Δn is 1.1 × 1
It was necessary to keep the range of 0 -3 to 1.5 × 10 -3 . In this case, the height a of the diffraction grating is about 200 °, and the accuracy at that time needs to be ± 25 °. However, when the n-InGaAsP guide layer 3 is grown in crystal contact with the diffraction grating 15, the actual control accuracy of the height of the diffraction grating 15 is ± 5 because the shape of the diffraction grating 15 is changed.
The limit is about 0 °, and it is extremely difficult to form the height with an accuracy of 200 ± 25 °. Good IL characteristics were not obtained, and the product yield was 40%.

【0009】又、レーザの出力を上昇させるため例えば
共振器長Lを300μmから600μmに長くした場
合、κLを0.8〜1に保持するためにはκを27〜3
3cm-1から14〜17cm-1に低減させる必要があ
る。κの値を低く設定する手段としては、n−InGa
AsPガイド層3の波長組成を1.15μmのものより
低くする方法が考えられるが、n−InGaAsPガイ
ド層3に波長組成の低いものを用いると、結晶成長時に
AsとAs+Pの元素比にばらつきが生じ、波長の変化
が急峻となり、波長の制御性が悪化してしまう。
When the cavity length L is increased from 300 μm to 600 μm in order to increase the output of the laser, for example, to maintain κL at 0.8 to 1, κ should be 27 to 3
It is necessary to reduce the 3 cm -1 to 14~17cm -1. As means for setting the value of κ low, n-InGa
Although a method of reducing the wavelength composition of the AsP guide layer 3 to be lower than that of 1.15 μm is conceivable, when the n-InGaAsP guide layer 3 having a low wavelength composition is used, the element ratio of As and As + P varies during crystal growth. As a result, the change in the wavelength becomes sharp and the controllability of the wavelength deteriorates.

【0010】ここで製品歩留率80%を確保するために
は回折格子15を挟むn−InP基板1とn−InGa
AsPガイド層3との等価屈折率差Δnを0.58×1
-3〜0.7×1 -3に制御する必要があるが、実際に
は等価屈折率の差Δnは0.4×10-3〜0.9×10
-3程度に制御するのが限界であり、直線的なI−L特性
を有するDFB半導体レーザの製造効率が悪く、歩留が
非常に低かった。
Here, in order to secure a product yield of 80%, the n-InP substrate 1 and the n-InGa
The equivalent refractive index difference Δn from the AsP guide layer 3 is 0.58 × 1
0 -3 ~0.7 × 1 0 -3 must be controlled to, the actual difference Δn of the effective refractive index in the 0.4 × 10 -3 ~0.9 × 10
The limit is to control to about -3 , and the manufacturing efficiency of the DFB semiconductor laser having the linear IL characteristic is poor, and the yield is very low.

【0011】更に、図7に示すように実際のκLの測定
値は、計算によって求められた値とかなりずれが生じて
おり、計算通りにκが制御できるとはいえなかった。
Further, as shown in FIG. 7, the actual measured value of κL is considerably different from the value obtained by calculation, and it cannot be said that κ can be controlled as calculated.

【0012】本発明は、回折格子の実効的な屈折率を変
更させることに着目して、上記課題を解決し、光出力特
性が良好なDFB半導体レーザ素子を製造できる確率を
高め、製品歩留の高いDFB半導体レーザ素子を提供す
ることを目的とする。
The present invention solves the above-mentioned problems by focusing on changing the effective refractive index of the diffraction grating, increases the probability of manufacturing a DFB semiconductor laser device having good light output characteristics, and increases the product yield. It is an object of the present invention to provide a DFB semiconductor laser device having a high density.

【0013】[0013]

【課題を解決するための手段】本発明の半導体レーザ素
子は、上記課題を解決するため、回折格子を活性層に沿
った方向に備えた分布帰還型半導体レーザ素子におい
て、前記回折格子を挟んでいる半導体物質を互いに異な
る屈折率の半導体物質とし、かつ前記回折格子を挟む互
いに屈折率の異なる2種類の半導体物質を交互に積層さ
せた多層構造として分布帰還型半導体レーザ素子を構成
した。
According to the semiconductor laser device of the present invention, in order to solve the above problems, a diffraction grating is formed along an active layer.
In distributed feedback semiconductor laser devices with different orientations
The semiconductor materials sandwiching the diffraction grating are different from each other.
Semiconductor materials having different refractive indices, and alternately sandwiching the diffraction grating.
Two types of semiconductor materials with different refractive indexes are alternately stacked
A distributed feedback semiconductor laser device was constructed as a multilayered structure .

【0014】回折格子を構成する半導体物質が分布帰還
型レーザ素子のガイド層を形成する物質であり、該半導
体物質がそれぞれ波長組成の異なる物質として分布帰還
型半導体レーザ素子を構成した。又、分布帰還型レーザ
素子のガイド層側に位置する回折格子の頂部付近を、ガ
イド層を形成する半導体物質と構成元素の種類が同じ
で、その組成比が近似した半導体物質として分布帰還型
半導体レーザ素子を構成した。
The semiconductor material constituting the diffraction grating has distributed feedback
Forming a guide layer of a semiconductor laser device,
Distributed distribution of body substances as substances with different wavelength compositions
A semiconductor laser device was constructed. Also, distributed feedback laser
The area near the top of the diffraction grating located on the guide layer side of the device is
The same kind of semiconductor element and constituent elements
As a semiconductor material whose composition ratio is similar, distributed feedback type
A semiconductor laser device was constructed.

【0015】回折格子を挟む半導体物質の一方であっ
て、分布帰還型半導体レーザ素子の活性層の側の半導体
物質をInGaAsPとして分布帰還型半導体レーザ素
子を構成した。又、回折格子を挟む半導体物質の一方で
あって、分布帰還型半導体レーザ素子の活性層と逆の側
の半導体物質をInPとして分布帰還型半導体レーザ素
子を構成した。
One of the semiconductor materials sandwiching the diffraction grating.
The semiconductor on the active layer side of the distributed feedback semiconductor laser device.
Distributed feedback semiconductor laser element using InGaAsP as material
Composed child. Also, one of the semiconductor materials sandwiching the diffraction grating
On the side opposite to the active layer of the distributed feedback semiconductor laser device
Feedback semiconductor laser element using InP as semiconductor material
Composed child.

【0016】[0016]

【作用】回折格子が屈折率の異なる半導体物質の多層構
造から構成されていることから、形成された回折格子の
実効的な屈折率が回折格子を構成する物質の平均的な値
となり、実質的に屈折率の低い物質によって回折格子が
形成されと同様な効果を有する。したがって、本半導
体レーザ素子における回折格子が、高さの低い回折格子
と同等の性質を備えることとなり、製造上回折格子の高
さを低くすることなく実質的にその高さを低くし、かつ
高さに対する誤差も縮小されて実質的に精度を向上で
き、光出力特性が良好なDFB半導体レーザ素子が製造
される確率を高め、製品歩留の高いDFB半導体レーザ
素子を提供することができる。
Since the diffraction grating has a multilayer structure of semiconductor materials having different refractive indices, the effective refractive index of the formed diffraction grating is an average value of the materials constituting the diffraction grating, and is substantially equal to that of the diffraction grating. has the same effect as a diffraction grating by a low refractive index material is formed. Therefore, the diffraction grating in the present semiconductor laser device has the same properties as the low-height diffraction grating, and the height of the diffraction grating can be reduced substantially without reducing the height in manufacturing, and Therefore, the accuracy of the DFB semiconductor laser device can be substantially improved by reducing the error of the DFB semiconductor laser device, the probability of manufacturing a DFB semiconductor laser device having good optical output characteristics can be increased, and a DFB semiconductor laser device having a high product yield can be provided.

【0017】又、回折格子を任意の波長組成の物質を積
層させて形成したことから、平均屈折率を所望の値に形
成でき、必要なκLを得ることができ、光出力特性を良
好にできる。
Further, since the diffraction grating is formed by laminating substances having an arbitrary wavelength composition, the average refractive index can be formed to a desired value, the required κL can be obtained, and the light output characteristics can be improved. .

【0018】形成された回折格子の頂部付近の物質を、
回折格子の上に成長させる物質に近似した波長組成の物
質としたので、回折格子上に物質を成長させて形状に変
化が生じても、回折格子の特性に大きな変動をもたらす
ことがなく、安定した性能を提供できる。
The material near the top of the formed diffraction grating is
Since the material has a wavelength composition similar to the material grown on the diffraction grating, even if the material grows on the diffraction grating and the shape changes, the characteristics of the diffraction grating do not change significantly and are stable. Performance can be provided.

【0019】[0019]

【実施例】図1に、本発明にかかる分布帰還型半導体レ
ーザ素子の一実施例を示す。
FIG. 1 shows an embodiment of a distributed feedback semiconductor laser device according to the present invention.

【0020】図1の分布帰還型半導体レーザ素子は、図
に示すようにn−InP基板1とn−InGaAsPガ
イド層3の間に回折格子2を有し、n−InGaAsP
ガイド層3とp−InGaAsPガイド層5の間にIn
GaAsP活性層3を備え、p−InGaAsPガイド
層5の上にp−InP6と、p+ −InGaAsP7を
形成し、その上面にp側電極8を設け、一方n−InP
基板1側にn側電極9を設け、劈開、反射、無反射等の
処理を行なった上で構成されている。
The distributed feedback semiconductor laser device shown in FIG. 1 has a diffraction grating 2 between an n-InP substrate 1 and an n-InGaAsP guide layer 3 as shown in FIG.
In between the guide layer 3 and the p-InGaAsP guide layer 5, In
A GaAsP active layer 3 is provided, p-InP6 and p + -InGaAsP7 are formed on a p-InGaAsP guide layer 5, and a p-side electrode 8 is provided on the upper surface thereof.
An n-side electrode 9 is provided on the substrate 1 side, and is configured after processing such as cleavage, reflection, and non-reflection.

【0021】回折格子2を図2に示す。回折格子2は、
波長組成1.15μmのn−InGaAsP11と、n
−InP10とをそれぞれ約66Åずつ交互に3層積層
した多層構造となっており、高さは約400Åで、形
状、精度等は従来と同様である。
FIG. 2 shows the diffraction grating 2. The diffraction grating 2
N-InGaAsP11 having a wavelength composition of 1.15 μm;
-InP10 has a multilayer structure in which three layers are alternately laminated by about 66 ° each, and the height is about 400 °, and the shape, accuracy, and the like are the same as those in the related art.

【0022】回折格子2の製造は次のようにして行な
う。すなわち、n−InP基板1の層に波長組成1.1
5μmのn−InGaAsPを約66Å成長させ、その
上にn−InPを同様に約66Å成長させる。この作業
を3回行ないn−InGaAsPとn−InPを交互に
3層積層させる。次に、このn−InGaAsP11と
n−InP10からなる多層膜上に露光干渉作業及びエ
ッチングを行ない回折格子2を形成する。そして、上述
したように回折格子2に接してn−InGaAsPを成
長させてn−InGaAsPガイド層3を形成する。こ
のようにして高さ約400Åの回折格子2をn−InP
基板1とn−InGaAsPガイド層3の間に形成す
る。
The manufacture of the diffraction grating 2 is performed as follows. That is, the wavelength composition 1.1 is applied to the layer of the n-InP substrate 1.
5 μm n-InGaAsP is grown at about 66 °, and n-InP is grown thereon at about 66 °. This operation is performed three times, and three layers of n-InGaAsP and n-InP are alternately laminated. Next, a diffraction grating 2 is formed on the multilayer film composed of n-InGaAsP11 and n-InP10 by performing exposure interference work and etching. Then, as described above, n-InGaAsP is grown in contact with the diffraction grating 2 to form the n-InGaAsP guide layer 3. In this way, the diffraction grating 2 having a height of about 400
It is formed between the substrate 1 and the n-InGaAsP guide layer 3.

【0023】このように、回折格子2はn−InGaA
sP11とn−InP10の多層膜から形成されている
ことから、実効的な屈折率は、組成1.15μmのn−
InGaAsPとn−InPの屈折率の平均の値である
約3.28となる。この値から等価屈折率差Δnは0.
5×10-3〜1.2×10-3と計算され、従来の同様な
半導体レーザ素子の1.1×10-3〜1.5×10-3
約2分の1となる。
As described above, the diffraction grating 2 is made of n-InGaAs.
Since it is formed from a multilayer film of sP11 and n-InP10, the effective refractive index is n-type having a composition of 1.15 μm.
The average refractive index of InGaAsP and n-InP is about 3.28. From this value, the equivalent refractive index difference Δn is 0.
The calculated value is 5 × 10 −3 to 1.2 × 10 −3 , which is about one-half of 1.1 × 10 −3 to 1.5 × 10 −3 of the conventional similar semiconductor laser device.

【0024】したがって、本実施例の半導体レーザ素子
の回折格子2の高さaは実質的に約1/2となり、κを
従来と同じ25〜35cm-1とするための回折格子2の
高さを従来必要とされていた高さの約2倍の400±5
0Åで満足させることができる。これにより、回折格子
2は±25Åの精度によって形成されたものと同等とな
り、κを25〜35cm-1にし、共振器長Lが300μ
mの場合、κLを0.8〜1に確実に制御でき、製品歩
留を約80%に向上できる。
Accordingly, the height a of the diffraction grating 2 of the semiconductor laser device of the present embodiment is substantially about 1/2, and the height of the diffraction grating 2 for setting κ at 25 to 35 cm -1 which is the same as the conventional one. Is about 400 ± 5, which is about twice the height conventionally required.
0 ° can be satisfied. Thereby, the diffraction grating 2 becomes equivalent to that formed with an accuracy of ± 25 °, κ is set to 25 to 35 cm −1 , and the resonator length L is set to 300 μm.
In the case of m, κL can be reliably controlled to 0.8 to 1, and the product yield can be improved to about 80%.

【0025】(実施例2)図3は、実施例1の半導体レ
ーザ素子の共振器長Lを600μmにした場合の実施例
で、実施例1のn−InGaAsP(組成1.15μ
m)をn−InGaAsP(組成1.35μm)に置き
換えた構造となっている。すなわち、図3の回折格子2
は組成1.35μmのn−InGaAsPとn−InP
との積層構造から構成されている。したがって、回折格
子2の平均屈折率は約3.3となる。一方、共振器長L
を600μmにした場合に、κLを0.8〜1.0に制
御するには、κを14〜17cm-1に制御しなければな
らない。本実施例の場合、回折格子2の平均屈折率が約
3.3であるので、回折格子の高さを400±50Åと
すると、Δnは0.58×10-3〜0.7×10-3、κ
は14〜17cm-1となり、共振器長Lが600μmに
おいてもκLを0.8〜1.0に制御でき、I−L特性
を良好にし、不良品の発生が少なく歩留の高い分布帰還
型半導体レーザ素子を提供できる。
(Embodiment 2) FIG. 3 shows an embodiment in which the cavity length L of the semiconductor laser device of Embodiment 1 is set to 600 μm. The n-InGaAsP of Embodiment 1 (composition 1.15 μm) is used.
m) is replaced with n-InGaAsP (composition: 1.35 μm). That is, the diffraction grating 2 shown in FIG.
Represents n-InGaAsP and n-InP having a composition of 1.35 μm.
And a laminated structure. Therefore, the average refractive index of the diffraction grating 2 is about 3.3. On the other hand, the resonator length L
When is set to 600 μm, κ must be controlled to 14 to 17 cm −1 to control κL to 0.8 to 1.0. In the case of this embodiment, since the average refractive index of the diffraction grating 2 is about 3.3, when the height of the diffraction grating is 400 ± 50 °, Δn is 0.58 × 10 −3 to 0.7 × 10 −. 3 , κ
Is 14 to 17 cm -1 , the κL can be controlled to 0.8 to 1.0 even when the resonator length L is 600 μm, the IL characteristic is improved, the occurrence of defective products is small, and the distributed feedback type with high yield is achieved. A semiconductor laser device can be provided.

【0026】 (実施例3) 図4は、半導体レーザ素子の第3の実施例を示す図であ
る。この半導体レーザ素子の回折格子2は、図4に示す
ように、n−InP基板1に接して、n−InGaAs
P14(1.05μm組成)、その上にn−InP1
0、順次n−InGaAsP13(1.15μm組
成)、n−InP10、n−InGaAsP12(1.
25μm組成)をそれぞれ66Åの厚さで構成した多層
膜から形成されている。回折格子2の形成は、従来と同
様この多層膜に露光干渉技術及びエッチングを施し形成
する。そしてこの回折格子2に接して上記実施例と同様
に、n−InGaAsPガイド層3、InGaAsP活
性層4、p−InGaAsPガイド層5、p−InP層
6、p+ −InGaAsP層7を結晶成長した後、p側
電極8、n側電極9を形成して分布帰還型半導体レーザ
素子を形成した。
Embodiment 3 FIG. 4 is a view showing a third embodiment of the semiconductor laser device. As shown in FIG. 4, a diffraction grating 2 of this semiconductor laser device is in contact with an n-InP substrate 1 and is made of n-InGaAs.
P14 (1.05 μm composition), on which n-InP1
0, n-InGaAsP13 (1.15 μm composition), n-InP10, n-InGaAsP12 (1.
(Composition of 25 μm) each having a thickness of 66 °. The diffraction grating 2 is formed by subjecting the multilayer film to exposure interference technology and etching as in the conventional case. Then, in the same manner as in the above embodiment, the n-InGaAsP guide layer 3, the InGaAsP active layer 4, the p-InGaAsP guide layer 5, the p-InP layer 6, and the p + -InGaAsP layer 7 were grown in contact with the diffraction grating 2. Thereafter, a p-side electrode 8 and an n-side electrode 9 were formed to form a distributed feedback semiconductor laser device.

【0027】多層構造による回折格子2の平均屈折率は
実施例1とほぼ等しい約3.24であり、実施例1の結
果からκを25〜35cm-1に制御できる。更に、n−
InGaAsPガイド層3側の回折格子2の先端(回折
格子の山)の組成が、n−InGaAsPガイド層3の
組成に近い、組成が1.25μmのn−InGaAsP
12で形成されているため、回折格子2に接してn−I
nGaAsPガイド層3を結晶成長させたとき、回折格
子2の山の部分、すなわちn−InGaAsP12が削
り取られてもそれによるκの変化量を小さくでき、性能
の安定した歩留の高い分布帰還型半導体レーザ素子を提
供できる。
The average refractive index of the diffraction grating 2 having a multilayer structure is about 3.24, which is almost the same as that of the first embodiment. From the result of the first embodiment, κ can be controlled to 25 to 35 cm −1 . Furthermore, n-
The composition of the tip (diffraction grating peak) of the diffraction grating 2 on the side of the InGaAsP guide layer 3 is close to the composition of the n-InGaAsP guide layer 3 and the composition is 1.25 μm n-InGaAsP.
12 so that it is in contact with the diffraction grating 2 and n-I
When the nGaAsP guide layer 3 is crystal-grown, even if the peaks of the diffraction grating 2, that is, the n-InGaAsP12 are scraped off, the amount of change in κ can be reduced, and the distributed feedback semiconductor with stable performance and high yield can be obtained. A laser element can be provided.

【0028】[0028]

【発明の効果】本発明の分布帰還型半導体レーザ素子に
よれば、回折格子を屈折率の異なる半導体物質の多層膜
から形成することとしたので、回折格子の実効的な屈折
率を低下させることができ、これにより実質的に回折格
子の高さを低下させることとして高い精度で回折格子を
製造でき、歩留の高い分布帰還型半導体レーザ素子を提
供できる。又、回折格子に接する物質との間の等価屈折
率差を低減させることができ、実質的にガイド層の波長
組成を低いものにしたと同等の効果が得られ、出力を高
めるため共振器長を長くした時でも、精度の高い歪歩留
の良好な分布帰還型半導体レーザ素子を提供できる。
According to the distributed feedback semiconductor laser device of the present invention, since the diffraction grating is formed from a multilayer film of semiconductor materials having different refractive indexes, the effective refractive index of the diffraction grating can be reduced. As a result, a diffraction grating can be manufactured with high accuracy by substantially reducing the height of the diffraction grating, and a distributed feedback semiconductor laser device having a high yield can be provided. Also, the difference in equivalent refractive index between the substance in contact with the diffraction grating can be reduced, and the same effect can be obtained as when the wavelength composition of the guide layer is substantially reduced. Even when the length is increased, it is possible to provide a distributed feedback semiconductor laser device with high accuracy and good strain yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例にかかる分布帰還型半導体レ
ーザ素子を示す断面図である。
FIG. 1 is a sectional view showing a distributed feedback semiconductor laser device according to one embodiment of the present invention.

【図2】本発明にかかる分布帰還型半導体レーザ素子の
回折格子を示す断面図である。
FIG. 2 is a sectional view showing a diffraction grating of the distributed feedback semiconductor laser device according to the present invention.

【図3】本発明にかかる分布帰還型半導体レーザ素子の
他の回折格子を示す断面図である。
FIG. 3 is a sectional view showing another diffraction grating of the distributed feedback semiconductor laser device according to the present invention.

【図4】本発明にかかる分布帰還型半導体レーザ素子の
他の回折格子を示す断面図である。
FIG. 4 is a sectional view showing another diffraction grating of the distributed feedback semiconductor laser device according to the present invention.

【図5】従来の分布帰還型半導体レーザ素子を示す断面
図である。
FIG. 5 is a cross-sectional view showing a conventional distributed feedback semiconductor laser device.

【図6】(a)、(b)、(c)は従来の分布帰還型半
導体レーザ素子を示す断面図である。
FIGS. 6A, 6B and 6C are cross-sectional views showing a conventional distributed feedback semiconductor laser device.

【図7】κLの計算値と測定値を表すグラフである。FIG. 7 is a graph showing calculated and measured values of κL.

【符号の説明】[Explanation of symbols]

1 n−InP基板 2、15、21 回折格子 3 n−InGaAsPガイド層 4 InGaAsP活性層 5 p−InGaAsPガイド層 6 p−InP 7 p+ InGaAsP 8 p側電極 9 n側電極 10 n−InP 11、13 n−InGaAsP(組成1.15μm) 12 n−InGaAsP(組成1.25μm) 14 n−InGaAsP(組成1.05μm) 23 n−InGaAsP(組成1.35μm)Reference Signs List 1 n-InP substrate 2, 15, 21 diffraction grating 3 n-InGaAsP guide layer 4 InGaAsP active layer 5 p-InGaAsP guide layer 6 p-InP 7 p + InGaAsP 8 p-side electrode 9 n-side electrode 10 n-InP 11, 13 n-InGaAsP (composition 1.15 μm) 12 n-InGaAsP (composition 1.25 μm) 14 n-InGaAsP (composition 1.05 μm) 23 n-InGaAsP (composition 1.35 μm)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 回折格子を活性層に沿った方向に備えた
分布帰還型半導体レーザ素子において、前記回折格子を
挟む2種類の半導体物質を互いに屈折率が異なる半導体
物質とし、かつ前記回折格子を該回折格子を挟む互いに
屈折率の異なる2種類の前記半導体物質を交互に積層さ
せた多層構造としたことを特徴とする分布帰還型半導体
レーザ素子。
1. A distributed feedback semiconductor laser device having a diffraction grating in a direction along an active layer, wherein two kinds of semiconductor materials sandwiching the diffraction grating are semiconductor materials having different refractive indexes from each other, and the diffraction grating is used as a semiconductor material. A distributed feedback semiconductor laser device having a multilayer structure in which two kinds of semiconductor materials having different refractive indexes are alternately stacked with the diffraction grating interposed therebetween.
【請求項2】 前記回折格子を構成する前記2種類の半
導体物質の一方の半導体物質が、前記2種類の半導体物
質の他方の半導体物質に対して、構成元素の種類が同じ
で、その波長組成が互いに異なる半導体物質であること
を特徴とする請求項1に記載の分布帰還型半導体レーザ
素子。
2. The semiconductor device according to claim 1, wherein one of the two semiconductor materials constituting the diffraction grating is one of the two semiconductor materials.
2. The distributed feedback semiconductor laser device according to claim 1, wherein the semiconductor element has the same kind of constituent element as that of the other semiconductor substance and has different wavelength compositions.
【請求項3】 前記分布帰還型レーザ素子のガイド層側
に位置する前記回折格子の頂部付近を、前記ガイド層を
形成する半導体物質と構成元素の種類が同じで、その組
成比が近似した半導体物質で構成したことを特徴とする
請求項1又は2に記載の分布帰還型半導体レーザ素子。
3. A semiconductor having the same kind of constituent element as the semiconductor substance forming the guide layer and having a similar composition ratio near the top of the diffraction grating located on the guide layer side of the distributed feedback laser element. 3. The distributed feedback semiconductor laser device according to claim 1, wherein the distributed feedback semiconductor laser device is made of a substance.
【請求項4】 前記回折格子を挟む2種類の半導体物質
の一方であって、前記分布帰還型半導体レーザ素子の活
性層の側の半導体物質をInGaAsPとしたことを特
徴とする請求項1〜3のいずれか1項に記載の分布帰還
型半導体レーザ素子。
4. The distributed feedback semiconductor laser device according to claim 1, wherein one of the two kinds of semiconductor materials sandwiching the diffraction grating, the semiconductor material on the active layer side of the distributed feedback semiconductor laser device is InGaAsP. The distributed feedback semiconductor laser device according to any one of the above items.
【請求項5】 前記回折格子を挟む2種類の半導体物質
の一方であって、前記分布帰還型半導体レーザ素子の活
性層と逆の側の半導体物質をInPとしたことを特徴と
する請求項1〜3のいずれか1項に記載の分布帰還型半
導体レーザ素子。
5. The semiconductor device according to claim 1, wherein one of the two semiconductor materials sandwiching the diffraction grating, the semiconductor material on the side opposite to the active layer of the distributed feedback semiconductor laser device is InP. 4. The distributed feedback semiconductor laser device according to any one of items 3 to 3.
JP7151968A 1995-06-19 1995-06-19 Distributed feedback semiconductor laser device Expired - Fee Related JP2924714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7151968A JP2924714B2 (en) 1995-06-19 1995-06-19 Distributed feedback semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7151968A JP2924714B2 (en) 1995-06-19 1995-06-19 Distributed feedback semiconductor laser device

Publications (2)

Publication Number Publication Date
JPH098396A JPH098396A (en) 1997-01-10
JP2924714B2 true JP2924714B2 (en) 1999-07-26

Family

ID=15530161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7151968A Expired - Fee Related JP2924714B2 (en) 1995-06-19 1995-06-19 Distributed feedback semiconductor laser device

Country Status (1)

Country Link
JP (1) JP2924714B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5143985B2 (en) * 2001-08-10 2013-02-13 古河電気工業株式会社 Distributed feedback laser diode
JP4751124B2 (en) * 2005-08-01 2011-08-17 住友電気工業株式会社 Method for fabricating a semiconductor light emitting device
JP4951267B2 (en) 2006-04-27 2012-06-13 日本オプネクスト株式会社 Manufacturing method of semiconductor laser device
JP6331997B2 (en) * 2014-11-28 2018-05-30 三菱電機株式会社 Semiconductor optical device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5208824A (en) * 1991-12-12 1993-05-04 At&T Bell Laboratories Article comprising a DFB semiconductor laser
JPH0620789A (en) * 1992-06-30 1994-01-28 Tokyo Electric Co Ltd Discharge lamp lighting device
JPH06291410A (en) * 1993-04-01 1994-10-18 Sumitomo Electric Ind Ltd Distributed feedback semiconductor laser
JPH0738204A (en) * 1993-07-20 1995-02-07 Mitsubishi Electric Corp Semiconductor optical device and manufacture thereof

Also Published As

Publication number Publication date
JPH098396A (en) 1997-01-10

Similar Documents

Publication Publication Date Title
US5274660A (en) Semiconductor device and method of making it
US6224667B1 (en) Method for fabricating semiconductor light integrated circuit
EP0125608A2 (en) Single longitudinal mode semiconductor laser
JP2937751B2 (en) Method for manufacturing optical semiconductor device
US4775980A (en) Distributed-feedback semiconductor laser device
JP2701569B2 (en) Method for manufacturing optical semiconductor device
JP2924714B2 (en) Distributed feedback semiconductor laser device
JP3307905B2 (en) Optical semiconductor device and method of manufacturing the same
US5469459A (en) Laser diode element with excellent intermodulation distortion characteristic
JP2006165027A (en) Semiconductor laser and its manufacturing method
JP2763090B2 (en) Semiconductor laser device, manufacturing method thereof, and crystal growth method
US6259718B1 (en) Distributed feedback laser device high in coupling efficiency with optical fiber
JPS6328520B2 (en)
US20010038659A1 (en) Distributed feedback semiconductor laser device and multi-wavelength laser array
JPH0548214A (en) Distributed reflection type semiconductor laser
JPH0555689A (en) Distributed reflection type semiconductor laser provided with wavelength control function
KR19980069797A (en) Distributed feedback semiconductor laser and manufacturing method thereof
JP2713445B2 (en) Semiconductor laser device
JP2003218462A (en) Distributed feedback semiconductor laser device
JP3690572B2 (en) Distributed feedback semiconductor laser device and manufacturing method thereof
JP2002014247A (en) Distributed reflection optical waveguide and optical device containing the same
JP2770848B2 (en) Integrated light source of semiconductor laser and optical modulator and method of manufacturing the same
JPH0936496A (en) Semiconductor light emitting element and fabrication thereof
JP5702262B2 (en) Tunable semiconductor laser
JP2914235B2 (en) Semiconductor optical device and method of manufacturing the same

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990406

LAPS Cancellation because of no payment of annual fees