JP2924117B2 - Zoom lens - Google Patents

Zoom lens

Info

Publication number
JP2924117B2
JP2924117B2 JP2193286A JP19328690A JP2924117B2 JP 2924117 B2 JP2924117 B2 JP 2924117B2 JP 2193286 A JP2193286 A JP 2193286A JP 19328690 A JP19328690 A JP 19328690A JP 2924117 B2 JP2924117 B2 JP 2924117B2
Authority
JP
Japan
Prior art keywords
lens
aspherical
refractive power
aspheric
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2193286A
Other languages
Japanese (ja)
Other versions
JPH0478812A (en
Inventor
淳司 橋村
尚士 岡田
哲生 河野
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP2193286A priority Critical patent/JP2924117B2/en
Publication of JPH0478812A publication Critical patent/JPH0478812A/en
Priority claimed from US07/979,468 external-priority patent/US5424870A/en
Application granted granted Critical
Publication of JP2924117B2 publication Critical patent/JP2924117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1431Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive
    • G02B15/143103Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being positive arranged ++-

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レンズシャッタカメラ(以下LSカメラとす
る)などに用いるコンパクトなズームレンズに関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact zoom lens used for a lens shutter camera (hereinafter referred to as an LS camera).
従来の技術 ズームレンズ内蔵型LSカメラにおいて、コンパクト
化、低コスト化を達成するために撮影レンズのコンパク
ト化、低コスト化が要望されている。ズーミングに際す
るレンズの移動量も含め、レンズ系をコンパクト化する
には各レンズ群の屈折力を強くする必要があるが、性能
を維持しながら屈折力を強くしていくのはレンズ枚数を
増加させる方向であるといえる。一方、低コスト化のた
めにはレンズ枚数を削減するのが効果的であり、このよ
うにレンズ系のコンパクト化と低コスト化には相反する
要素が多分に含まれているのである。
2. Description of the Related Art In an LS camera with a built-in zoom lens, there has been a demand for a compact and low-cost photographing lens in order to achieve compactness and low cost. In order to make the lens system compact, including the amount of movement of the lens during zooming, it is necessary to increase the refractive power of each lens group. It can be said that the direction is to increase. On the other hand, it is effective to reduce the number of lenses in order to reduce the cost. As described above, the compactness and the cost reduction of the lens system include many contradictory elements.
ところで最近、プラスチック成形やガラスモールドな
どの技術進歩が著しく、非球面が安価に生産できるよう
になってきている。
By the way, in recent years, technological progress in plastic molding, glass molding and the like has been remarkable, and it has become possible to produce aspherical surfaces at low cost.
発明が解決しようとする課題 こうした状況に鑑み、非球面を効果的に用いることに
よりコンパクトなLSカメラ用ズームレンズを少ない枚数
で構成し、低コスト化を図るのが本発明の目的である。
SUMMARY OF THE INVENTION In view of such circumstances, it is an object of the present invention to reduce the cost by configuring a compact zoom lens for an LS camera with a small number of lenses by effectively using an aspheric surface.
問題点を解決するための手段 ズームレンズにおいてコンパクト化を図るためには、
全長を短くし更に移動量も少なくする必要がある。特に
LSカメラ用のズームレンズのようにレンズバックの短い
タイプとしては、正屈折力を有する第1群と負屈折力を
有する第2群の2成分からなるものが一般的であるが、
本発明では、より高変倍が可能な正正負の3成分とし
た。広角端から望遠端へのズーミングにおいては、各群
が全て物体側へ移動する。この時、第1レンズ群と第2
レンズ群の間隔は増大し、第2レンズ群と第3レンズ群
の間隔は減少するような動きをとることとする。
Means for Solving the Problems In order to reduce the size of the zoom lens,
It is necessary to shorten the overall length and further reduce the amount of movement. Especially
As a type having a short lens back, such as a zoom lens for an LS camera, a lens having two components of a first group having a positive refractive power and a second group having a negative refractive power is generally used.
In the present invention, three components of positive, negative, and positive, which allow higher magnification, are used. In zooming from the wide-angle end to the telephoto end, all the units move to the object side. At this time, the first lens group and the second
The distance between the lens groups increases, and the distance between the second lens group and the third lens group decreases.
ところで、本発明のような正正負の3成分ズームレン
ズにおいてコンパクト化を図り、且つ充分なバックフォ
ーカスを確保しようとすると、各群の屈折力を強くしな
ければならず、収差の悪化をまねく傾向がある。
By the way, in order to reduce the size of a positive, negative and positive three-component zoom lens as in the present invention and to secure a sufficient back focus, it is necessary to increase the refracting power of each lens unit, which tends to deteriorate the aberration. There is.
本発明においては、この傾向を防ぐために少なくとも
1枚のレンズを両面非球面としている。第1レンズ群中
に両面非球面を用いた場合には前面だけで抑えきれなか
った諸収差を後面で補正していることになる。例えば第
1レンズ群中最も物体側のレンズを両面非球面にした場
合には、片側非球面のときの前面だけで抑えきれなかっ
た画面周辺部でのコマ収差を後面で補正していることに
なる。このとき前記後面は球面収差の補正にも役立って
いる。更に、これら第1レンズ群中の非球面は歪曲収差
の補正にも役立っている。第2レンズ群中に両面非球面
を用いた場合には、前面で補正過剰となった球面収差を
後面で補正していることになる。また、これらの非球面
で第1レンズ群で抑えきれなかった高次のコマの発生も
防いでいる。第3レンズ群中に両面非球面を用いた場合
にも他のレンズ群中に両面非球面を用いたときと同様に
前面だけで抑えきれなかった収差を後面で補正している
ことになり、例えば第3レンズ群中最も物体側のレンズ
を両面非球面にした場合には、前面だけで抑えきれなか
った画面周辺部でのコマ収差を後面で補正していること
になる。また、このときの前面は広角端付近での歪曲収
差も補正している。
In the present invention, at least one lens has an aspherical surface on both sides in order to prevent this tendency. When a double-sided aspherical surface is used in the first lens unit, various aberrations that cannot be suppressed only by the front surface are corrected by the rear surface. For example, when the lens closest to the object side in the first lens group is aspherical on both sides, coma in the peripheral portion of the screen which cannot be suppressed only by the front side when the aspherical surface on one side is corrected on the rear side. Become. At this time, the rear surface also serves to correct spherical aberration. Further, the aspherical surface in the first lens group is also useful for correcting distortion. When a double-sided aspherical surface is used in the second lens group, spherical aberration that has been overcorrected on the front surface is corrected on the rear surface. In addition, the generation of higher-order coma that cannot be suppressed by the first lens group due to these aspheric surfaces is also prevented. Even when a double-sided aspherical surface is used in the third lens unit, aberrations that cannot be suppressed only by the front surface are corrected on the rear surface, as in the case of using a double-sided aspherical surface in the other lens units. For example, if the lens closest to the object in the third lens group is aspherical on both surfaces, coma in the peripheral portion of the screen that cannot be suppressed only by the front surface is corrected on the rear surface. The front surface at this time also corrects distortion near the wide-angle end.
これら非球面を作用することによってレンズ系の構成
枚数を大幅に減らすことができ、全長も従来に比べて5
〜10mm短くすることが可能となった。
By acting on these aspherical surfaces, the number of components of the lens system can be greatly reduced, and the overall length is 5 times smaller than in the past.
It became possible to shorten it by ~ 10mm.
さらに本発明において、レンズ系のコンパクト化を図
りつつ、収差を補正し、良好な性能を得るには、レンズ
系中に少なくとも3面の非球面を用いることが望まし
い。
Further, in the present invention, it is desirable to use at least three aspheric surfaces in the lens system in order to correct aberrations and obtain good performance while reducing the size of the lens system.
以下、本発明において効果的な非球面の形状について
述べる。
Hereinafter, effective aspherical shapes in the present invention will be described.
第1レンズ群中に非球面を有する場合、少なくとも1
面は次の条件を満足することが望ましい。
If the first lens group has an aspheric surface, at least one
It is desirable that the surface satisfies the following conditions.
非球面の最大有効径をYmaxとするとき、0.7Ymax<Y
<Ymaxの任意の光軸方向高さYに対して、 ただし、 φ :第1レンズ群の屈折力 N :非球面の物体側媒質の屈折率 N′ :非球面の像側媒質の屈折率 X(y):非球面の面形状 X0(y):非球面の参照球面形状 条件(1)は、球面収差とコマ、フレアを補正するため
の条件である。この上限を越えると球面収差がズーム全
域で補正不足や補正過剰となり、内方性のコマやフレア
が発生してしまう。
When the maximum effective diameter of the aspheric surface is Ymax, 0.7Ymax <Y
<For any height Y in the optical axis direction of Ymax, Where φ 1 : refractive power of the first lens group N: refractive index of the aspherical object side medium N ′: refractive index of the aspherical image side medium X (y): aspherical surface shape X 0 (y) : Reference spherical shape of aspherical surface Condition (1) is a condition for correcting spherical aberration, coma, and flare. If the upper limit is exceeded, spherical aberration will be undercorrected or overcorrected over the entire zoom range, and inward coma and flare will occur.
さらに望ましくは第1レンズ群中の全ての非球面は次
の条件を満足するとよい。
More preferably, all aspheric surfaces in the first lens group should satisfy the following condition.
非球面が周辺になるほど正の屈折力が弱く(負の屈折
力が強く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes weaker (the negative refractive power becomes stronger) as the aspherical surface becomes closer to the periphery.
非球面の最大有効径をYmaxとするとき、0<Y<0.7Y
maxの任意の光軸垂直方向高さYに対して 条件(2)の上限を越えると輪帯球面収差が負の大きな
値を持つようになり、絞り込みによるピント位置のずれ
が問題となる。また、下限を越えると輪帯光束に対する
球面収差補正効果が過剰となり、他の諸収差と球面収差
をバランス良く補正するのが困難となる。(この場合球
面収差が波打ったような形になりやすい。) 非球面が周辺になるほどの負の屈折力が弱く(正の屈
折力が強く)なるような形状の場合。
When the maximum effective diameter of the aspherical surface is Ymax, 0 <Y <0.7Y
max for any height Y in the vertical direction of the optical axis When the value exceeds the upper limit of the condition (2), the spherical aberration of the orbicular zone has a large negative value, and a shift of the focus position due to the stop-down becomes a problem. On the other hand, if the lower limit is exceeded, the spherical aberration correcting effect on the annular light flux becomes excessive, and it becomes difficult to correct other aberrations and spherical aberration in a well-balanced manner. (In this case, the spherical aberration tends to have a wavy shape.) In the case of a shape in which the negative refractive power becomes weaker (positive refractive power becomes stronger) as the aspherical surface becomes closer to the periphery.
非球面の最大有効形をYmaxとするとき、0<Y<0.07
Ymaxの任意の光軸垂直方向高さYに対して 条件(3)の下限を越えると輪帯球面収差が負けの大き
な値を持つようになり、絞り込みによるピント位置ずれ
が問題となる。また、上限を越えると輪帯光束に対する
球面収差補正効果が過剰となり、他の諸収差と球面収差
をバランスよく補正するのが困難となる。(この場合球
面収差が波打ったような形になりやすい。) さらに、第1レンズ群中に両面非球面のレンズを用い
た場合、その前面は以下の条件(4)または(6)を満
たし、後面が下の条件(5)または(7)を満たすこと
が望ましい。
When the maximum effective form of the aspheric surface is Ymax, 0 <Y <0.07
For any height Y in the vertical direction of the optical axis of Ymax When the value goes below the lower limit of the condition (3), the orbicular spherical aberration has a large value of loss, and there is a problem that the focus position shifts due to the aperture stop. On the other hand, if the upper limit is exceeded, the spherical aberration correction effect on the annular luminous flux becomes excessive, and it becomes difficult to correct other aberrations and spherical aberration in a well-balanced manner. (In this case, the spherical aberration tends to have a wavy shape.) Further, when a double-sided aspherical lens is used in the first lens group, the front surface thereof satisfies the following condition (4) or (6). It is desirable that the rear surface satisfies the following condition (5) or (7).
前面の非球面が周辺になるほど正の屈折力が弱く(負
の屈折力が強く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes weaker (the negative refractive power becomes stronger) as the front aspherical surface becomes closer to the periphery.
前面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第1レンズ群中において、条件式(4)は非球面の周辺
になるほど正の屈折力が弱く(負の屈折力が強く)なる
ということを意味している。もし下限をこえると3次の
収差領域の範囲で球面収差のアンダーへの倒れをオーバ
ー側へ補正することができない。ところで、レンズの光
軸から遠い場所を通る軸上光束については球面収差が補
正過剰になってしまいオーバー側へ倒れてしまう。そこ
で、この光束をアンダー側へ戻すため、後面に条件式
(5)を満たす周辺になるほど負の屈折力が弱く(正の
屈折力が強く)なる非球面を導入すれば良い。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the first lens group, the conditional expression (4) means that the positive refractive power becomes weaker (negative refractive power becomes stronger) near the aspherical surface. If the lower limit is exceeded, the fall of spherical aberration to under cannot be corrected to the over side in the range of the third-order aberration region. By the way, the on-axis luminous flux passing through a place far from the optical axis of the lens has excessively corrected spherical aberration and falls to the over side. Therefore, in order to return this light beam to the under side, an aspherical surface having a negative refractive power weaker (positive refractive power stronger) as the periphery satisfies conditional expression (5) may be introduced to the rear surface.
また、これらの非球面はコマ収差の発生も防いでおり
例えば条件(4)の下限を越えた場合には軸外の横収差
のLower光の部分が下へ垂れさがってしまい、内方性の
コマが発生してしまう。望ましくは条件式(4)を満た
す側の非球面の基準球面からのずれ量は条件式(5)を
満たす側のそれより大きいほうが良い。
These aspheric surfaces also prevent the occurrence of coma aberration. For example, when the lower limit of the condition (4) is exceeded, the lower light portion of the off-axis lateral aberration hangs down, and the inward chromatic aberration occurs. Frames occur. Desirably, the deviation amount of the aspherical surface on the side satisfying the conditional expression (4) from the reference spherical surface is larger than that on the side satisfying the conditional expression (5).
前面の非球面が周辺になるほど正の屈折力が強く(負
の屈折力が弱く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes stronger (the negative refractive power becomes weaker) as the front aspheric surface becomes closer to the periphery.
前面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第1レンズ群中において、条件式(6)を満たすような
非球面は周辺になるほど負の屈折力が弱く(正の屈折力
が強く)なるということを意味している。上限をこえる
と3次の収差領域の範囲で球面収差のオーバーへの倒れ
をアンダー側へ補正することができない。ところで、レ
ンズの光軸から遠い場所を通る軸上光束については球面
収差が補正過剰になってしまいアンダー側へ倒れてしま
う。そこで、この光束をオーバー側へ戻すため、後面に
条件式(7)を満たすような周辺になるほど負の屈折力
が強く(正の屈折力が弱く)なる非球面を導入すれば良
い。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the first lens group, it means that the negative refractive power becomes weaker (positive refractive power becomes stronger) as the aspherical surface satisfies the conditional expression (6) becomes closer to the periphery. If the upper limit is exceeded, it is not possible to correct the over-fall of spherical aberration to the under side in the range of the third-order aberration region. By the way, with respect to an on-axis light beam passing through a place far from the optical axis of the lens, the spherical aberration is excessively corrected and falls to the under side. Therefore, in order to return this light beam to the over side, an aspherical surface having a negative refractive power stronger (positive refractive power weaker) as the periphery thereof satisfies conditional expression (7) may be introduced to the rear surface.
また、これらの非球面はフレアの発生も防いでおり例
えば条件式(6)の上限を越えた場合には軸外の横収差
のLower光の部分が上へ跳ね上がってしまい、フレアが
発生してしまう。
In addition, these aspheric surfaces also prevent the occurrence of flare. For example, when the upper limit of conditional expression (6) is exceeded, the lower light portion of off-axis lateral aberration jumps upward, and flare occurs. I will.
望ましくは条件式(7)を満たす側の非球面の基準球
面からのずれ量は条件(6)を満たす側のそれより大き
いほうが良い。
Desirably, the deviation amount of the aspherical surface on the side satisfying the conditional expression (7) from the reference spherical surface is larger than that on the side satisfying the conditional expression (6).
さらに第1レンズ群中に両面非球面のレンズを用いた
場合、そのレンズは以下の条件を満たすことが望まし
い。
Further, when a lens having both aspheric surfaces is used in the first lens group, it is desirable that the lens satisfy the following conditions.
ただし dDSASP1:両面非球面レンズの芯厚 HDSASP1:両面非球面レンズの光路有効径 これは、第1レンズ群中に両面非球面を用いたときの
レンズの芯厚を規定する条件で、この下限を越えた場合
にはレンズの前面と後面で光の通過する位置(長さ)が
殆ど同じなるので、特に軸外光について後面の収差補正
効果が殆どなくなってしまう。(両面非球面にする意味
がなくなってしまう。)また、この上限を越えた場合に
は、レンズの芯厚が大きくなり過ぎてレンズの制作が困
難になってしまう。
However, d DSASP1 : the core thickness of a double-sided aspherical lens H DSASP1 : the effective optical path diameter of a double-sided aspherical lens This is a condition that defines the core thickness of a lens when a double-sided aspherical surface is used in the first lens group. If the lower limit is exceeded, the position (length) through which light passes between the front and rear surfaces of the lens is almost the same, so that the aberration correction effect on the rear surface, especially for off-axis light, is almost eliminated. (It is meaningless to use two-sided aspheric surfaces.) If the upper limit is exceeded, the core thickness of the lens becomes too large, and it becomes difficult to manufacture the lens.
第2レンズ群中に非球面を有する場合、少なくとも1
面は次の条件を満足することが望ましい。
If the second lens group has an aspheric surface, at least one
It is desirable that the surface satisfies the following conditions.
非球面の最大有効径をYmaxとするとき、0.7Ymax<Y
<Ymaxの任意の光軸垂直方向高さYに対して ただし、 φ2:第2レンズ群の屈折力 条件(9)は、球面収差を補正するための条件であ
る。この上限を越えると球面収差がズーム全域で補正不
足や補正過剰となってしまう。
When the maximum effective diameter of the aspheric surface is Ymax, 0.7Ymax <Y
<For any height Y in the vertical direction of the optical axis of Ymax Here, φ 2 : refractive power of the second lens group Condition (9) is a condition for correcting spherical aberration. If the upper limit is exceeded, spherical aberration will be undercorrected or overcorrected over the entire zoom range.
さらに望ましくは、第2レンズ群中の全ての非球面は
次の条件を満足するとよい。
More preferably, all aspheric surfaces in the second lens group should satisfy the following condition.
非球面が周辺になるほど正の屈折力が弱く(負の屈折
力が強く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes weaker (the negative refractive power becomes stronger) as the aspherical surface becomes closer to the periphery.
非球面の最大有効径をYmaxとするとき、0<Y<0.7Y
maxの任意の光軸垂直方向高さYに対して 条件(10)の上限を越えると輪帯球面収差が負の大きな
値を持つようになり、絞り込みによるピント位置のずれ
が問題となる。また、下限を越えると輪帯光束に対する
球面収差補正効果が過剰となり、他の諸収差と球面収差
をバランスよく補正するのが困難となる。(この場合球
面収差が波打ったような形になりやすい。) 非球面が周辺になるほど負の屈折力が弱く(正の補正
力が強く)なるような形状の場合。
When the maximum effective diameter of the aspherical surface is Ymax, 0 <Y <0.7Y
max for any height Y in the vertical direction of the optical axis When the value exceeds the upper limit of the condition (10), the orbicular spherical aberration has a large negative value, and there is a problem of a shift of the focus position due to the aperture stop. On the other hand, if the lower limit is exceeded, the spherical aberration correction effect on the annular luminous flux becomes excessive, and it becomes difficult to correct other various aberrations and the spherical aberration in a well-balanced manner. (In this case, the spherical aberration tends to have a wavy shape.) In the case of a shape in which the negative refractive power becomes weaker (positive correction power becomes stronger) as the aspherical surface becomes closer.
非球面の最大有効径をYmaxとするとき、0<Y<0.7Y
maxの任意の光軸垂直方向高さYに対して 条件(11)の下限を越えると輪帯球面収差が負の大きな
値を持つようになり、絞り込みによるピント位置のずれ
が問題となる。また、上限を越えると輪帯光束に対する
球面収差補正効果が過剰となり、他の諸収差と球面収差
をバランスよく補正するのが困難となる。(この場合球
面収差が波打ったような形になりやすい。) さらに第2レンズ群中に両面非球面のレンズを用いた
場合、その前面は下の条件(12)または(14)を満た
し、後面が下の条件(13)または(15)を満たすことが
望ましい。
When the maximum effective diameter of the aspherical surface is Ymax, 0 <Y <0.7Y
max for any height Y in the vertical direction of the optical axis When the value goes below the lower limit of the condition (11), the orbicular spherical aberration has a large negative value, and there is a problem of a shift of the focus position due to the aperture stop. On the other hand, if the upper limit is exceeded, the spherical aberration correction effect on the annular luminous flux becomes excessive, and it becomes difficult to correct other aberrations and spherical aberration in a well-balanced manner. (In this case, the spherical aberration tends to have a wavy shape.) When a double-sided aspherical lens is used in the second lens group, the front surface satisfies the following condition (12) or (14). It is desirable that the rear surface satisfies the following condition (13) or (15).
前面の非球面が周辺になるほど正の屈折力が弱く(負
の屈折力が強く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes weaker (the negative refractive power becomes stronger) as the front aspherical surface becomes closer to the periphery.
前面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第2レンズ群中において、条件式(12)は非球面の周辺
になるほど正の屈折力が弱く(負の屈折力が強く)なる
ということを意味している。もし下限をこえると3次の
収差領域の範囲で球面収差のアンダーへの倒れをオーバ
ー側へ補正することができない。ところで、レンズの光
軸から遠い場所を通る軸上光束については球面収差が補
正過剰になってしまいオーバー側へ倒れてしまう。そこ
で、この光束をアンダー側へ戻すため後面に条件式(1
3)を満たす周辺になるほど負の屈折力が弱く(正の屈
折力が強く)なるような非球面を導入すれば良い。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the second lens group, the conditional expression (12) means that the positive refractive power becomes weaker (the negative refractive power becomes stronger) near the aspherical surface. If the lower limit is exceeded, the fall of spherical aberration to under cannot be corrected to the over side in the range of the third-order aberration region. By the way, the on-axis luminous flux passing through a place far from the optical axis of the lens has excessively corrected spherical aberration and falls to the over side. Therefore, in order to return this light beam to the under side, a conditional expression (1
It is sufficient to introduce an aspherical surface such that the negative refractive power becomes weaker (positive refractive power becomes stronger) as the periphery satisfies 3).
また、これらの非球面は第1レンズ群で抑えきれなか
った高次のコマ収差の発生も防いでおり、例えば条件
(12)の下限を越えた場合には軸外の周辺コマや輪帯コ
マが大きくなり横収差が波打ったようになり易くなって
しまう。
These aspheric surfaces also prevent the occurrence of higher-order coma aberration that cannot be suppressed by the first lens unit. For example, if the lower limit of the condition (12) is exceeded, off-axis peripheral coma and annular zone coma Becomes large, and the lateral aberration tends to be wavy.
前面の非球面が周辺になるほど正の屈折力が強く(負
の屈折力が弱く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes stronger (the negative refractive power becomes weaker) as the front aspheric surface becomes closer to the periphery.
前面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.7Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第2レンズ群中において、条件式(14)は非球面の周辺
になるほど正の屈折力が強く(負の屈折力が弱く)なる
ということを意味している。上限をこえると3次収差領
域の範囲で球面収差のオーバーへの倒れをアンダー側へ
倒すような補正をすることができない。ところで、レン
ズの光軸から遠い場所を通る軸上光束については補正過
剰になってしまいアンダー側へ倒れてしまう。そこで、
この光束をオーバー側へ戻すため後面に条件式(15)を
満たすような周辺になるほど負の屈折力が強く(正の屈
折力が弱く)なるような非球面を導入すれば良い。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.7Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the second lens group, the conditional expression (14) means that the positive refractive power becomes stronger (the negative refractive power becomes weaker) near the aspherical surface. If the upper limit is exceeded, it is not possible to make a correction such that the overshoot of the spherical aberration falls to the underside in the range of the third-order aberration region. By the way, an on-axis luminous flux passing through a place far from the optical axis of the lens is overcorrected and falls down to the underside. Therefore,
In order to return this light beam to the over side, an aspherical surface may be introduced into the rear surface such that the negative refractive power becomes stronger (positive refractive power becomes weaker) as the periphery satisfies conditional expression (15).
また、これらの非球面は第1レンズ群で抑えきれなか
った高次のコマ収差の発生も防いでおり、例えば条件
(12)の下限を越えた場合には軸外の周辺コマや輪帯コ
マが大きくなり横収差が波打ったようになりやすい。
These aspheric surfaces also prevent the occurrence of higher-order coma aberration that cannot be suppressed by the first lens unit. For example, if the lower limit of the condition (12) is exceeded, off-axis peripheral coma and annular zone coma And the lateral aberration tends to be wavy.
さらに、第2レンズ群中に両面非球面のレンズを用い
た場合、そのレンズは以下の条件を満たすことが望まし
い。
Further, when a lens having both aspheric surfaces is used in the second lens group, it is desirable that the lens satisfies the following conditions.
ただし dDSASP2:両面非球面レンズの芯厚 HDSASP2:両面非球面レンズの光路有効径 これは、第2レンズ群中に両面非球面を用いたときのレ
ンズの芯厚を規定する条件で、この下限を越えた場合に
はレンズの前面と後面で光の通過する位置(高さ)が殆
ど同じなるので、特に軸外光について後面の収差補正効
果が殆どなくなってしまう。(両面非球面にする意味が
なくなってしまう。)また、この上限を越えた場合に
は、レンズの芯厚が大きくなり過ぎてレンズの制作が困
難になってしまう。
However, d DSASP2 : Core thickness of double-sided aspherical lens H DSASP2 : Effective optical path diameter of double-sided aspherical lens This is a condition that defines the core thickness of the lens when a double-sided aspherical surface is used in the second lens group. If the lower limit is exceeded, the positions (heights) through which the light passes on the front and rear surfaces of the lens are almost the same, so that the aberration correction effect on the rear surface, especially for off-axis light, is almost negligible. (It is meaningless to use two-sided aspheric surfaces.) If the upper limit is exceeded, the core thickness of the lens becomes too large, and it becomes difficult to manufacture the lens.
第3レンズ群中に非球面を有する場合、少なくとも1
面は次の条件を満足することが望ましい。
If the third lens group has an aspheric surface, at least one
It is desirable that the surface satisfies the following conditions.
非球面の最大有効径をYmaxとするとき、0.8Ymax<Y
<Ymaxの任意の光軸垂直方向高さYに対して ただし、 φ3:第3レンズ群の屈折力 条件(17)は、歪曲収差と像面湾曲をバランスよく補
正するための条件である。この上限を越えると広角端に
おける歪曲収差が正の大きな値をとるようになったり、
ズーム全域で像面が負の方向に湾曲する傾向が著しくな
ったりする。
When the maximum effective diameter of the aspheric surface is Ymax, 0.8Ymax <Y
<For any height Y in the vertical direction of the optical axis of Ymax Here, φ 3 : refractive power of the third lens unit Condition (17) is a condition for correcting distortion and field curvature in a well-balanced manner. Beyond this upper limit, the distortion at the wide-angle end takes a large positive value,
The tendency of the image surface to curve in the negative direction over the entire zoom range becomes significant.
さらに望ましくは、第3レンズ群中の全ての非球面は
次の条件を満足することが望ましい。
More preferably, all aspheric surfaces in the third lens group should satisfy the following condition.
非球面が周辺になるほどの負の屈折力が弱く(正の屈
折力が強く)なるような形状の場合。
In the case of a shape in which negative refractive power becomes weaker (positive refractive power becomes stronger) as the aspherical surface becomes closer to the periphery.
非球面の最大有効径をYmaxとするとき、0<Y<0.8Y
maxの任意の光軸垂直方向高さYに対して 条件(18)の条件を越えると広角端〜中間焦点距離領
域の中間画角帯において、正の歪曲収差及び像面湾曲の
正偏移傾向が大きくなる。また、下限を越えると中間焦
点領域〜望遠端で負の歪曲収差が大きくなり、加えて全
ズーム域で像面湾曲の負偏移傾向が著しくなる。
When the maximum effective diameter of the aspherical surface is Ymax, 0 <Y <0.8Y
max for any height Y in the vertical direction of the optical axis If the condition (18) is exceeded, the positive distortion and the positive shift of the field curvature become large in the intermediate angle of view band from the wide-angle end to the intermediate focal length region. On the other hand, if the lower limit is exceeded, the negative distortion becomes large from the intermediate focal point to the telephoto end. In addition, the negative shift of the field curvature becomes remarkable in the entire zoom range.
非球面が周辺になるほどの正の屈折力が弱く(負の屈
折力が強く)なるような形状の場合。
In the case of a shape in which the positive refractive power becomes weaker (the negative refractive power becomes stronger) as the aspherical surface becomes closer.
非球面の最大有効径をYmaxとするとき、0<Y<0.8Y
maxの任意の光軸垂直方向高さYに対して 条件(19)の下限を越えると広角端〜中間焦点距離領
域の中間画角帯において、正の歪曲収差及び像面湾曲の
正偏移傾向が大きくなる。また、上限を越えると中間焦
点領域〜望遠端で負の歪曲収差が大きくなり、加えて全
ズーム域で像面湾曲の負偏移傾向が著しくなる。
When the maximum effective diameter of the aspherical surface is Ymax, 0 <Y <0.8Y
max for any height Y in the vertical direction of the optical axis When the value goes below the lower limit of the condition (19), the positive distortion and the positive shift of the field curvature become large in the intermediate angle of view band from the wide-angle end to the intermediate focal length region. If the upper limit is exceeded, the negative distortion becomes large in the range from the intermediate focal point to the telephoto end, and the negative shift of the field curvature becomes remarkable in the entire zoom range.
さらに、第3レンズ群中に両面非球面のレンズを用い
た場合、その前面は下の条件(1)または(3)を満た
し、後面が下の条件(2)または(4)を満たすことが
望ましい。
Further, when a double-sided aspheric lens is used in the third lens group, the front surface satisfies the lower condition (1) or (3), and the rear surface satisfies the lower condition (2) or (4). desirable.
前面の非球面が周辺になるほど負の屈折力が弱く(正
の屈折力が強く)なるような形状の場合。
In the case of a shape in which the negative refractive power becomes weaker (positive refractive power becomes stronger) as the front aspherical surface becomes closer to the periphery.
前面の非球面の最大有効径をYmaxとするとき、0.8Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.8Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第3レンズ群中において、条件式(20)は非球面の周辺
になるほど負の屈折力が弱く(正の屈折力が強く)なる
ということを意味している。もし下限をこえると広角端
近辺での歪曲の増大をまねき、かつ像面湾曲がアンダー
側に倒れる。また、条件(21)を満たすような非球面を
後面に用いることによって、前面だけで抑えきれなかっ
た像面湾曲を良好に補正していることになる。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.8Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.8Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the third lens group, the conditional expression (20) means that the negative refractive power becomes weaker (positive refractive power becomes stronger) near the aspherical surface. If the lower limit is exceeded, distortion near the wide-angle end will increase, and the field curvature will fall to the under side. In addition, by using an aspheric surface that satisfies the condition (21) for the rear surface, the field curvature that cannot be suppressed only by the front surface is favorably corrected.
前面の非球面た周辺になるほど負の屈折力が強く(正
の屈折力が弱く)なるような形状の場合。
In the case of a shape in which negative refractive power becomes stronger (positive refractive power becomes weaker) near the front aspherical surface.
前面の非球面の最大有効径をYmaxとするとき、0.8Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 後面の非球面の最大有効径をYmaxとするとき、0.8Yma
x<Y<Ymaxの任意の光軸垂直方向高さYに対して 第3レンズ群中において、条件式(22)は非球面の周
辺になるほど負の屈折力が強く(正の屈折力が弱く)な
るということを意味している。もし上限をこえると像面
湾曲がオーバー側に倒れるのを防ぐことができない。ま
た、条件(23)を満たすような非球面を後面にいること
によって、前面だけで抑えきれなかった像面湾曲を良好
に補正していることになる。
When the maximum effective diameter of the front aspheric surface is Ymax, 0.8Yma
x <Y <Ymax for any vertical height Y in the optical axis direction When the maximum effective diameter of the rear aspheric surface is Ymax, 0.8Yma
x <Y <Ymax for any vertical height Y in the optical axis direction In the third lens group, the conditional expression (22) means that the negative refractive power becomes stronger (the positive refractive power becomes weaker) near the aspherical surface. If the value exceeds the upper limit, the field curvature cannot be prevented from falling to the over side. In addition, by providing an aspherical surface that satisfies the condition (23) on the rear surface, the field curvature that cannot be suppressed only by the front surface is favorably corrected.
さらに、第3レンズ群中に両面非球面のレンズを用い
た場合、そのレンズは以下の条件を満たすことが望まし
い。
Further, when a lens having both aspheric surfaces is used in the third lens group, it is desirable that the lens satisfies the following conditions.
ただし dDSASP3:両面非球面レンズの芯厚 HDSASP3:両面非球面レンズの光路有効径 これは、第3レンズ群中に両面非球面を用いたときのレ
ンズの芯厚を規定する条件で、この下限を越えた場合に
はレンズの前面と後面で光の通過する位置(高さ)が殆
ど同じになるので、特に軸外光について後面の収差補正
効果が殆どなくなってしまう。(両面非球面にする意味
がなくなってしまう。)また、この上限を越えた場合に
は、レンズの芯厚が大きくなり過ぎてレンズの制作が困
難になってしまう。
However, d DSASP3 : Core thickness of a double-sided aspherical lens H DSASP3 : Effective optical path diameter of a double-sided aspherical lens This is a condition that defines the core thickness of a lens when a double-sided aspherical surface is used in the third lens group. If the lower limit is exceeded, the positions (heights) through which light passes between the front and rear surfaces of the lens are almost the same, so that the aberration correction effect on the rear surface, especially for off-axis light, is almost eliminated. (It is meaningless to use two-sided aspheric surfaces.) If the upper limit is exceeded, the core thickness of the lens becomes too large, and it becomes difficult to manufacture the lens.
以上、非球面の形状について述べたが、さらに第1レ
ンズ群及び第3レンズ群は次の条件を満足するように構
成することが望ましい。
Although the aspherical shape has been described above, it is desirable that the first lens group and the third lens group are configured to satisfy the following conditions.
ここで φW:広角端における全系の屈折力 φT:望遠端における全系の屈折力 β :ズーム比(β=φT) 条件(25)(26)はレンズ系の全長、ズーミングのため
の移動量、バックフォーカス及び諸収差の補正状態を良
好なバランスに保ための条件である。
Where φ W : refractive power of the whole system at the wide-angle end φ T : refractive power of the whole system at the telephoto end β: zoom ratio (β = φ T / φ W ) Conditions (25) and (26) are the total length of the lens system, This is a condition for maintaining a good balance between the amount of movement for zooming, the back focus, and the state of correction of various aberrations.
条件(25)の下限を越えると第1レンズ群の屈折力が
強くなりすぎて広角端でバックフォーカスを適切な値
(広角端の焦点距離の15%)に保つことが困難となり、
後続レンズ群径の増大を招いてしまうことになる。ま
た、上限を越えると各群のズーミングによる移動量が過
大となり、鏡胴構成上不利になってしまう。
When the value goes below the lower limit of the condition (25), the refractive power of the first lens unit becomes too strong, and it becomes difficult to maintain the back focus at an appropriate value (15% of the focal length at the wide-angle end) at the wide-angle end.
This will increase the diameter of the subsequent lens group. If the upper limit is exceeded, the amount of movement of each group due to zooming becomes excessive, which is disadvantageous in the lens barrel configuration.
条件(26)の下限を越えるとペッツバール和が大きな
値をとるようになり像面が正方向に著しく倒れ、且つ広
角端での歪曲収差が正の大きな値をとるようになる。ま
た、上限を越えるとズーミングに伴う第2・第3群間の
間隔変化を大きくとることが必要となり広角端において
第2・第3群間が大きく離れるためにレンズ全長の増大
を招く。
When the value exceeds the lower limit of the condition (26), the Petzval sum takes a large value, the image plane remarkably falls in the positive direction, and the distortion at the wide-angle end takes a large positive value. On the other hand, if the upper limit is exceeded, it is necessary to increase the change in the distance between the second and third lens groups due to zooming, so that the second and third lens groups are far apart at the wide-angle end, thereby increasing the total lens length.
また、次の条件を満足することも有効である。 It is also effective to satisfy the following conditions.
条件(27)は広角端における全系の屈折力と第1レン
ズ群の屈折力の比を規定するもので、この上限を越える
第1レンズ群の屈折力が過大となり第1レンズ群中に非
球面を用いたとしてもそこで発生する諸収差、特に球面
収差の補正が困難となる。また、下限を越えると画面周
辺で内方性のコマ収差が発生する傾向が著しくなる。
The condition (27) defines the ratio between the refractive power of the entire system and the refractive power of the first lens unit at the wide-angle end. Even if a spherical surface is used, it is difficult to correct various aberrations generated there, particularly spherical aberration. On the other hand, if the lower limit is exceeded, the tendency for inward coma to occur around the screen becomes remarkable.
条件(28)は広角端のおける全系の屈折力と第3レン
ズ群の屈折力の比を規定するもので、この上限を越える
と第3レンズ群の屈折力が過大となり第3レンズ群中に
非球面を用いたとしてもそこで発生する諸収差、特に像
面湾曲と歪曲収差の補正が困難となる。また、下限を越
えると画面周辺で内方性のコマ収差が発生する傾向が著
しくなると共に充分なバックフォーカスの確保が困難と
なる。非球面形状X(y)及び参照球面形状X0(y)は
それぞれ以下の式によって定義される。
The condition (28) defines the ratio between the refractive power of the entire system at the wide-angle end and the refractive power of the third lens group. If the upper limit of this condition is exceeded, the refractive power of the third lens group becomes excessive, and Even if an aspherical surface is used, it is difficult to correct various aberrations generated there, particularly curvature of field and distortion. On the other hand, if the lower limit is exceeded, an inward coma tends to occur around the screen, and it becomes difficult to secure a sufficient back focus. The aspherical shape X (y) and the reference spherical shape X 0 (y) are defined by the following equations, respectively.
(実施例) 以下、本発明の実施例1〜11をそれぞれ表1〜表11に
示す。
(Examples) Hereinafter, Examples 1 to 11 of the present invention are shown in Tables 1 to 11, respectively.
但し、ここで、 f:全系の焦点距離、 F:開放Fナンバー、 ri(i=1,2,3,・・・):物体側から第i番目のレンズ
面の曲率半径、 di(i=1,2,3,・・・):物体側から第i番目の軸上面
間隔、 Ni(i=1,2,3,・・・):物体側から第i番目のレンズ
のd線に対する屈折率、 νi(i=1,2,3,・・・):物体側から第i番目のレン
ズのアッベ数、である。
Here, f: focal length of the entire system, F: open F number, ri (i = 1, 2, 3,...): Radius of curvature of the i-th lens surface from the object side, di (i = 1, 2, 3,...): I-th axial top surface distance from the object side, Ni (i = 1, 2, 3,...): D-line of the i-th lens from the object side Refractive index, νi (i = 1, 2, 3,...): Abbe number of the i-th lens from the object side.
また*印を付したriは、物体側から第i番目の面が非
球面で構成されていることを示す。
Also, ri with an asterisk indicates that the i-th surface from the object side is formed of an aspheric surface.
表12・13に各条件に対する各実施例の値を示す。 Tables 12 and 13 show the values of each example for each condition.
表14に各実施例で用いた非球面の数を示す。 Table 14 shows the number of aspheric surfaces used in each example.
【図面の簡単な説明】[Brief description of the drawings]
第1図〜第11図はそれぞれ本発明の実施例1〜11に対応
するレンズ構成図である。 第12図〜第22図は、それぞれ本発明の実施例1〜12に対
応する収差図である。
1 to 11 are lens configuration diagrams corresponding to Examples 1 to 11 of the present invention, respectively. 12 to 22 are aberration diagrams respectively corresponding to Examples 1 to 12 of the present invention.
───────────────────────────────────────────────────── フロントページの続き 審査官 森内 正明 (56)参考文献 特開 平1−230013(JP,A) 特開 平1−252916(JP,A) 特開 平1−252917(JP,A) 特開 平3−45916(JP,A) 特開 平2−16515(JP,A) 特開 平2−16516(JP,A) 特開 平2−135312(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ────────────────────────────────────────────────── ─── Continuing from the front page Examiner Masaaki Moriuchi (56) References JP-A-1-230013 (JP, A) JP-A 1-225216 (JP, A) JP-A 1-225217 (JP, A) JP-A-3-45916 (JP, A) JP-A-2-16515 (JP, A) JP-A-2-16516 (JP, A) JP-A-2-135312 (JP, A) (58) Int.Cl. 6 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (4)

    (57)【特許請求の範囲】(57) [Claims]
  1. 【請求項1】物体側より順に、正の屈折力を有する第1
    レンズ群、正の屈折力を有する第2レンズ群、負の屈折
    力を有する第3レンズ群の3つの成分から成り、各レン
    ズ群間の空気間隔を変化させることによって全系の焦点
    距離を変化させるズームレンズにおいて、 前記第1レンズ群中に両面非球面レンズを有し、前記第
    1レンズ群中の非球面は以下の条件式を満足することを
    特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0.7ymax<y<
    1.0ymaxの任意の光軸垂直方向の高さyに対して、 ただし、 φ1:第1レンズ群の屈折力、 N:非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 である。
    1. A first lens having a positive refractive power in order from the object side.
    It consists of three components, a lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The focal length of the entire system is changed by changing the air spacing between the lens groups. A zoom lens having a double-sided aspheric lens in the first lens group, wherein the aspheric surface in the first lens group satisfies the following conditional expression; When the diameter is y max , 0.7y max <y <
    For any height y in the vertical direction of the optical axis of 1.0y max , Where φ 1 : refractive power of the first lens group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, X (y): surface shape of the aspherical surface, X 0 (y): Reference spherical shape of aspherical surface.
  2. 【請求項2】物体側より順に、正の屈折力を有する第1
    レンズ群、正の屈折力を有する第2レンズ群、負の屈折
    力を有する第3レンズ群の3つの成分から成り、各レン
    ズ群間の空気間隔を変化させることによって全系の焦点
    距離を変化させるズームレンズにおいて、 前記第2レンズ群中に両面非球面レンズを有し、前記第
    2レンズ群中の非球面は以下の条件式を満足することを
    特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0.7ymax<y<
    1.0ymaxの任意の光軸垂直方向の高さyに対して、 ただし、 φ2:第2レンズ群の屈折力、 N:非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 である。
    2. A first lens having a positive refractive power in order from the object side.
    It consists of three components, a lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The focal length of the entire system is changed by changing the air spacing between the lens groups. A zoom lens having a double-sided aspheric lens in the second lens group, wherein the aspheric surface in the second lens group satisfies the following conditional expression; When the diameter is y max , 0.7y max <y <
    For any height y in the vertical direction of the optical axis of 1.0y max , Where φ 2 : refractive power of the second lens group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, X (y): surface shape of the aspherical surface, X 0 (y): Reference spherical shape of aspherical surface.
  3. 【請求項3】物体側より順に、正の屈折力を有する第1
    レンズ群、正の屈折力を有する第2レンズ群、負の屈折
    力を有する第3レンズ群の3つの成分から成り、各レン
    ズ群間の空気間隔を変化させることによって全系の焦点
    距離を変化させるズームレンズにおいて、 前記第3レンズ群を2枚のレンズで構成するとともに、 前記第3レンズ群中に両面非球面レンズを有し、前記第
    3レンズ群中の非球面は以下の条件式を満足することを
    特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0.8ymax<y<
    1.0ymaxの任意の光軸垂直方向の高さyに対して、 ただし、 φ3:第3レンズ群の屈折力、 N:非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 である。
    3. A first lens having a positive refractive power in order from the object side.
    It consists of three components, a lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The focal length of the entire system is changed by changing the air spacing between the lens groups. In the zoom lens, the third lens group is composed of two lenses, the third lens group has a double-sided aspheric lens, and the aspheric surface in the third lens group satisfies the following conditional expression. satisfaction zoom characterized by a lens; when the maximum effective diameter of the aspherical surface and y max, 0.8y max <y <
    For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 3 : refractive power of the third lens group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, X (y): aspherical surface shape, X 0 (y): Reference spherical shape of aspherical surface.
  4. 【請求項4】物体側より順に、正の屈折力を有する第1
    レンズ群、正の屈折力を有する第2レンズ群、負の屈折
    力を有する第3レンズ群の3つの成分から成り、各レン
    ズ群間の空気間隔を変化させることによって全系の焦点
    距離を変化させるズームレンズにおいて、 前記第2レンズ群の像側に絞りを有するとともに、 前記第3レンズ群中に両面非球面レンズを有し、前記第
    3レンズ群中の非球面は以下の条件式を満足することを
    特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0.8ymax<y<
    1.0ymaxの任意の光軸垂直方向の高さyに対して、 ただし、 φ3:第3レンズ群の屈折力、 N:非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 である。
    4. A first lens having a positive refractive power in order from the object side.
    It consists of three components, a lens group, a second lens group having a positive refractive power, and a third lens group having a negative refractive power. The focal length of the entire system is changed by changing the air spacing between the lens groups. A zoom lens having an aperture on the image side of the second lens group, a double-sided aspheric lens in the third lens group, and an aspheric surface in the third lens group satisfying the following conditional expression: the zoom lens is characterized in that; when a y max the maximum effective diameter of the aspherical surface, 0.8y max <y <
    For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 3 : refractive power of the third lens group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, X (y): aspherical surface shape, X 0 (y): Reference spherical shape of aspherical surface.
JP2193286A 1990-07-20 1990-07-20 Zoom lens Expired - Fee Related JP2924117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2193286A JP2924117B2 (en) 1990-07-20 1990-07-20 Zoom lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2193286A JP2924117B2 (en) 1990-07-20 1990-07-20 Zoom lens
US07/979,468 US5424870A (en) 1990-07-20 1992-11-20 Compact zoom lens system

Publications (2)

Publication Number Publication Date
JPH0478812A JPH0478812A (en) 1992-03-12
JP2924117B2 true JP2924117B2 (en) 1999-07-26

Family

ID=16305394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2193286A Expired - Fee Related JP2924117B2 (en) 1990-07-20 1990-07-20 Zoom lens

Country Status (1)

Country Link
JP (1) JP2924117B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3204703B2 (en) * 1991-11-27 2001-09-04 オリンパス光学工業株式会社 Zoom lens
KR100300520B1 (en) * 1992-10-15 2002-03-21 마츠모토 도루 Zoom lens system
JP3412939B2 (en) * 1994-12-22 2003-06-03 キヤノン株式会社 Zoom lens
JPH08262325A (en) * 1995-03-20 1996-10-11 Minolta Co Ltd Zoom lens
JPH11295600A (en) * 1998-04-13 1999-10-29 Minolta Co Ltd Zoom lens
JP2012008490A (en) * 2010-06-28 2012-01-12 Sony Corp Imaging lens and imaging device
CN107976782B (en) * 2017-11-18 2020-02-18 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN107861224B (en) * 2017-11-18 2020-02-04 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN107797256B (en) * 2017-11-18 2020-04-17 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN107797250B (en) * 2017-11-18 2020-04-17 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN107797251B (en) * 2017-11-18 2020-05-29 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN107976781B (en) * 2017-11-18 2020-02-18 瑞声科技(新加坡)有限公司 Image pickup optical lens
CN108227120B (en) * 2017-12-04 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108132515B (en) * 2017-12-04 2020-09-18 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108227124B (en) * 2017-12-18 2020-08-25 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108227130B (en) * 2017-12-18 2020-08-25 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108227131B (en) * 2017-12-18 2020-08-25 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108254896B (en) * 2018-01-23 2020-07-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108254898B (en) * 2018-01-23 2020-07-17 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108427174B (en) * 2018-01-23 2020-06-16 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108508584B (en) * 2018-03-29 2019-10-01 徐晨昊 A kind of zoom lens
CN108363184B (en) * 2018-04-26 2020-10-23 瑞声光学解决方案私人有限公司 Image pickup optical lens
CN108761724B (en) * 2018-04-26 2020-10-23 瑞声光学解决方案私人有限公司 Image pickup optical lens

Also Published As

Publication number Publication date
JPH0478812A (en) 1992-03-12

Similar Documents

Publication Publication Date Title
JP2924117B2 (en) Zoom lens
JP2924116B2 (en) Zoom lens
US6320698B1 (en) Zoom lens with vibration reduction function
JPH09325274A (en) Zoom lens
JP2006139187A (en) Zoom lens
JP3033136B2 (en) Compact zoom lens
JP3155884B2 (en) Zoom lens
JP3033141B2 (en) Compact zoom lens
JP3033149B2 (en) Compact zoom lens
JP3033137B2 (en) Compact zoom lens
JP2900434B2 (en) Compact zoom lens
JP3033138B2 (en) Compact zoom lens
JPH0843737A (en) Zoom lens
JP2924115B2 (en) Zoom lens
JPH05224119A (en) Large-diameter intermediate telephoto lens
JP2924119B2 (en) Zoom lens
JP2900435B2 (en) Compact zoom lens
JP3394624B2 (en) Zoom lens
JP3033148B2 (en) Compact zoom lens
JPH05127082A (en) Small-sized zoom lens
JP3021596B2 (en) Compact zoom lens
JP2924118B2 (en) Zoom lens
JP4817551B2 (en) Zoom lens
JP3087303B2 (en) Compact zoom lens
JP3088112B2 (en) Zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090507

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees