JP3033136B2 - Compact zoom lens - Google Patents

Compact zoom lens

Info

Publication number
JP3033136B2
JP3033136B2 JP2156233A JP15623390A JP3033136B2 JP 3033136 B2 JP3033136 B2 JP 3033136B2 JP 2156233 A JP2156233 A JP 2156233A JP 15623390 A JP15623390 A JP 15623390A JP 3033136 B2 JP3033136 B2 JP 3033136B2
Authority
JP
Japan
Prior art keywords
refractive power
lens
aspherical
group
rear group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2156233A
Other languages
Japanese (ja)
Other versions
JPH0446308A (en
Inventor
哲生 河野
尚士 岡田
Original Assignee
ミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミノルタ株式会社 filed Critical ミノルタ株式会社
Priority to JP2156233A priority Critical patent/JP3033136B2/en
Priority to US07/714,266 priority patent/US5283693A/en
Publication of JPH0446308A publication Critical patent/JPH0446308A/en
Priority to US08/139,900 priority patent/US5446592A/en
Application granted granted Critical
Publication of JP3033136B2 publication Critical patent/JP3033136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、コンパクトなズームレンズに関するもので
あり、更に詳しくは一眼レフカメラ等に用いるズームレ
ンズに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compact zoom lens, and more particularly to a zoom lens used for a single-lens reflex camera or the like.

従来の技術 現在、一眼レフカメラ用ズームレンズとしては、50mm
のレンズに代わってズーム比2倍程度のレンズが主流に
なっている。従って、一眼レフカメラのコンパクト化,
低コスト化を達成するためにこの種のレンズのコンパク
ト化,低コスト化が要望されている。ズーミングに際す
るレンズの移動量も含め、レンズ系をコンパクト化する
には、各レンズ群の屈折力を強くする必要があるが、性
能を維持しながら屈折力を強くしていくのはレンズ枚数
を増加させる方向であるといえる。一方、低コスト化の
ためにはレンズ枚数を削減するのが効果的である。この
ように、レンズ系のコンパクト化と低コスト化には相反
する要素が多分に含まれているのである。
Conventional technology Currently, as a zoom lens for SLR cameras, 50mm
In place of the above lens, a lens having a zoom ratio of about 2 has become mainstream. Therefore, compact SLR cameras,
In order to achieve cost reduction, there is a demand for a compact and low cost lens of this type. To reduce the size of the lens system, including the amount of movement of the lens during zooming, it is necessary to increase the refractive power of each lens group. It can be said that the direction is to increase. On the other hand, for cost reduction, it is effective to reduce the number of lenses. Thus, the compactness and low cost of the lens system include many contradictory elements.

そこで、コンパクト化及び低コスト化を狙ったものと
しては、例えば特開昭58−60717号,特公昭59−13003
号,特開昭61−69015号,同61−87117号,同61−87118
号,特開平1−210914号等が提案されている。これらの
ズームレンズは、負正の2成分から成り、2面以上の非
球面が用いられている。
In order to reduce the size and cost, for example, Japanese Patent Application Laid-Open No. Sho 58-60717 and Japanese Patent Publication No. Sho 59-13003
JP-A-61-69015, JP-A-61-87117, JP-A-61-87118
And JP-A-1-210914 have been proposed. These zoom lenses are composed of two components, negative and positive, and use two or more aspheric surfaces.

発明が解決しようとする課題 しかしながら、これらのズームレンズにおいても、コ
ンパクト化及び低コスト化は充分に達成されているとは
いえない。
Problems to be Solved by the Invention However, even with these zoom lenses, compactness and cost reduction cannot be fully achieved.

そこで、最近のプラスチック成形やガラスモールド等
の著しい技術進歩によって非球面が安価に生産されうる
ようになってきている状況に鑑み、本発明では非球面を
効果的に多用して高い光学性能を維持しながら、レンズ
枚数が少なく低コスト、且つコンパクトなズームレンズ
を提供することを目的とする。
Therefore, in view of the situation in which aspherical surfaces can be produced at low cost due to recent remarkable technological advances such as plastic molding and glass molding, the present invention effectively uses aspherical surfaces to maintain high optical performance. It is another object of the present invention to provide a low-cost and compact zoom lens with a small number of lenses.

課題を解決するための手段 上記目的を達成するため、本発明のズームレンズは、
物体側より順に負の屈折力を有する前群と正の屈折力を
有する後群とから成り、前群と後群との間の空気間隔を
変化させることによって全系の焦点距離を変化させるズ
ームレンズにおいて、全系中に非球面を2面以上有し、
且つ次の条件式を満足することを特徴としている。
Means for Solving the Problems In order to achieve the above object, a zoom lens according to the present invention includes:
A zoom system comprising, in order from the object side, a front group having a negative refractive power and a rear group having a positive refractive power, and changing the air distance between the front group and the rear group to change the focal length of the entire system. In the lens, the whole system has two or more aspherical surfaces,
In addition, the following conditional expression is satisfied.

ここで、φ1:前群の屈折力 φW:広角端での全系の屈折力 である。 Here, φ 1 : refractive power of the front group φ W : refractive power of the whole system at the wide-angle end.

前述の如く、一般にズームレンズにおいて低コスト化
(レンズ枚数の削減)及びコンパクト化(移動量,全長
の短縮)を図るためには、各群,各レンズの屈折力を強
くすることが効果的である。本発明において上記条件式
を満足するような屈折力であれば、従来の焦点距離35
−70mmクラスのズームレンズに対して、全長で2〜10mm
短くすることが可能である。しかし、その反面それによ
って諸収差が悪化し、球面のみでは性能を維持するのが
困難になる。
As described above, in order to reduce the cost (reduction of the number of lenses) and compactness (reduction of the moving distance and the overall length) of the zoom lens, it is effective to increase the refractive power of each group and each lens. is there. In the present invention, if the refractive power satisfies the above conditional expression, the conventional focal length 35
2-10mm in total length for zoom lens of -70mm class
It is possible to shorten it. However, on the other hand, various aberrations are thereby deteriorated, and it is difficult to maintain the performance with only the spherical surface.

本発明では、各群の屈折力を強くし全長を短くすると
共にそれに伴う諸収差の悪化を非球面を多用することに
よって抑え、良好な性能を得ている。本発明では少なく
とも2面の非球面を用いることによって、レンズのコン
パクト化を図りつつ、収差を補正(性能を向上)させて
いる。非球面に関しては、例えば後群中最も物体側のレ
ンズに非球面を用いた場合、球面収差を補正するのに効
果があり、最も像側のレンズに非球面を用いた場合、画
面周辺部でのコマ収差を補正するのに効果がある。一
方、前群中最も物体側のレンズに非球面を用いた場合、
広角端付近での歪曲収差及び像面湾曲の補正に効果があ
る。このように、効果的に非球面を多用することによ
り、性能を維持しつつ各群、各レンズの屈折力を強くす
ることができ、その結果、レンズ枚数の削減による低コ
スト化並びに全長及び移動量の短縮によるコンパクト化
が達成される。
In the present invention, the refractive power of each group is strengthened to shorten the overall length, and the accompanying deterioration of various aberrations is suppressed by using many aspherical surfaces, thereby obtaining good performance. In the present invention, by using at least two aspherical surfaces, aberrations are corrected (performance is improved) while the size of the lens is reduced. Regarding the aspherical surface, for example, when an aspherical surface is used for the lens closest to the object in the rear group, it is effective to correct spherical aberration. Is effective in correcting the coma aberration. On the other hand, when an aspheric surface is used for the lens closest to the object in the front group,
This is effective for correcting distortion and curvature of field near the wide-angle end. As described above, by effectively using the aspherical surface, it is possible to increase the refractive power of each lens unit and each lens while maintaining the performance. As a result, the cost can be reduced by reducing the number of lenses, and the overall length and movement can be reduced. Compactness is achieved by reducing the amount.

尚、前記条件式は、広角端における全系の屈折力と
前群の屈折力との比を規定するものであり、条件式を
満足する構成はレンズ全長,ズーミングのための移動
量,バックフォーカス及び諸収差の補正状態を良好なバ
ランスに保つために有効である。
The above conditional expression defines the ratio between the refractive power of the entire system at the wide-angle end and the refractive power of the front lens unit. The configuration satisfying the conditional expression includes the total lens length, the moving amount for zooming, and the back focus. This is effective for keeping the aberration correction state in a good balance.

条件式の上限をこえると、前群屈折力が過大とな
り、前群中に非球面を用いたとしても前群で発生する諸
収差、特に像面湾曲と歪曲収差の補正が困難となる。ま
た、下限をこえると画面周辺で下方性のコマ収差が発生
する傾向が著しくなると共に充分なバックフォーカスの
確保が困難となる。
If the upper limit of the conditional expression is exceeded, the refractive power of the front unit will be excessively large, and it will be difficult to correct various aberrations generated in the front unit, particularly the field curvature and distortion, even if an aspherical surface is used in the front unit. On the other hand, if the lower limit is exceeded, the tendency for downward coma to be generated around the screen becomes remarkable, and it becomes difficult to secure a sufficient back focus.

尚、更に次の条件式を満足するのが好ましい。 It is preferable that the following conditional expression is further satisfied.

ここで、φ2:後群の屈折力 である。 Here, φ 2 is the refractive power of the rear group.

条件式は、広角端における全系の屈折力と後群の屈
折力との比を規定するものである。条件式の上限をこ
えると、後群屈折力が過大となり、後群中に非球面を用
いたとしても後群で発生する諸収差、特に球面収差の補
正が困難となる。また、下限をこえると、画面周辺で下
方性のコマ収差が発生する傾向が著しくなる。
The conditional expression defines a ratio between the refractive power of the entire system and the refractive power of the rear unit at the wide-angle end. If the upper limit of the conditional expression is exceeded, the refractive power of the rear unit will be excessively large, and it will be difficult to correct various aberrations, particularly spherical aberration, occurring in the rear unit even if an aspherical surface is used in the rear unit. If the lower limit is exceeded, a downward tendency of coma aberration around the screen becomes remarkable.

前記前群が2枚のレンズから成り、前記後群が3枚の
レンズから成っていてもよく、また前群及び後群共2枚
のレンズから成っていてもよい。
The front group may be composed of two lenses, the rear group may be composed of three lenses, or the front group and the rear group may be composed of two lenses.

前群中の全ての非球面は次の条件式を満足すること
が望ましい。
It is desirable that all the aspheric surfaces in the front group satisfy the following conditional expression.

条件式は、非球面の最大有効径をYmaxとするとき、
0<y<0.8Ymaxの任意の光軸垂直方向高さyに対し
て、 ここで、 N :非球面の物体側媒質の屈折率 N′:非球面の像側媒質の屈折率 X(y):非球面の面形状 X0(y):非球面の参照球面形状 但し、 r :非球面の基準曲率半径 ε:2次曲面パラメータ Ai :非球面係数 :非球面の近軸曲率半径 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0 <y <0.8Y max , Here, N: refractive index of the aspherical object-side medium N ′: refractive index of the aspherical image-side medium X (y): aspherical surface shape X 0 (y): aspherical reference spherical shape r: Reference radius of curvature of aspheric surface ε: Quadratic surface parameter A i : Aspheric surface coefficient: Paraxial radius of curvature of aspheric surface It is.

条件式の上限をこえると広角端〜中間焦点距離領域
の中間画角帯において、正の歪曲収差及び像面湾曲の正
偏移傾向が大きくなる。また、下限をこえると中間焦点
距離領域〜望遠端で負の歪曲収差が大きくなり、加えて
全ズーム域で像面湾曲の負偏移傾向が著しくなる。
If the upper limit of the conditional expression is exceeded, the positive distortion and the positive shift of the field curvature become large in the intermediate angle of view band from the wide-angle end to the intermediate focal length region. If the lower limit is exceeded, the negative distortion becomes large in the range from the intermediate focal length to the telephoto end. In addition, the negative shift of the field curvature becomes remarkable in the entire zoom range.

前群中に両面が非球面のレンズを用いた場合、一方の
面は次の条件式を満たし、他方の面は次の条件式を
満たすことが望ましい。
When a lens having both aspheric surfaces is used in the front group, it is preferable that one surface satisfies the following conditional expression and the other surface satisfies the following conditional expression.

条件式は、非球面の最大有効径をYmaxとするとき、
0.8Ymax<y<Ymaxの任意の光軸垂直方向高さyに対し
て、 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0.8Y max <y <Y max , It is.

条件式は、非球面の最大有効径をYmaxとするとき、
0.8Ymax<y<Ymaxの任意の光軸垂直方向高さyに対し
て、 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0.8Y max <y <Y max , It is.

前群中において、条件式を満たすような非球面は周
辺ほど負の屈折力が弱く(正の屈折力が強く)なるとい
うことを意味している。これによって、広角端近辺での
歪曲収差を補正している。更にこのとき、条件式を満
たすような非球面を用いることによって像面湾曲を良好
に補正しているのである。
In the front group, an aspherical surface that satisfies the conditional expression means that the negative refractive power becomes weaker (positive refractive power becomes stronger) toward the periphery. Thus, distortion near the wide-angle end is corrected. Further, at this time, the curvature of field is favorably corrected by using an aspherical surface that satisfies the conditional expression.

後群中の全ての非球面は次の条件式を満足すること
が望ましい。
It is desirable that all the aspheric surfaces in the rear group satisfy the following conditional expression.

条件式は、非球面の最大有効径をYmaxとするとき、
0<y<0.7Ymaxの任意の光軸垂直方向高さyに対し
て、 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0 <y <0.7Y max , It is.

条件式の上限をこえると輪帯球面収差が負の大きな
値を持つようになり、絞り込みによるピント位置のずれ
が問題となる。また、下限をこえると輪帯光束に対する
球面収差補正効果が過剰となり、他の諸収差と球面収差
とをバランスよく補正するのが困難となる。この場合、
球面収差が波打ったような形になりやすくなる。
When the value exceeds the upper limit of the conditional expression, the annular spherical aberration has a large negative value, and there is a problem of a shift of a focus position due to a stop-down. If the lower limit is exceeded, the spherical aberration correction effect on the annular luminous flux becomes excessive, and it becomes difficult to correct other aberrations and spherical aberration in a well-balanced manner. in this case,
The spherical aberration tends to be wavy.

後群中に両面が非球面のレンズを用いた場合、一方の
面は次の条件式を満たし、他方の面が次の条件式を
満たすことが望ましい。
When a lens having both aspheric surfaces is used in the rear group, it is desirable that one surface satisfies the following conditional expression and the other surface satisfies the following conditional expression.

条件式は、非球面の最大有効径をYmaxとするとき、
0.7Ymax<y<Ymaxの任意の光軸垂直方向高さyに対し
て、 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0.7Y max <y <Y max , It is.

条件式は、非球面の最大有効径をYmaxとするとき、
0.7Ymax<y<Ymaxの任意の光軸垂直方向高さyに対し
て、 である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is Y max ,
For any height y in the vertical direction of the optical axis where 0.7Y max <y <Y max , It is.

後群中において、条件式を満たすような非球面は周
辺ほど正の屈折力が弱く(負の屈折力が強く)なるとい
うことを意味している。また、条件式は3次の収差領
域の範囲で球面収差のアンダー側への倒れをオーバー側
へ補正するための条件である。このとき、レンズの光軸
から遠い場所を通る軸上光については補正過剰になって
しまいオーバー側へ行ってしまうことがあるので、この
光をアンダー側へ戻すために条件式を満たすような周
辺ほど正の屈折力が強く(負の屈折力が弱く)なる非球
面を他方の面に導入すればよいことになる。
In the rear group, an aspherical surface that satisfies the conditional expression means that the positive refractive power becomes weaker (negative refractive power becomes stronger) toward the periphery. The conditional expression is a condition for correcting the spherical aberration falling to the under side in the range of the third-order aberration region to the over side. At this time, on-axis light passing through a place far from the optical axis of the lens may be overcorrected and go to the over side. It is only necessary to introduce an aspheric surface having a higher positive refractive power (a lower negative refractive power) to the other surface.

また、望ましくは条件式を満たす側の非球面の基準
球面からのずれ量は、条件式を満たす側の非球面の基
準球面からのずれ量より大きい方がよい。
Further, it is desirable that the deviation amount of the aspheric surface on the side satisfying the conditional expression from the reference spherical surface be larger than the deviation amount of the aspheric surface on the side satisfying the conditional expression from the reference spherical surface.

前群及び後群は次の条件式,を満足するように構
成されているのが望ましい。
It is desirable that the front group and the rear group are configured to satisfy the following conditional expression.

ここで、 φT:望遠端における全系の屈折力 β :ズーム比 但し、φ<0 β=φW である。 Here, φ T : refractive power of the whole system at the telephoto end β: zoom ratio where φ 1 <0 β = φ W / φ T.

これらは、レンズ全長,ズーミングのための移動量,
バックフォーカス及び諸収差の補正状態を良好なバラン
スに保つための条件である。
These are the total lens length, the amount of movement for zooming,
This is a condition for keeping the back focus and the correction state of various aberrations in a good balance.

条件式の下限をこえると、ペッツバール和が負の大
きな値をとるようになり、像面が正方向に著しく倒れて
しまい、且つ広角端での歪曲収差が正の大きな値をとる
ようになる。また、上限をこえると、ズーミングに伴う
前・後群間の間隔変化を大きくとることが必要となり、
広角端において前・後群間が大きく離れるためにレンズ
全長の増大を招く。
When the lower limit of the conditional expression is exceeded, the Petzval sum takes a large negative value, the image plane remarkably falls in the positive direction, and the distortion at the wide-angle end takes a large positive value. In addition, if the upper limit is exceeded, it is necessary to take a large change in the interval between the front and rear groups due to zooming,
At the wide angle end, the distance between the front and rear groups is largely separated, which causes an increase in the overall length of the lens.

条件式の下限をこえると、広角端でバックフォーカ
スを適切な値(広角端の焦点距離の1.1倍以上)に保つ
ことが困難となって、ミラーを配置するためのスペース
の確保が困難となる。また、上限をこえると、前群及び
後群のズーミングによる移動量が過大となり鏡胴構成上
不利になってしまう。
If the lower limit of the conditional expression is exceeded, it becomes difficult to keep the back focus at an appropriate value (at least 1.1 times the focal length at the wide-angle end) at the wide-angle end, and it becomes difficult to secure a space for disposing the mirror. . If the upper limit is exceeded, the amount of movement of the front group and the rear group due to zooming becomes excessive, which is disadvantageous in the lens barrel configuration.

本発明に係るズームレンズの前群の前、後群の後ろ、
又は前群と後群との間に、屈折力の殆どないレンズ系を
付加したとしても本発明の主旨から外れるものではな
い。尚、付加するレンズ系としては、屈折力の絶対値が
全系の望遠端における屈折力の3分の1以下のものが望
ましい。
In front of the front group of the zoom lens according to the present invention, behind the rear group,
Or, even if a lens system having almost no refractive power is added between the front group and the rear group, it does not depart from the gist of the present invention. As a lens system to be added, it is desirable that the absolute value of the refractive power is one third or less of the refractive power at the telephoto end of the entire system.

実施例 以下、本発明に係るコンパクトなズームレンズの実施
例を示す。
EXAMPLES Examples of the compact zoom lens according to the present invention will be described below.

但し、各実施例において、r1〜r10は物体側から数え
た面の曲率半径、d1〜d9は物体側から数えた軸上面間隔
を示し、N1〜N5〜νは物体側から数えた各レン
ズのd線に対する屈折率,アッベ数を示す。また、fは
全系の焦点距離、FNOは開放Fナンバーを示す。
However, in each embodiment, r 1 to r 10 indicate the radius of curvature of the surface counted from the object side, d 1 to d 9 indicate the axial top surface distance counted from the object side, and N 1 to N 5 , ν 1 to ν Reference numeral 5 denotes the refractive index and Abbe number of each lens counted from the object side with respect to d-line. F indicates the focal length of the entire system, and F NO indicates the open F number.

尚、実施例中、曲率半径に*印を付した面は非球面で
構成された面であることを示し、前記非球面の面形状
(X(y))を表わす式で定義するものとする。
Note that, in the examples, a surface marked with an asterisk (*) indicates a surface constituted by an aspheric surface, and is defined by an expression representing the surface shape (X (y)) of the aspheric surface. .

<実施例1> 非球面係数 r4:ε=0.97677 A4=−0.46960×10-4 A6=0.18970×10-6 A8=−0.10218×10-7 A10=0.92120×10-10 A12=0.98648×10-13 r5:ε=0.13064×10 A4=−0.44294×10-4 A6=−0.32517×10-6 A8=−0.63065×10-9 A10=−0.74042×10-11 A12=−0.17854×10-13 r7:ε=0.10010×10 A4=0.90729×10-4 A6=−0.14917×10-6 A8=−0.96660×10-8 A10=−0.61239×10-10 A12=−0.25320×10-12 r8:ε=0.93899 A4=−0.17872×10-3 A6=0.41747×10-6 A8=0.82935×10-8 A10=−0.55230×10-9 A12=0.96840×10-11 <実施例2> 非球面係数 r4:ε=0.10000×10 A4=−0.24751×10-4 A6=0.71600×10-8 A8=−0.84637×10-9 r5:ε=0.10000×10 A4=−0.63349×10-4 A6=−0.32364×10-6 A8=−0.11035×10-7 r6:ε=0.10000×10 A4=−0.67323×10-4 A6=−0.76224×10-6 A8=−0.18025×10-8 r7:ε=0.10000×10 A4=0.74134×10-4 A6=−0.80597×10-6 A8=0.94950×10-8 r8:ε=0.10000×10 A4=0.13887×10-3 A6=−0.21954×10-6 A8=0.55614×10-8 <実施例3> 非球面係数 r4:ε=0.97677 A4=−0.31833×10-4 A6=0.11552×10-6 A8=−0.38664×10-8 A10=0.23753×10-10 r5:ε=0.11687×10 A4=−0.26050×10-4 A6=−0.73075×10-8 A8=−0.21403×10-8 A10=0.11257×10-10 r7:ε=0.10098×10 A4=0.95703×10-4 A6=0.11262×10-6 A8=−0.82765×10-8 A10=−0.31146×10-10 A12=−0.21000×10-13 r8:ε=0.94743 A4=0.15530×10-3 A6=0.51579×10-6 A8=0.10239×10-7 A10=−0.55151×10-9 A12=0.50000×10-11 <実施例4> 非球面係数 r2:ε=0.14772×10 A4=−0.19835×10-4 A6=−0.66077×10-8 A8=−0.91491×10-9 r5:ε=0.12911×10 A4=−0.19849×10-4 A6=0.59001×10-7 A8=−0.14707×10-8 r7:ε=0.10000×10 A4=0.98005×10-5 A6=−0.37611×10-6 A8=−0.19401×10-8 r8:ε=0.10000×10 A4=0.66420×10-4 A6=−0.35319×10-7 A8=−0.11571×10-8 <実施例5> 非球面係数 r1:ε=0.92540 A4=−0.12025×10-4 A6=0.52533×10-7 A8=−0.32581×10-10 r2:ε=0.10000×10 A4=−0.14468×10-4 A6=0.87723×10-7 A8=0.78426×10-9 r3:ε=0.33160 A4=−0.11960×10-4 A6=0.14748×10-6 A8=0.60246×10-9 r4:ε=0.95585 A4=−0.51352×10-4 A6=0.13347×10-6 A8=−0.13437×10-8 r5:ε=0.12368×10 A4=−0.22771×10-4 A6=0.36746×10-7 A8=−0.12825×10-8 r6:ε=−0.13009×10 A4=0.30913×10-4 A6=0.45464×10-7 A8=−0.68843×10-9 r7:ε=0.26965×10 A4=0.15665×10-3 A6=−0.54318×10-6 A8=−0.17532×10-7 r8:ε=−0.21970 A4=0.19799×10-3 A6=0.32779×10-6 A8=−0.57687×10-8 <実施例6> 非球面係数 r2:ε=0.10000×10 A4=−0.15505×10-4 A6=0.83879×10-7 A8=−0.24127×10-8 A10=0.23757×10-10 A12=−0.80847×10-13 r4:ε=0.10000×10 A4=−0.11854×10-4 A6=0.53054×10-7 A8=−0.14796×10-8 A10=0.12514×10-10 A12=−0.51061×10-13 r5:ε=0.10000×10 A4=−0.11644×10-5 A6=0.82535×10-7 A8=−0.16456×10-8 A10=0.15146×10-10 A12=−0.61958×10-13 r7:ε=0.10000×10 A4=−0.22564×10-4 A6=0.28631×10-7 A8=0.40710×10-9 A10=0.94855×10-11 A12=0.43296×10-13 r8:ε=0.10000×10 A4=0.18334×10-4 A6=−0.55751×10-7 A8=0.18495×10-9 A10=0.20056×10-10 A12=0.25087×10-13 r9:ε=0.10000×10 A4=−0.13083×10-4 A6=−0.31645×10-6 A8=0.63373×10-9 A10=−0.10362×10-11 A12=−0.26952×10-13 <実施例7> 非球面係数 r1:ε=0.10000×10 A4=0.58892×10-5 A6=0.48505×10-7 A8=−0.38701×10-9 A10=0.65002×10-12 A12=−0.22233×10-15 r2:ε=0.10000×10 A4=−0.94516×10-5 A6=0.39665×10-7 A8=−0.21510×10-10 A10=−0.12936×10-11 A12=−0.13875×10-13 r4:ε=0.10000×10 A4=−0.78692×10-5 A6=−0.22629×10-8 A8=−0.77105×10-9 A10=0.41977×10-11 A12=−0.84804×10-14 r5:ε=0.10000×10 A4=−0.21705×10-6 A6=−0.83224×10-8 A8=−0.11419×10-9 A10=−0.56839×10-12 A12=0.66732×10-14 r7:ε=0.10000×10 A4=−0.97076×10-5 A6=−0.46160×10-7 A8=0.26689×10-9 A10=−0.15883×10-11 A12=0.35263×10-14 r8:ε=0.10000×10 A4=0.19211×10-4 A6=−0.35547×10-7 A8=−0.75079×10-9 A10=−0.23221×10-11 A12=0.60653×10-13 r9:ε=0.10000×10 A4=−0.81788×10-5 A6=−0.67632×10-7 A8=−0.10159×10-8 A10=0.42857×10-12 A12=0.23794×10-14 <実施例8> 非球面係数 r1:ε=0.10000×10 A4=−0.17314×10-4 A6=−0.11099×10-6 A8=0.12451×10-8 A10=−0.72864×10-11 A12=0.26533×10-13 r2:ε=0.10000×10 A4=−0.23680×10-4 A6=−0.15564×10-6 A8=−0.11770×10-8 A10=0.69290×10-11 A12=0.34891×10-13 r4:ε=0.10000×10 A4=−0.25119×10-4 A6=0.34222×10-7 A8=−0.67319×10-9 A10=0.37125×10-11 A12=−0.20868×10-13 r5:ε=0.10000×10 A4=0.20886×10-5 A6=0.65790×10-7 A8=−0.64905×10-9 A10=0.65032×10-11 A12=−0.26549×10-13 r7:ε=0.10000×10 A4=−0.22551×10-4 A6=0.22428×10-7 A8=0.46396×10-9 A10=0.61312×10-11 A12=0.56137×10-13 r8:ε=0.10000×10 A4=0.24322×10-4 A6=0.10926×10-6 A8=0.11323×10-8 A10=0.15914×10-10 A12=0.14505×10-12 r9:ε=0.10000×10 A4=−0.31514×10-5 A6=−0.79866×10-7 A8=0.86102×10-9 A10=0.29418×10-11 A12=0.70709×10-14 <実施例9> 非球面係数 r1:ε=0.10000×10 A4=0.20109×10-4 A6=0.13635×10-6 A8=0.11051×10-8 A10=0.43942×10-13 A12=−0.51481×10-13 r2:ε=0.10000×10 A4=0.83021×10-5 A6=0.33585×10-6 A8=0.29980×10-8 A10=0.26751×10-10 A12=0.23205×10-12 r3:ε=0.10000×10 A4=−0.68916×10-4 A6=−0.12267×10-6 A8=0.16135×10-8 A10=0.12568×10-10 A12=0.72978×10-13 r4:ε=0.10000×10 A4=−0.63114×10-4 A6=−0.87244×10-7 A8=0.14728×10-9 A10=0.20899×10-11 A12=−0.17228×10-13 r5:ε=0.10000×10 A4=−0.16890×10-5 A6=0.19098×10-6 A8=−0.11329×10-8 A10=0.93460×10-11 A12=0.41743×10-13 r6:ε=0.10000×10 A4=0.24647×10-4 A6=0.12879×10-6 A8=0.45128×10-9 A10=−0.11513×10-10 A12=0.56075×10-13 r7:ε=0.10000×10 A4=0.16088×10-4 A6=−0.13611×10-6 A8=−0.23345×10-8 A10=−0.26920×10-10 A12=−0.29101×10-12 r8:ε=0.10000×10 A4=0.52549×10-4 A6=0.19383×10-6 A8=−0.91899×10-9 A10=−0.43772×10-11 A12=0.10395×10-12 第1図〜第9図は、前記実施例1〜9に対応するレン
ズ構成図であり、図中の矢印は前記前群及び後群の最広
角端(S)から最望遠端(L)にかけての移動を模式的
に示している。
<Example 1> Aspherical coefficients r 4: ε = 0.97677 A 4 = -0.46960 × 10 -4 A 6 = 0.18970 × 10 -6 A 8 = -0.10218 × 10 -7 A 10 = 0.92120 × 10 -10 A 12 = 0.98648 × 10 - 13 r 5 : ε = 0.13064 × 10 A 4 = −0.44294 × 10 −4 A 6 = −0.32517 × 10 −6 A 8 = −0.63065 × 10 −9 A 10 = −0.74042 × 10 −11 A 12 = −0.17854 × 10 -13 r 7 : ε = 0.10010 × 10 A 4 = 0.90729 × 10 -4 A 6 = -0.14917 × 10 -6 A 8 = -0.96660 × 10 -8 A 10 = -0.61239 × 10 -10 A 12 = −0.25320 × 10 −12 r 8 : ε = 0.93899 A 4 = −0.17872 × 10 −3 A 6 = 0.41747 × 10 −6 A 8 = 0.82935 × 10 −8 A 10 = −0.55 230 × 10 −9 A 12 = 0.96840 × 10 -11 <Example 2> Aspheric coefficient r 4 : ε = 0.10000 × 10 A 4 = -0.24751 × 10 -4 A 6 = 0.71600 × 10 -8 A 8 = -0.84637 × 10 -9 r 5 : ε = 0.10000 × 10 A 4 = -0.63349 × 10 −4 A 6 = −0.32364 × 10 −6 A 8 = −0.11035 × 10 −7 r 6 : ε = 0.10000 × 10 A 4 = −0.67323 × 10 −4 A 6 = −0.76224 × 10 −6 A 8 = −0.18025 × 10 −8 r 7 : ε = 0.10000 × 10 A 4 = 0.74134 × 10 −4 A 6 = −0.80597 × 10 −6 A 8 = 0.94950 × 10 −8 r 8 : ε = 0.10000 × 10 A 4 = 0.13887 × 10 −3 A 6 = −0.21954 × 10 −6 A 8 = 0.55614 × 10 −8 <Example 3> Aspheric coefficient r 4 : ε = 0.97677 A 4 = -0.31833 x 10 -4 A 6 = 0.11552 x 10 -6 A 8 = -0.38664 x 10 -8 A 10 = 0.23753 x 10 -10 r 5 : ε = 0.11687 x 10 A 4 = -0.26050 x 10 -4 A 6 = -0.73075 x 10 -8 A 8 = -0.21403 x 10 -8 A 10 = 0.11257 x 10 -10 r 7 : e = 0.10098 x 10 A 4 = 0.95703 x 10 -4 A 6 = 0.11262 × 10 -6 A 8 = -0.82765 × 10 -8 A 10 = -0.31146 × 10 -10 A 12 = -0.21000 × 10 -13 r 8: ε = 0.94743 A 4 = 0.15530 × 10 - 3 A 6 = 0.51579 x 10 -6 A 8 = 0.10239 x 10 -7 A 10 = -0.55151 x 10 -9 A 12 = 0.50000 x 10 -11 <Example 4> Aspheric coefficient r 2 : ε = 0.14772 × 10 A 4 = −0.19835 × 10 −4 A 6 = −0.66077 × 10 −8 A 8 = −0.91491 × 10 −9 r 5 : ε = 0.12911 × 10 A 4 = − 0.19849 × 10 −4 A 6 = 0.59001 × 10 −7 A 8 = −0.14707 × 10 −8 r 7 : ε = 0.10000 × 10 A 4 = 0.98005 × 10 −5 A 6 = −0.37611 × 10 −6 A 8 = −0.19401 × 10 −8 r 8 : ε = 0.10000 × 10 A 4 = 0.66420 × 10 −4 A 6 = −0.35319 × 10 −7 A 8 = −0.11571 × 10 −8 <Example 5> Aspherical coefficients r 1: ε = 0.92540 A 4 = -0.12025 × 10 -4 A 6 = 0.52533 × 10 -7 A 8 = -0.32581 × 10 -10 r 2: ε = 0.10000 × 10 A 4 = -0.14468 × 10 -4 A 6 = 0.87723 × 10 - 7 A 8 = 0.78426 × 10 -9 r 3: ε = 0.33160 A 4 = -0.11960 × 10 -4 A 6 = 0.14748 × 10 -6 A 8 = 0.60246 × 10 -9 r 4 : ε = 0.95585 A 4 = -0.51352 x 10 -4 A 6 = 0.13347 x 10 -6 A 8 = -0.13437 x 10 -8 r 5 : ε = 0.12368 x 10 A 4 = -0.22771 x 10 -4 A 6 = 0.36746 × 10 −7 A 8 = −0.12825 × 10 −8 r 6 : ε = −0.13009 × 10 A 4 = 0.30913 × 10 −4 A 6 = 0.45464 × 10 −7 A 8 = −0.68843 × 10 −9 r 7 : ε = 0.26965 × 10 A 4 = 0.15665 × 10 -3 A 6 = -0.54318 × 10 -6 A 8 = -0.17532 × 10 -7 r 8 : ε = -0.21970 A 4 = 0.19799 × 10 -3 A 6 = 0.32779 × 10 -6 A 8 = −0.57687 × 10 -8 <Example 6> Aspheric coefficient r 2 : ε = 0.10000 x 10 A 4 = -0.15505 x 10 -4 A 6 = 0.83879 x 10 -7 A 8 = -0.24 127 x 10 -8 A 10 = 0.23757 x 10 -10 A 12 =-0.80847 × 10 -13 r 4 : ε = 0.10000 × 10 A 4 = −0.11854 × 10 -4 A 6 = 0.53054 × 10 -7 A 8 = −0.14796 × 10 -8 A 10 = 0.12514 × 10 -10 A 12 = − 0.51061 × 10 -13 r 5 : ε = 0.10000 × 10 A 4 = −0.11644 × 10 −5 A 6 = 0.8535 × 10 −7 A 8 = −0.16456 × 10 −8 A 10 = 0.15146 × 10 −10 A 12 = −0.61958 × 10 −13 r 7 : ε = 0.10000 × 10 A 4 = −0.22564 × 10 −4 A 6 = 0.28631 × 10 −7 A 8 = 0.40710 × 10 −9 A 10 = 0.94855 × 10 −11 A 12 = 0.43296 × 10 -13 r 8 : ε = 0.10000 × 10 A 4 = 0.18334 × 10 -4 A 6 = −0.55751 × 10 -7 A 8 = 0.18495 × 10 -9 A 10 = 0.20056 × 10 -10 A 12 = 0.25087 × 10 -13 r 9 : ε = 0.10000 × 10 A 4 = −0.13083 × 10 −4 A 6 = −0.31645 × 10 −6 A 8 = 0.63373 × 10 −9 A 10 = −0.10362 × 10 −11 A 12 = −0.26952 × 10 −13 <Example 7> Aspheric coefficient r 1 : ε = 0.10000 x 10 A 4 = 0.58892 x 10 -5 A 6 = 0.48505 x 10 -7 A 8 = -0.38701 x 10 -9 A 10 = 0.65002 x 10 -12 A 12 =-0.22233 x 10 -15 r 2 : ε = 0.10000 x 10 A 4 = -0.94516 x 10 -5 A 6 = 0.39665 x 10 -7 A 8 = -0.21510 x 10 -10 A 10 = -0.12936 x 10 -11 A 12 =- 0.13875 × 10 -13 r 4 : ε = 0.10 × 10 × 10 A 4 = −0.78692 × 10 −5 A 6 = −0.22629 × 10 −8 A 8 = −0.77 105 × 10 −9 A 10 = 0.41977 × 10 −11 A 12 = −0.84804 × 10 −14 r 5 : ε = 0.10000 × 10 A 4 = −0.21705 × 10 −6 A 6 = −0.83224 × 10 −8 A 8 = −0.11419 × 10 −9 A 10 = −0.56839 × 10 − 12 A 12 = 0.66732 x 10 -14 r 7 : ε = 0.10000 x 10 A 4 = -0.97076 x 10 -5 A 6 = -0.46 160 x 10 -7 A 8 = 0.26689 x 10 -9 A 10 = -0.15883 x 10 -11 A 12 = 0.35263 x 10 -14 r 8 : ε = 0.10000 x 10 A 4 = 0.19211 x 10 -4 A 6 = -0.35547 x 10 -7 A 8 = -0.75079 x 10 -9 A 10 =-0.23221 x 10 -11 A 12 = 0.60653 × 10 -13 r 9 : ε = 0.10000 x 10 A 4 = -0.81788 x 10 -5 A 6 = -0.67632 x 10 -7 A 8 = -0.10159 x 10 -8 A 10 = 0 . 42857 × 10 -12 A 12 = 0.23794 × 10 -14 <Example 8> Aspheric coefficient r 1 : ε = 0.10 × 10 A 4 = −0.17314 × 10 −4 A 6 = −0.11099 × 10 −6 A 8 = 0.12451 × 10 −8 A 10 = −0.72864 × 10 −11 A 12 = 0.26533 × 10 -13 r 2 : ε = 0.10000 × 10 A 4 = −0.23680 × 10 −4 A 6 = −0.15564 × 10 −6 A 8 = −0.11770 × 10 −8 A 10 = 0.69290 × 10 −11 A 12 = 0.34891 × 10 -13 r 4 : ε = 0.10000 × 10 A 4 = −0.25119 × 10 -4 A 6 = 0.34222 × 10 -7 A 8 = −0.67319 × 10 -9 A 10 = 0.37125 × 10 -11 A 12 = −0.20868 × 10 −13 r 5 : ε = 0.10 × 10 × 10 A 4 = 0.20886 × 10 −5 A 6 = 0.65790 × 10 −7 A 8 = −0.64905 × 10 −9 A 10 = 0.65032 × 10 −11 A 12 = −0.26549 × 10 −13 r 7 : ε = 0.10 × 10 × 10 A 4 = −0.22551 × 10 −4 A 6 = 0.22428 × 10 −7 A 8 = 0.46396 × 10 −9 A 10 = 0.61312 × 10 −11 A 12 = 0.56137 × 10 -13 r 8 : ε = 0.10000 × 10 A 4 = 0.24322 × 10 -4 A 6 = 0.10926 × 10 -6 A 8 = 0.11323 × 10 -8 A 10 = 0.15914 × 10 -10 A 12 = 0.14505 × 10 -12 r 9 : ε = 0.10000 x 10 A 4 = -0.31514 x 10 -5 A 6 = -0.79866 x 10 -7 A 8 = 0.86102 x 10 -9 A 10 = 0.29418 x 10 -11 A 12 = 0.7070 9 × 10 -14 <Example 9> Aspheric coefficient r 1 : ε = 0.10000 x 10 A 4 = 0.20109 x 10 -4 A 6 = 0.13635 x 10 -6 A 8 = 0.11051 x 10 -8 A 10 = 0.43942 x 10 -13 A 12 = -0.51481 x 10 -13 r 2 : ε = 0.10000 x 10 A 4 = 0.83021 x 10 -5 A 6 = 0.33585 x 10 -6 A 8 = 0.29980 x 10 -8 A 10 = 0.26751 x 10 -10 A 12 = 0.23205 x 10 -12 r 3 : ε = 0.10000 x 10 A 4 = -0.68916 x 10 -4 A 6 = -0.12267 x 10 -6 A 8 = 0.16 135 x 10 -8 A 10 = 0.12568 x 10 -10 A 12 = 0.72978 x 10 -13 r 4: ε = 0.10000 × 10 A 4 = -0.63114 × 10 -4 A 6 = -0.87244 × 10 -7 A 8 = 0.14728 × 10 -9 A 10 = 0.20899 × 10 -11 A 12 = -0.17228 × 10 - 13 r 5: ε = 0.10000 × 10 A 4 = -0.16890 × 10 -5 A 6 = 0.19098 × 10 -6 A 8 = -0.11329 × 10 -8 A 10 = 0.93460 × 10 -11 A 12 = 0.41743 × 10 - 13 r 6 : ε = 0.10000 x 10 A 4 = 0.24647 x 10 -4 A 6 = 0.12879 x 10 -6 A 8 = 0.45 128 x 10 -9 A 10 = -0.11513 x 10 -10 A 12 = 0.56075 x 10 -13 r 7 : ε = 0.10000 x 10 A 4 = 0.16088 x 10 -4 A 6 = -0.13611 x 10 -6 A 8 =-0.23345 x 10 -8 A 10 =-0.26920 x 10 -10 A 12 =-0.29101 x 10 -12 r 8 : ε = 0.10000 x 10 A 4 = 0.52549 x 10 -4 A 6 = 0.19383 x 10 -6 A 8 = -0.91899 x 10 -9 A 10 = -0.43772 x 10 -11 A 12 = 0.10395 x 10 -12 Fig. 1-Fig. 9 is a lens configuration diagram corresponding to the examples 1 to 9, most telephoto end arrows in the drawing widest angle end of the front group and rear group (S) ( The movement toward L) is schematically shown.

実施例1,2及び4は、いずれも物体側より順に像側に
凹の負メニスカスレンズより成る第1レンズ及び物体側
に凸の正メニスカスレンズより成る第2レンズから成る
前群と,両凸の正の第3レンズ及び両凹の負の第4レン
ズから成る後群とから構成されている。尚、実施例1に
おいて、第2レンズの像側の面、第3レンズの物体側の
面及び第4レンズの両面は非球面である。実施例2にお
いて、第2レンズの像側の面、並びに第3レンズ及び第
4レンズの両面は非球面である。実施例4において、第
1レンズの像側の面、第3レンズの物体側の面及び第4
レンズの両面は非球面である。
The first, second, and fourth embodiments each include, in order from the object side, a front lens unit including a negative meniscus lens concave on the image side and a second lens unit including a positive meniscus lens convex on the object side, and a biconvex lens. And a rear group consisting of a negative third lens and a biconcave negative fourth lens. In the first embodiment, the image-side surface of the second lens, the object-side surface of the third lens, and both surfaces of the fourth lens are aspherical. In the second embodiment, the image-side surface of the second lens and both surfaces of the third lens and the fourth lens are aspherical. In Example 4, the image-side surface of the first lens, the object-side surface of the third lens, and the fourth lens
Both surfaces of the lens are aspheric.

実施例3は、物体側より順に像側に凹の負メニスカス
レンズより成る第1レンズ及び物体側に凸の正メニスカ
スレンズより成る第2レンズから成る前群と,両凸の正
の第3レンズ,両凹の負の第4レンズ及び物体側に凸の
正メニスカスレンズより成る第5レンズから成る後群と
から構成されている。尚、実施例3において、第2レン
ズの像側の面、第3レンズの物体側の面及び第4レンズ
の両面は非球面である。
The third embodiment includes, in order from the object side, a front lens unit including a negative meniscus lens concave to the image side and a second lens unit including a positive meniscus lens convex to the object side, and a biconvex positive third lens. , A rear group consisting of a biconcave negative fourth lens and a fifth lens consisting of a positive meniscus lens convex on the object side. In Example 3, the image-side surface of the second lens, the object-side surface of the third lens, and both surfaces of the fourth lens are aspherical.

実施例5は、物体側より順に像側に凹の負メニスカス
レンズより成る第1レンズ及び両凸の正の第2レンズか
ら成る前群と,両凸の正の第3レンズ及び物体側に凹の
負メニスカスレンズより成る第4レンズから成る後群と
から構成されている。尚、実施例5において、全てのレ
ンズの両面は非球面である。
In the fifth embodiment, a front lens unit including a negative meniscus lens concave to the image side and a biconvex positive second lens in order from the object side, a biconvex positive third lens and a concave lens to the object side And a rear group composed of a fourth lens composed of a negative meniscus lens. In Example 5, both surfaces of all lenses are aspherical.

実施例6は、物体側より順に両凹の負の第1レンズ及
び両凸の正の第2レンズから成る前群と,両凸の正の第
3レンズ,両凹の負の第4レンズ及び像側に凸の正メニ
スカスレンズより成る第5レンズから成る後群とから構
成されている。尚、実施例6において、第1レンズの像
側の面、第2レンズの像側の面、第3レンズの物体側の
面、第4レンズの両面及び第5レンズの物体側の面は非
球面である。
In the sixth embodiment, a front unit composed of a biconcave negative first lens and a biconvex positive second lens in order from the object side, a biconvex positive third lens, a biconcave negative fourth lens and And a rear group consisting of a fifth lens consisting of a positive meniscus lens convex on the image side. In Example 6, the image-side surface of the first lens, the image-side surface of the second lens, the object-side surface of the third lens, both surfaces of the fourth lens, and the object-side surface of the fifth lens are non- It is a spherical surface.

実施例7は、物体側より順に像側に凹の負メニスカス
レンズより成る第1レンズ及び物体側に凸の正メニスカ
スレンズより成る第2レンズから成る前群と,両凸の正
の第3レンズ,両凹の負の第4レンズ及び像側に凸の正
メニスカスレンズより成る第5レンズから成る後群とか
ら構成されている。尚、実施例7において、第1レンズ
の両面、第2レンズの像側の面、第3レンズの物体側の
面、第4レンズの両面及び第5レンズの物体側の面は非
球面である。
In the seventh embodiment, the front lens unit includes a first lens including a negative meniscus lens concave to the image side and a second lens including a positive meniscus lens convex to the object side, and a biconvex positive third lens. And a rear group consisting of a biconcave negative fourth lens and a fifth lens composed of a positive meniscus lens convex on the image side. In Example 7, both surfaces of the first lens, the image-side surface of the second lens, the object-side surface of the third lens, both surfaces of the fourth lens, and the object-side surface of the fifth lens are aspherical. .

実施例8は、物体側より順に像側に凹の負メニスカス
レンズより成る第1レンズ及び両凸の正の第2レンズか
ら成る前群と,両凸の正の第3レンズ,両凹の負の第4
レンズ及び像側に凸の正メニスカスレンズより成る第5
レンズから成る後群とから構成されている。尚、実施例
8において、第1レンズの両面、第2レンズの像側の
面、第3レンズの物体側の面、第4レンズの両面及び第
5レンズの物体側の面は非球面である。
In the eighth embodiment, a front lens unit composed of a negative meniscus lens concave to the image side and a biconvex positive second lens in order from the object side, a biconvex positive third lens, and a biconcave negative lens 4th of
Fifth lens and positive meniscus lens convex on the image side
And a rear group consisting of lenses. In Example 8, both surfaces of the first lens, the image-side surface of the second lens, the object-side surface of the third lens, both surfaces of the fourth lens, and the object-side surface of the fifth lens are aspherical. .

実施例9は、物体側より順に像側に凹の負メニスカス
レンズより成る第1レンズ及び像側に凸の正メニスカス
レンズより成る第2レンズから成る前群と,両凸の正の
第3レンズ及び物体側に凹の負メニスカスレンズより成
る第4レンズから成る後群とから構成されている。尚、
実施例9において、全てのレンズの両面は非球面であ
る。
In the ninth embodiment, a front lens unit composed of a first lens composed of a negative meniscus lens concave on the image side and a second lens composed of a positive meniscus lens convex on the image side in order from the object side, and a biconvex positive third lens And a rear group consisting of a fourth lens consisting of a negative meniscus lens concave on the object side. still,
In Example 9, both surfaces of all lenses are aspherical.

第10図〜第18図は前記実施例1から9に対応する収差
図で、それぞれ(S)は広角端焦点距離,(M)は中間
焦点距離,(L)は望遠端焦点距離での収差を示してい
る。また、実線(d)はd線に対する収差を表わし、点
線(SC)は正弦条件を表わす。更に点線(DM)と実線
(DS)はメリディオナル面とサジタル面での非点収差を
それぞれ表わしている。
10 to 18 are aberration diagrams corresponding to the first to ninth embodiments, wherein (S) is the focal length at the wide-angle end, (M) is the intermediate focal length, and (L) is the aberration at the telephoto end. Is shown. The solid line (d) represents the aberration with respect to the d-line, and the dotted line (SC) represents the sine condition. Further, a dotted line (DM) and a solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

第1表は実施例1〜9における条件式中の 条件式中の の値をそれぞれ示している。Table 1 shows that in the conditional expressions in Examples 1 to 9, In the conditional expression Are shown respectively.

第2表は実施例1〜9における条件式中の 及び条件式中の の値をそれぞれ示している。Table 2 shows that in the conditional expressions in Examples 1 to 9, And in the conditional expression Are shown respectively.

第3表〜第11表はそれぞれ実施例1〜9に対応して、
前記yの値に対する各非球面における条件式中の を(I)で表わし、条件式中の を(II)で表わしている。
Tables 3 to 11 correspond to Examples 1 to 9, respectively.
In the conditional expression for each aspheric surface with respect to the value of y, Is represented by (I), and in the conditional expression Is represented by (II).

発明の効果 以上説明したように本発明によれば、高い光学性能を
維持しながら、少ない枚数のレンズで低コスト、且つコ
ンパクトなズームレンズを実現することができる。ま
た、本発明に係るズームレンズを、一眼レフカメラに用
いれば、該カメラのコンパクト化,低コスト化を達成す
ることができる。
Effects of the Invention As described above, according to the present invention, a low-cost and compact zoom lens can be realized with a small number of lenses while maintaining high optical performance. Further, when the zoom lens according to the present invention is used for a single-lens reflex camera, the size and cost of the camera can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図,第4図,第5図,第6図,第
7図,第8図及び第9図は、それぞれ本発明の実施例1
〜9に対応するレンズ構成図である。 第10図,第11図,第12図,第13図,第14図,第15図,第
16図,第17図及び第18図は、それぞれ本発明の実施例1
〜9に対応する収差図である。
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8 and FIG.
10 is a lens configuration diagram corresponding to FIGS. FIG. 10, FIG. 11, FIG. 12, FIG. 13, FIG. 14, FIG.
FIGS. 16, 17, and 18 show Embodiment 1 of the present invention, respectively.
10 is an aberration diagram corresponding to FIGS.

フロントページの続き (56)参考文献 特開 昭58−60717(JP,A) 特開 昭61−69015(JP,A) 特開 昭61−87117(JP,A) 特開 昭61−87118(JP,A) 特開 平1−210914(JP,A) 特開 昭59−20018(JP,A) 特開 昭61−91613(JP,A) 特開 昭62−50718(JP,A) 特開 平2−109009(JP,A) 特開 平3−15811(JP,A) 特開 平3−145614(JP,A) 特開 平3−155513(JP,A) 特開 平4−15612(JP,A) 特公 昭59−13003(JP,B2) (58)調査した分野(Int.Cl.7,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 Continuation of the front page (56) References JP-A-58-60717 (JP, A) JP-A-61-69015 (JP, A) JP-A-61-87117 (JP, A) JP-A-61-87118 (JP, A) JP-A-1-210914 (JP, A) JP-A-59-20018 (JP, A) JP-A-61-91613 (JP, A) JP-A-62-50718 (JP, A) JP-A-3-15911 (JP, A) JP-A-3-145614 (JP, A) JP-A-3-155513 (JP, A) JP-A-4-15612 (JP, A) A) Japanese Patent Publication No. 59-13003 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00- 25/04

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に負の屈折力を有する前群と
正の屈折力を有する後群とから成り、前群と後群との間
の空気間隔を変化させることによって全系の焦点距離を
変化させるズームレンズにおいて、 前記前群中に2面以上の非球面を有し、以下の条件式を
満足するとともに、 前記前群の非球面がすべて以下の条件式を満足すること
を特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0<y<0.8y
maxの任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 φW:広角端での全系の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 ただし、 r :非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai :非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
1. A focus system comprising a front unit having a negative refractive power and a rear unit having a positive refractive power in order from the object side. In a zoom lens that changes a distance, the front lens unit has two or more aspheric surfaces in the front unit, and satisfies the following conditional expression. The zoom lens is characterized in that the aspherical surface of the front group satisfies all of the following conditional expressions: When the maximum effective diameter of the aspherical surface and y max, 0 <y <0.8y
For any height y in the vertical direction of the optical axis of max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, φ W : refractive power of the entire system at the wide-angle end, N: refractive index of the aspherical object side medium, N ′: non- X (y): aspherical surface shape, X 0 (y): aspherical reference spherical shape, where: r: reference radius of curvature of the aspheric surface, ε: quadratic surface parameter, A i : aspheric surface coefficient,: paraxial radius of curvature of the aspheric surface {(1 /) = (1 / r) +2
A 2 },
【請求項2】物体側より順に負の屈折力を有する前群と
正の屈折力を有する後群とから成り、前群と後群との間
の空気間隔を変化させることによって全系の焦点距離を
変化させるズームレンズにおいて、 前記後群中に2面以上の非球面を有し、以下の条件式を
満足するとともに、 前記後群の非球面がすべて以下の条件式を満足すること
を特徴とするズームレンズ; 非球面の最大有効径をymaxとするとき、0<y<0.7y
maxの任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 φW:広角端での全系の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 ただし、 r :非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai :非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
2. A focal system of the whole system comprising a front group having a negative refractive power and a rear group having a positive refractive power in order from the object side, and by changing an air gap between the front group and the rear group. In a zoom lens that changes the distance, the rear group has two or more aspheric surfaces, and satisfies the following conditional expression; The zoom lens is characterized in that the aspherical surface of the rear group satisfies all of the following conditional expressions: When the maximum effective diameter of the aspherical surface and y max, 0 <y <0.7y
For any height y in the vertical direction of the optical axis of max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, φ W : refractive power of the entire system at the wide-angle end, N: refractive index of the aspherical object side medium, N ′: non- X (y): aspherical surface shape, X 0 (y): aspherical reference spherical shape, where: r: reference radius of curvature of the aspheric surface, ε: quadratic surface parameter, A i : aspheric surface coefficient,: paraxial radius of curvature of the aspheric surface {(1 /) = (1 / r) +2
A 2 },
【請求項3】物体側より順に負の屈折力を有する前群と
正の屈折力を有する後群とから成り、前群と後群との間
の空気間隔を変化させることによって全系の焦点距離を
変化させるズームレンズにおいて、 前記前群及び後群がそれぞれ少なくとも1面以上の非球
面を有し、且つ全系中に2面以上の非球面を有し、 前記後群が2枚あるいは3枚のレンズで構成されている
とともに、以下の条件式を満足し、 非球面の最大有効径をymaxとするとき、0<y<0.8y
maxの任意の光軸垂直方向の高さyに対して、前記前群
の非球面がすべて以下の条件式を満足し、 非球面の最大有効径をymaxとするとき、0<y<0.7y
maxの任意の光軸垂直方向の高さyに対して、前記後群
の非球面がすべて以下の条件式を満足することを特徴と
するズームレンズ; ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 φW:広角端での全系の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 X(y):非球面の面形状、 X0(y):非球面の参照球面形状、 ただし、 r :非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai :非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
3. A focal system of the whole system comprising a front group having a negative refractive power and a rear group having a positive refractive power in order from the object side, and by changing an air gap between the front group and the rear group. In a zoom lens that changes the distance, the front group and the rear group each have at least one or more aspheric surfaces, and the entire system has two or more aspheric surfaces, and the rear group has two or three lenses. It is composed of two lenses and satisfies the following conditional expression, When the maximum effective diameter of the aspherical surface is y max , 0 <y <0.8y
For any height y in the vertical direction of the optical axis of max , all the aspheric surfaces of the front group satisfy the following conditional expressions; When the maximum effective diameter of the aspherical surface is y max , 0 <y <0.7y
a zoom lens characterized in that all the aspheric surfaces of the rear group satisfy the following conditional expression for an arbitrary height y in the vertical direction of the optical axis of max : Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, φ W : refractive power of the entire system at the wide-angle end, N: refractive index of the aspherical object side medium, N ′: non- X (y): aspherical surface shape, X 0 (y): aspherical reference spherical shape, where: r: reference radius of curvature of the aspheric surface, ε: quadratic surface parameter, A i : aspheric surface coefficient,: paraxial radius of curvature of the aspheric surface {(1 /) = (1 / r) +2
A 2 },
【請求項4】前記前群が2枚のレンズから成り、前記後
群が3枚のレンズから成ることを特徴とする請求項1〜
3のいずれか1項に記載のズームレンズ。
4. The apparatus according to claim 1, wherein said front group comprises two lenses, and said rear group comprises three lenses.
4. The zoom lens according to any one of 3.
【請求項5】前記前群及び後群がいずれも2枚のレンズ
から成ることを特徴とする請求項1〜3のいずれか1項
に記載のズームレンズ。
5. The zoom lens according to claim 1, wherein each of the front group and the rear group includes two lenses.
JP2156233A 1990-06-13 1990-06-14 Compact zoom lens Expired - Lifetime JP3033136B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2156233A JP3033136B2 (en) 1990-06-14 1990-06-14 Compact zoom lens
US07/714,266 US5283693A (en) 1990-06-13 1991-06-12 Compact zoom lens system
US08/139,900 US5446592A (en) 1990-06-13 1993-10-19 Compact zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156233A JP3033136B2 (en) 1990-06-14 1990-06-14 Compact zoom lens

Publications (2)

Publication Number Publication Date
JPH0446308A JPH0446308A (en) 1992-02-17
JP3033136B2 true JP3033136B2 (en) 2000-04-17

Family

ID=15623282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156233A Expired - Lifetime JP3033136B2 (en) 1990-06-13 1990-06-14 Compact zoom lens

Country Status (1)

Country Link
JP (1) JP3033136B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164965A (en) * 1991-12-11 1993-06-29 Fuji Photo Optical Co Ltd Zoom lens of two-group constitution
JP3331223B2 (en) * 1992-03-30 2002-10-07 オリンパス光学工業株式会社 Small two-group zoom lens
US5381269A (en) * 1993-03-30 1995-01-10 Eastman Kodak Company Zoom lens
US5663836A (en) * 1993-08-10 1997-09-02 Olympus Optical Co., Ltd. Compact zoom lens system comprising two lens units
JPH08152558A (en) * 1993-11-25 1996-06-11 Asahi Optical Co Ltd Zoom lens
JP3394107B2 (en) * 1995-01-19 2003-04-07 三菱電機株式会社 Zoom lens and projection display device
US6025961A (en) * 1997-04-09 2000-02-15 Minolta Co., Ltd. Zoom lens system having two lens units
US6934092B1 (en) 1998-02-19 2005-08-23 Canon Kabushiki Kaisha Zoom lens and photographing apparatus having the same
JPH11305125A (en) * 1998-02-19 1999-11-05 Canon Inc Zoom lens and photographing device using the same
JP4674889B2 (en) * 2004-09-28 2011-04-20 オリンパス株式会社 Electronic imaging device
JP2006145762A (en) * 2004-11-18 2006-06-08 Nidec Copal Corp Zoom lens
JP4717429B2 (en) * 2004-12-16 2011-07-06 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP2007187740A (en) * 2006-01-11 2007-07-26 Largan Precision Co Ltd Zoom lens
EP1921482A1 (en) 2006-11-08 2008-05-14 Nikon Corporation Compact zoom lens of the retrofocus type having two lens groups
JP2007293368A (en) * 2007-07-30 2007-11-08 Nidec Copal Corp Zoom lens
JP2010224580A (en) * 2010-06-30 2010-10-07 Nidec Copal Corp Zoom lens
WO2012176470A1 (en) * 2011-06-24 2012-12-27 富士フイルム株式会社 Zoom lens and imaging device
KR101536556B1 (en) * 2013-12-24 2015-07-15 주식회사 코렌 Photographic lens optical system
CN106353880B (en) * 2016-11-04 2019-02-19 湖北三江航天万峰科技发展有限公司 A kind of half active probe zoom-type optical receiving system of laser

Also Published As

Publication number Publication date
JPH0446308A (en) 1992-02-17

Similar Documents

Publication Publication Date Title
US7542219B2 (en) Intermediate telephoto lens system
JP3033136B2 (en) Compact zoom lens
JP2924116B2 (en) Zoom lens
JP2924117B2 (en) Zoom lens
US20090015938A1 (en) Wide-angle lens, optical apparatus and method for focusing
JP3033141B2 (en) Compact zoom lens
JP3033149B2 (en) Compact zoom lens
JP3033137B2 (en) Compact zoom lens
JP3849129B2 (en) Zoom lens
JP3028581B2 (en) High magnification zoom lens
JP3033138B2 (en) Compact zoom lens
JP2900434B2 (en) Compact zoom lens
JPH0921952A (en) Zoom lens
JPH0627377A (en) Zoom lens
JP3394624B2 (en) Zoom lens
JPH11352402A (en) Zoom lens
JP3033148B2 (en) Compact zoom lens
JP2900435B2 (en) Compact zoom lens
JPH05150160A (en) Zoom lens
JP2924115B2 (en) Zoom lens
JP3021596B2 (en) Compact zoom lens
JP2924119B2 (en) Zoom lens
JP2924153B2 (en) Compact zoom lens
JP3087303B2 (en) Compact zoom lens
JP3067163B2 (en) Compact zoom lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080218

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090218

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100218

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110218

Year of fee payment: 11