JP2900434B2 - Compact zoom lens - Google Patents

Compact zoom lens

Info

Publication number
JP2900434B2
JP2900434B2 JP1266602A JP26660289A JP2900434B2 JP 2900434 B2 JP2900434 B2 JP 2900434B2 JP 1266602 A JP1266602 A JP 1266602A JP 26660289 A JP26660289 A JP 26660289A JP 2900434 B2 JP2900434 B2 JP 2900434B2
Authority
JP
Japan
Prior art keywords
max
aspherical
lens
group
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1266602A
Other languages
Japanese (ja)
Other versions
JPH03127008A (en
Inventor
省 福島
尚士 岡田
淳司 橋村
宏 梅田
久幸 升本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP1266602A priority Critical patent/JP2900434B2/en
Priority to US07/595,389 priority patent/US5327290A/en
Publication of JPH03127008A publication Critical patent/JPH03127008A/en
Application granted granted Critical
Publication of JP2900434B2 publication Critical patent/JP2900434B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only
    • G02B15/1421Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only the first group being positive

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明はズームレンズに関するものであり、更に詳し
くはズームレンズ内蔵型レンズシャッターカメラ用のズ
ームレンズに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens, and more particularly to a zoom lens for a lens shutter camera with a built-in zoom lens.

従来の技術 ズームレンズ内蔵型レンズシャッターカメラのコンパ
クト化,低コスト化を達成するために、撮影レンズのコ
ンパクト化,低コスト化が要望されている。ズーミング
のための移動量も含め、レンズ系をコンパクト化するた
めには、各群の屈折力を強くする必要があるが、性能を
維持しつつ屈折力を強くするというのは、レンズ枚数を
増加させる方向であると言える。一方、低コスト化のた
めには、レンズ枚数を削減するのが効果的である。この
ように、レンズ系のコンパクト化と低コスト化には、相
反する要素が多分に含まれている。
2. Description of the Related Art In order to reduce the size and cost of a lens shutter camera with a built-in zoom lens, there has been a demand for a compact and low cost photographing lens. In order to make the lens system compact, including the amount of movement for zooming, it is necessary to increase the refractive power of each group, but increasing the refractive power while maintaining performance increases the number of lenses It can be said that it is the direction to make. On the other hand, for cost reduction, it is effective to reduce the number of lenses. As described above, the compactness and low cost of the lens system include many contradictory elements.

ところで、最近、プラスチック成形やガラスモールド
等の技術進歩が著しく、非球面が安価に生産されうるよ
うになってきている。
By the way, in recent years, technical progress in plastic molding, glass molding and the like has been remarkable, and aspherical surfaces can be produced at low cost.

発明が解決しようとする課題 斯る状況に鑑み、本発明の目的は、非球面を効果的に
用いることにより、コンパクトなレンズシャッターカメ
ラ用ズームレンズを、少ない枚数で構成することにあ
る。
In view of such circumstances, an object of the present invention is to configure a compact zoom lens for a lens shutter camera with a small number of lenses by effectively using an aspheric surface.

課題を解決するための手段 上記目的を達成するため本発明では、物体側より順
に、正屈折力を有する前群と,負屈折力を有する後群と
から成り、前群と後群との間隔を変化させることによっ
て全系の焦点距離を変化させるズームレンズにおいて、
3面以上の非球面を用いて収差補正した構成としてい
る。
Means for Solving the Problems In order to achieve the above object, the present invention provides, in order from the object side, a front group having a positive refractive power and a rear group having a negative refractive power. In a zoom lens that changes the focal length of the entire system by changing
The configuration is such that aberration is corrected using three or more aspheric surfaces.

従来の正負2成分のズームレンズにおいては、非球面
が多くとも2面しか用いられていないため、レンズの構
成枚数が多くなり、レンズ全長(広角端でのレンズ前頂
点からフィルム面までの距離)が長くなっている。しか
し、本発明では上記の如く3面以上の非球面を用いてい
るので、少ない枚数のレンズでレンズ全長を短くするこ
とが可能となる。
In the conventional positive / negative two-component zoom lens, since at most two aspheric surfaces are used, the number of constituent lenses increases, and the overall length of the lens (the distance from the front vertex of the lens at the wide-angle end to the film surface). Is getting longer. However, in the present invention, since three or more aspherical surfaces are used as described above, it is possible to shorten the total lens length with a small number of lenses.

また、本発明では、例えば前記前群に2面以上の非球
面を用いて収差補正してもよく、また前記後群に2面以
上の非球面を用いて収差補正してもよい。
In the present invention, for example, aberration correction may be performed using two or more aspheric surfaces in the front group, or aberration correction may be performed using two or more aspheric surfaces in the rear group.

前記前群中の非球面のうち少なくとも1面は、次の条
件式を満足するように構成されているのが好ましい。
条件式は、非球面の最大有効径をymaxとするとき、0.
7ymax<y<1.0ymaxなる任意の光軸垂直方向高さyに対
して、 ここで、1:前群の屈折力 N :非球面の物体側媒質の屈折率 N′:非球面の像側媒質の屈折率 x(y):非球面の面形状 x0(y):非球面の参照球面形状 但し、 である。
It is preferable that at least one of the aspheric surfaces in the front group is configured to satisfy the following conditional expression.
Condition, when the maximum effective diameter of the aspherical surface and y max, 0.
For any height y in the vertical direction of the optical axis such that 7y max <y <1.0y max , Here, 1 : refractive power of the front group N: refractive index of the aspherical object side medium N ′: refractive index of the aspherical image side medium x (y): aspherical surface shape x 0 (y): non Reference spherical shape of spherical surface where It is.

前記条件式は、前群中の非球面が周辺ほど正の屈折
力が弱く(負の屈折力が強く)なるということを意味
し、球面収差を補正するための条件である。上限を越え
ると、球面収差がズーム全域で補正不足の傾向が著しく
なり、下限を越えると、球面収差がズーム全域で補正過
剰の傾向が著しくなる。
The above conditional expression means that the positive refractive power becomes weaker (the negative refractive power becomes stronger) toward the periphery of the aspherical surface in the front group, and is a condition for correcting spherical aberration. If the upper limit is exceeded, the spherical aberration tends to be undercorrected over the entire zoom range. If the lower limit is exceeded, the spherical aberration tends to be overcorrected over the entire zoom range.

また、前記後群中の非球面のうち少なくとも1面は、
次の条件式を満足するように構成されているのが好ま
しい。条件式は、非球面の最大有効径をymaxとすると
き、0.8ymax<y<1.0ymaxなる任意の光軸垂直方向高さ
yに対して、 ここで、2:後群の屈折力 である。
Further, at least one of the aspheric surfaces in the rear group is
It is preferable that the zoom lens is configured to satisfy the following conditional expression. Assuming that the maximum effective diameter of the aspheric surface is y max , the conditional expression is: For any height y in the vertical direction of the optical axis, 0.8y max <y <1.0y max Here, 2 : the refractive power of the rear group.

前記条件式は、後群中の非球面が周辺ほど負の屈折
力が弱く(正の屈折力が強く)なるということを意味
し、歪曲収差と像面湾曲とをバランスよく補正するため
の条件である。上限を越えると、広角端における歪曲収
差が正の大きな値をとるようになり、下限を越えると、
ズーム全域で像面が負の方向に湾曲する傾向が著しくな
る。
The above conditional expression means that the negative refractive power becomes weaker (positive refractive power becomes stronger) as the aspherical surface in the rear group becomes peripheral, and the condition for correcting distortion and field curvature in a well-balanced manner. It is. Beyond the upper limit, the distortion at the wide-angle end takes a large positive value, and beyond the lower limit,
The tendency of the image surface to curve in the negative direction becomes significant over the entire zoom range.

前群中のすべての非球面は、次の条件式を満足する
ことが望ましい。
It is desirable that all the aspheric surfaces in the front group satisfy the following conditional expression.

条件式は、非球面の最大有効径をymaxとするとき、
y<0.7ymaxなる任意の光軸垂直方向高さyに対して である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is y max ,
For any optical axis vertical height y such that y <0.7y max It is.

条件式の上限を越えると、輪帯球面収差が負の大き
な値を持つようになり、絞り込みによるピント位置のず
れが問題となる。また、下限を越えると、輪帯光束に対
する球面収差補正効果が過剰となり、諸収差と球面収差
をバランスよく補正するのが困難となり、球面収差が波
うったような形になりやすくなる。
When the value exceeds the upper limit of the conditional expression, the annular spherical aberration has a large negative value, and there is a problem of the shift of the focus position due to the stop-down. If the lower limit is exceeded, the spherical aberration correction effect on the annular light flux becomes excessive, making it difficult to correct various aberrations and spherical aberration in a well-balanced manner, and the spherical aberration tends to be wavy.

後群中のすべての非球面は、次の条件式を満足する
ことが望ましい。
It is desirable that all the aspheric surfaces in the rear group satisfy the following conditional expression.

条件式は、非球面の最大有効径をymaxとするとき、
y<0.8ymaxなる任意の光軸垂直方向高さyに対して である。
The conditional expression is, when the maximum effective diameter of the aspheric surface is y max ,
For any height y in the vertical direction of the optical axis such that y <0.8y max It is.

条件式の上限を越えると、広角端〜中間焦点距離領
域の中間画角帯において、正の歪曲収差及び像面湾曲の
正偏移傾向が大きくなる。また、下限を越えると、中間
焦点距離域〜望遠端で、負の歪曲収差が大きくなり、加
えて全ズーム域で像面湾曲の負偏移傾向が著しくなる。
If the upper limit of the conditional expression is exceeded, the positive distortion and the positive shift of the field curvature become large in the intermediate angle of view band from the wide-angle end to the intermediate focal length region. If the lower limit is exceeded, the negative distortion becomes large in the range from the intermediate focal length to the telephoto end, and in addition, the negative shift of the field curvature becomes remarkable in the entire zoom range.

前群及び後群は、次の条件式及びを満足するよう
に構成されていることが望ましい。
It is desirable that the front group and the rear group are configured to satisfy the following conditional expressions.

ここで、 W:広角端における全系の屈折力 T:望遠端における全系の屈折力 β:ズーム比 但し、<0 β=W/ である。 Here, W : refractive power of the entire system at the wide-angle end T : refractive power of the entire system at the telephoto end β: zoom ratio where 2 <0β = W / T.

これらは、レンズ全長,ズーミングのための移動量,
バックフォーカス及び諸収差の補正状態を良好なバラン
スに保つための条件である。
These are the total lens length, the amount of movement for zooming,
This is a condition for keeping the back focus and the correction state of various aberrations in a good balance.

条件式の下限を越えると、広角端でバックフォーカ
スを適切な値(広角端における焦点距離の15%以上)に
保つことが困難となって、後群レンズ径の増大を招く。
また、上限を越えると、前群及び後群のズーミングによ
る移動量が過大となり、鏡胴構成上不利となる。
If the lower limit of the conditional expression is exceeded, it becomes difficult to keep the back focus at an appropriate value (15% or more of the focal length at the wide-angle end) at the wide-angle end, and the diameter of the rear group lens increases.
If the upper limit is exceeded, the amount of movement of the front group and the rear group due to zooming becomes excessive, which is disadvantageous in the lens barrel configuration.

条件式の下限を越えると、ペッツバール和が負の大
きな値をとるようになり、像面が正方向に倒れる傾向が
著しくなり、加えて広角端での歪曲収差が正の大きな値
をとるようになる。また、上限を越えると、ズーミング
に伴う前・後群間の間隔変化を大きくとることが必要と
なり、広角端において前・後群間が大きく離れるため
に、レンズ全長の増大を招く。
When the lower limit of the conditional expression is exceeded, the Petzval sum takes a large negative value, the tendency of the image plane to fall in the positive direction becomes remarkable, and in addition, the distortion at the wide-angle end takes a large positive value. Become. If the upper limit is exceeded, it is necessary to increase the change in distance between the front and rear groups due to zooming, and the front and rear groups are greatly separated at the wide-angle end, thereby increasing the total lens length.

次の条件式及びを満足することもレンズ全長,ズ
ーミングのための移動量,バックフォーカス及び諸収差
の補正状態を良好なバランスに保つために有効である。
Satisfying the following conditional expressions is also effective for maintaining a good balance between the total lens length, the amount of movement for zooming, the back focus, and the state of correction of various aberrations.

但し、<0 である。 However, 2 <0.

条件式は、広角端における全系の屈折力と前群の屈
折力との比を規定するものである。条件式の上限を越
えると、前群屈折力が過大となり、前群中の非球面をも
ってしても前群で発生する諸収差、特に球面収差の補正
が困難となる。また、下限を越えると、画面周辺で下方
性のコマ収差が発生する傾向が著しくなる。
The conditional expression defines the ratio between the refractive power of the entire system and the refractive power of the front group at the wide-angle end. When the value exceeds the upper limit of the conditional expression, the refractive power of the front group becomes excessively large, and it becomes difficult to correct various aberrations generated in the front group, especially spherical aberration, even if the front group has an aspheric surface. If the lower limit is exceeded, the downward coma aberration around the screen is more likely to occur.

条件式は、広角端における全系の屈折力と後群の屈
折力との比を規定するものである。条件式の上限を越
えると、後群屈折力が過大となり、後群中の非球面をも
ってしても後群で発生する諸収差、特に像面湾曲と歪曲
収差の補正が困難となる。また、下限を越えると、下方
性のコマ収差の発生が著しくなると共に、充分なバック
フォーカスの確保が困難となる。
The conditional expression defines a ratio between the refractive power of the entire system and the refractive power of the rear unit at the wide-angle end. If the upper limit of the conditional expression is exceeded, the refractive power of the rear unit will be excessively large, and it will be difficult to correct various aberrations generated in the rear unit, especially the curvature of field and distortion, even if the rear unit has an aspheric surface. On the other hand, if the lower limit is exceeded, the generation of downward coma becomes remarkable, and it becomes difficult to secure a sufficient back focus.

但し、例えば2枚構成のズームレンズや3枚構成のズ
ームレンズのように、極めて少ない枚数のレンズで構成
されたズームレンズにおいては、ズーム比を2以下と
し、且つ開放Fナンバーを比較的大きくしたとしても、
収差を良好に補正するためには前・後群より成る2成分
ズームレンズにおける各群の屈折力を相対的に弱くする
ことが求められるので、以下の条件式〜を満足する
ように本発明のズームレンズを構成するのが望ましい。
However, for a zoom lens composed of a very small number of lenses, such as a two-element or three-element zoom lens, the zoom ratio is set to 2 or less and the open F-number is set relatively large. As
In order to satisfactorily correct the aberration, it is required to relatively weaken the refractive power of each group in the two-component zoom lens including the front and rear groups, so that the present invention satisfies the following conditional expressions. It is desirable to configure a zoom lens.

条件式,中、<0である。 Conditional expression, where 2 <0.

条件式の下限を越えると、ズーム比が2以下のズー
ムレンズにおいても、バックフォーカスを適切な値に保
つことが困難で、後群レンズ径の増大を招く。また、上
限を越えると、前・後群のズーミングによる移動がズー
ム比を考慮しても過大となり、鏡胴構成上不利となる。
If the lower limit of the conditional expression is exceeded, it is difficult to keep the back focus at an appropriate value even in a zoom lens having a zoom ratio of 2 or less, which causes an increase in the rear lens group diameter. If the upper limit is exceeded, the movement of the front and rear units due to zooming becomes excessive even in consideration of the zoom ratio, which is disadvantageous in terms of the lens barrel configuration.

条件式の下限を越えると、ズーム比が2以下のズー
ムレンズにおいても、ペッツバール和が負の大きな値を
とるようになり、像面が正方向に倒れる傾向が著しくな
り、加えて広角端での歪曲収差が正の大きな値をとるよ
うになる。また、上限を越えると、ズーミングに伴う前
・後群間の間隔変化を大きくとることが必要となり、広
角端において前・後群間が大きく離れるために、レンズ
全長の増大を招く。
If the lower limit of the conditional expression is exceeded, even in a zoom lens having a zoom ratio of 2 or less, the Petzval sum takes a large negative value, and the image surface tends to tilt in the positive direction remarkably. The distortion takes a large positive value. If the upper limit is exceeded, it is necessary to increase the change in distance between the front and rear groups due to zooming, and the front and rear groups are greatly separated at the wide-angle end, thereby increasing the total lens length.

条件式の上限を越えると、ズーム比が小さく開放F
ナンバーが大きいズームレンズにおいても、極めて少な
いレンズ枚数で達成しようとすると、前群屈折力が過大
となり、前群中の非球面をもってしても前群で発生する
諸収差、特に球面収差の補正が困難となる。また、下限
を越えると、ズーム比が小さく、特に開放Fナンバーが
大きいズームレンズにおいても、極めて少ないレンズ枚
数で達成しようとすると、画面周辺で下方性のコマ収差
が発生する傾向が著しくなる。
If the upper limit of the conditional expression is exceeded, the zoom ratio will be small and the open F
Even if a zoom lens with a large number is to be achieved with an extremely small number of lenses, the refractive power of the front group becomes excessively large, and correction of various aberrations, especially spherical aberration, occurring in the front group even with an aspheric surface in the front group. It will be difficult. If the lower limit is exceeded, even in a zoom lens having a small zoom ratio and particularly a large open F-number, when an extremely small number of lenses are used, a downward tendency of coma aberration around the screen becomes remarkable.

条件式の上限を越えると、ズーム比が小さく開放F
ナンバーが大きいズームレンズにおいても、極めて少な
いレンズ枚数で達成しようとすると、後群屈折力が過大
となり、後群中の非球面をもってしても後群で発生する
諸収差、特に像面湾曲と歪曲収差の補正が困難となる。
また、下限を越えると、ズーム比が小さく、特に開放F
ナンバーが大きいズームレンズにおいても、極めて少な
いレンズ枚数で達成しようとすると、下方性のコマ収差
の発生が著しくなると共に、充分なバックフォーカスの
確保が困難となる。
If the upper limit of the conditional expression is exceeded, the zoom ratio will be small and the open F
Even if a zoom lens with a large number is to be achieved with an extremely small number of lenses, the rear group refractive power will be excessive, and various aberrations that occur in the rear group even with an aspherical surface in the rear group, especially field curvature and distortion It becomes difficult to correct aberration.
If the lower limit is exceeded, the zoom ratio is small, and
Even in the case of a zoom lens having a large number, if an attempt is made to achieve it with an extremely small number of lenses, downward comatic aberration will be remarkably generated, and it will be difficult to secure a sufficient back focus.

実施例 以下、本発明に係るコンパクトなズームレンズの実施
例を示す。
EXAMPLES Examples of the compact zoom lens according to the present invention will be described below.

但し、各実施例において、r1〜r11は物体側から数え
た面の曲率半径、d1〜d10は物体側から数えた軸上面間
隔を示し、N1〜N5〜νは物体側から数えた各レ
ンズのd線に対する屈折率,アッベ数を示す。また、f
は全系の焦点距離、FNOは開放Fナンバーを示す。
However, in each embodiment, r 1 to r 11 indicate the radius of curvature of the surface counted from the object side, d 1 to d 10 indicate the axial top surface distance counted from the object side, and N 1 to N 5 , v 1 to v Reference numeral 5 denotes the refractive index and Abbe number of each lens counted from the object side with respect to d-line. Also, f
Indicates the focal length of the entire system, and F NO indicates the open F number.

なお、実施例中、曲率半径に*印を付した面は非球面
で構成された面であることを示し、前記非球面の面形状
(x(y))を表わす式で定義するものとする。
Note that, in the examples, a surface marked with an asterisk (*) indicates a surface constituted by an aspheric surface, and is defined by an expression representing a surface shape (x (y)) of the aspheric surface. .

非球面係数 r6 : ε=0 A4=0.28799×10-4 A6=0.10540×10-6 A8=−0.74715×10-9 A10=−0.12474×10-10 A12=0.22951×10-12 r8 : ε=0.10000×10 A4=0.43638×10-4 A6=0.13233×10-6 A8=0.17788×10-9 A10=−0.39761×10-10 A12=0.38362×10-12 r10: ε=0.10000×10 A4=0.29123×10-5 A6=0.98436×10-7 A8=−0.45252×10-8 A10=0.78497×10-10 A12=0.12647×10-12 非球面係数 r1 : ε=0.16431×10 A2=0.11309×10-2 A4=0.97700×10-5 A6=0.14592×10-6 A8=0.14708×10-9 A10=0.16851×10-10 A12=0.12321×10-12 r4 : ε=0.99991 A2=0.18228×10-2 A4=0.15635×10-4 A6=0.17170×10-6 A8=−0.15512×10-8 A10=−0.56544×10-11 A12=−0.55094×10-15 r6 : ε=0.17888 A2=0.39011×10-4 A4=0.35354×10-4 A6=0.18277×10-6 A8=−0.11572×10-7 A10=0.41379×10-9 A12=−0.47714×10-11 r8 : ε=0.10000×10 A4=0.57941×10-4 A6=0.28082×10-6 A8=0.24493×10-8 A10=−0.74654×10-10 A12=0.91740×10-12 r10: ε=0.10000×10 A4=0.14506×10-5 A6=0.20850×10-6 A8=−0.13795×10-7 A10=0.28038×10-9 A12=−0.12568×10-11 非球面係数 r1 : ε=0.25000×10 A4=−0.12226×10-4 A6=−0.10475×10-7 A8=0.49965×10-10 r4 : ε=0.10000×10 A4=0.21838×10-6 A6=0.20884×10-7 A8=0.57958×10-10 r6 : ε=0 A4=0.36500×10-4 A6=0.58936×10-7 A8=−0.48977×10-9 A10=−0.14097×10-10 A12=0.20479×10-12 r8 : ε=0.10000×10 A4=0.50828×10-4 A6=0.30784×10-6 A8=−0.13168×10-8 A10=−0.40828×10-10 A12=0.46214×10-12 r10: ε=0.10000×10 A4=0.10283×10-4 A6=0.12446×10-6 A8=−0.48134×10-8 A10=0.78053×10-10 A12=0.16921×10-12 非球面係数 r1 : ε=0.20803×10 A4=0.17237×10-4 A6=0.63541×10-7 A8=−0.47391×10-9 A10=−0.20451×10-11 A12=−0.60700×10-14 r4 : ε=0.98696 A4=0.28086×10-4 A6=−0.73078×10-7 A8=−0.67526×10-9 A10=−0.82633×10-11 A12=−0.19752×10-12 r6 : ε=−0.22090 A4=0.71791×10-5 A6=−0.10362×10-7 A8=0.40625×10-9 A10=0.32410×10-11 A12=−0.53636×10-13 r8 : ε=0.70994 A4=0.30809×10-4 A6=−0.14938×10-6 A8=0.19104×10-9 A10=0.66289×10-11 A12=−0.31809×10-13 非球面係数 r1 : ε=0 A4=−0.88580×10-4 A6=−0.21947×10-6 A8=−0.21425×10-7 A10=0.81040×10-9 A12=−0.11824×10-10 r4 : ε=0.10000×10 A4=0.12252×10-4 A6=0.72190×10-8 A8=−0.21386×10-8 A10=−0.28989×10-11 A12=−0.26437×10-13 r6 : ε=0.68081 A4=0.33088×10-4 A6=0.16942×10-6 A8=−0.17850×10-9 A10=0.22719×10-12 A12=0.35169×10-13 r8 : ε=0.10019×10 A4=0.29143×10-4 A6=−0.70790×10-7 A8=−0.33869×10-9 A10=−0.21763×10-11 A12=−0.77879×10-13 r9 : ε=0.93078 A4=0.40781×10-5 A6=0.32352×10-7 A8=−0.87018×10-9 A10=0.17369×10-11 A12=0.18480×10-14 非球面係数 r1 : ε=0.88047 A4=−0.91081×10-4 A6=0.63195×10-6 A8=−0.86078×10-8 r2 : ε=0.88925 A4=0.47953×10-4 A6=0.18789×10-5 A8=−0.11747×10-8 r4 : ε=0.94697 A4=0.21869×10-4 A6=0.80788×10-8 A8=0.74423×10-9 r5 : ε=0.92858 A4=0.16011×10-4 A6=−0.17117×10-6 A8=0.25878×10-10 r7 : ε=0.53127 A4=−0.39602×10-4 A6=−0.57910×10-6 A8=0.17833×10-8 非球面係数 r1 : ε=0.99974 A4=−0.11458×10-3 A5=0.55351×10-6 A6=−0.36548×10-7 A7=−0.20836×10-7 A8=−0.25950×10-8 A9=−0.26722×10-10 A10=−0.22478×10-11 A11=0.87106×10-13 A12=0.70965×10-14 r2 : ε=0.99533 A4=−0.38673×10-5 A5=0.77894×10-6 A6=0.44881×10-6 A7=0.56878×10-7 A8=0.52402×10-8 A9=0.24177×10-10 A10=0.15321×10-11 A11=−0.20660×10-13 A12=−0.72519×10-15 r4 : ε=0.10460×10 A4=0.23043×10-4 A5=−0.48540×10-6 A6=−0.10846×10-7 A7=0.33309×10-8 A8=0.59141×10-9 A9=−0.53330×10-10 A10=−0.48335×10-11 A11=−0.63408×10-13 A12=−0.62213×10-15 r5 : ε=0.99966 A4=0.66243×10-4 A5=−0.24166×10-5 A6=0.60706×10-7 A7=0.33708×10-7 A8=0.25499×10-8 A9=0.46857×10-10 A10=−0.20217×10-10 A11=0.10135×10-12 A12=−0.53134×10-13 非球面係数 r1 : ε=0.94452 A4=−0.15559×10-3 A6=−0.51681×10-6 A8=−0.51738×10-8 A10=0.24615×10-9 A12=−0.36511×10-11 r2 : ε=0.98545 A4=−0.11309×10-3 A6=−0.66474×10-7 A8=0.43833×10-8 A10=0.25242×10-10 A12=0.90965×10-13 r4 : ε=0.12190×10 A4=0.45339×10-4 A6=0.15830×10-6 A8=0.51464×10-9 A10=0.11085×10-11 A12=−0.28678×10-13 r5 : ε=0.97677 A4=0.51730×10-4 A6=−0.91612×10-7 A8=0.59152×10-8 A10=−0.34323×10-10 A12=0.20409×10-13 非球面係数 r1 : ε=0.94578 A4=−0.13691×10-3 A6=−0.23575×10-6 A8=−0.53927×10-8 A10=0.24048×10-9 A12=−0.36885×10-11 r2 : ε=0.99970 A4=−0.61808×10-4 A6=0.27904×10-6 A8=0.35480×10-8 A10=0.17160×10-10 A12=0.57399×10-13 r4 : ε=0.11220×10 A4=0.26858×10-4 A6=0.10706×10-6 A8=0.52652×10-9 A10=0.12697×10-11 A12=−0.91989×10-14 r5 : ε=0.97859 A4=0.51098×10-4 A6=−0.35822×10-7 A8=0.55418×10-8 A10=−0.27229×10-10 A12=−0.13648×10-13 非球面係数 r1 : ε=0.27563×10 A4=−0.57377×10-4 A6=−0.28791×10-6 A8=−0.25981×10-7 A10=0.71952×10-9 A12=−0.17910×10-10 r2 : ε=−0.95676 A4=0.32319×10-4 A6=0.31975×10-6 A8=−0.29096×10-8 A10=−0.86424×10-10 A12=−0.16278×10-11 r4 : ε=0.11348×10 A4=0.34973×10-4 A6=0.13838×10-6 A8=0.65555×10-9 A10=−0.92932×10-11 A12=0.48225×10-12 r5 : ε=0.25432×10 A4=0.55479×10-4 A6=−0.16122×10-6 A8=0.22221×10-8 A10=−0.53141×10-10 A12=0.26081×10-12 r6 : ε=−0.22241×10 A4=0.26936×10-4 A6=0.27385×10-8 A8=−0.25504×10-8 A10=0.11840×10-10 A12=0.11070×10-13 非球面係数 r1 : ε=0.15018×10 A4=−0.32667×10-4 A6=−0.19314×10-6 A8=−0.26162×10-7 A10=0.75722×10-9 A12=−0.13941×10-10 r2 : ε=−0.94829 A4=0.28608×10-4 A6=0.18842×10-6 A8=−0.24996×10-8 A10=0.49380×10-10 A12=−0.67270×10-11 r4 : ε=0.10020×10 A4=0.41090×10-4 A6=0.37818×10-7 A8=0.58283×10-9 A10=0.36793×10-10 A12=−0.34580×10-12 r5 : ε=0.27377×10 A4=0.48509×10-4 A6=−0.23791×10-6 A8=0.21497×10-8 A10=−0.42474×10-10 A12=0.17971×10-12 r6 : ε=−0.21359×10 A4=0.29356×10-4 A6=0.29483×10-7 A8=−0.25430×10-8 A10=0.79055×10-11 A12=0.40582×10-14 非球面係数 r1 : ε=−0.17535 A4=−0.29592×10-4 A6=0.12066×10-6 A8=−0.20055×10-7 A10=0.82177×10-9 A12=−0.11741×10-10 r2 : ε=0.23617×10 A4=0.27941×10-4 A6=0.54904×10-6 A8=0.98187×10-9 A10=0.84612×10-11 A12=−0.11309×10-11 r4 : ε=0.13359×10 A4=0.43666×10-4 A6=0.42178×10-7 A8=0.71801×10-9 A10=0.18344×10-10 A12=0.13664×10-12 r5 : ε=0.26567×10 A4=0.24062×10-4 A6=−0.21968×10-6 A8=0.13828×10-8 A10=−0.88598×10-11 A12=0.13382×10-13 r6 : ε=0.13573×10 A4=0.17944×10-5 A6=0.55391×10-7 A8=−0.18417×10-8 A10=0.11461×10-10 A12=−0.27114×10-13 非球面係数 r1 : ε=0.25327×10 A4=−0.14421×10-3 A6=−0.86138×10-6 A8=−0.58631×10-7 A10=0.64932×10-9 A12=0.63880×10-11 r2 : ε=0.15844×10 A4=0.39006×10-4 A6=−0.40428×10-6 A8=−0.29743×10-8 A10=0.12607×10-10 A12=0.19167×10-11 r3 : ε=0.30079×10 A4=0.35939×10-4 A6=−0.40172×10-6 A8=0.31202×10-8 A10=−0.44959×10-10 A12=0.15913×10-12 r4 : ε=0.69001×10 A4=0.16010×10-4 A6=0.20689×10-6 A8=−0.34780×10-8 A10=0.11114×10-10 A12=−0.91437×10-14 非球面係数 r1 : ε=0.25236×10 A4=−0.13828×10-3 A6=−0.78691×10-6 A8=−0.64135×10-7 A10=0.38756×10-9 A12=0.21312×10-11 r2 : ε=0.15669×10 A4=0.47838×10-4 A6=−0.41710×10-6 A8=−0.40966×10-8 A10=0.40273×10-11 A12=0.21790×10-11 r3 : ε=0.28727×10 A4=0.42110×10-4 A6=−0.40939×10-6 A8=0.30581×10-8 A10=−0.44886×10-10 A12=0.16107×10-12 r4 : ε=0.64106×10 A4=0.15045×10-4 A6=0.21081×10-6 A8=−0.34710×10-8 A10=0.11130×10-10 A12=−0.91588×10-14 非球面係数 r1 : ε=0.25773×10 A4=−0.14641×10-3 A6=−0.92491×10-6 A8=−0.59986×10-7 A10=0.64032×10-9 A12=0.63058×10-11 r2 : ε=0.14823×10 A4=0.38426×10-4 A6=−0.40152×10-6 A8=−0.27019×10-8 A10=0.14298×10-10 A12=0.19323×10-11 r3 : ε=0.30209×10 A4=0.35350×10-4 A6=−0.40566×10-6 A8=0.30804×10-8 A10=−0.43954×10-10 A12=0.19676×10-12 r4 : ε=0.69226×10 A4=0.10607×10-4 A6=0.17452×10-6 A8=−0.30688×10-8 A10=0.10826×10-10 A12=−0.87607×10-14 第1図〜第15図は、前記実施例1〜15に対応するレン
ズ構成図であり、図中、(A)は絞り,(B)は光束規
制板を示す。この光束規制板(B)は、ズーミングに連
動して光軸上を移動することによって、望遠側における
コマフレアを有効にカットする。
Aspheric coefficient r 6 : ε = 0 A 4 = 0.28799 × 10 −4 A 6 = 0.10540 × 10 −6 A 8 = −0.74715 × 10 −9 A 10 = −0.12474 × 10 −10 A 12 = 0.22951 × 10 − 12 r 8 : ε = 0.10000 x 10 A 4 = 0.43638 x 10 -4 A 6 = 0.13233 x 10 -6 A 8 = 0.17788 x 10 -9 A 10 = -0.39761 x 10 -10 A 12 = 0.38362 x 10 -12 r 10 : ε = 0.10000 x 10 A 4 = 0.29123 x 10 -5 A 6 = 0.98436 x 10 -7 A 8 = -0.45252 x 10 -8 A 10 = 0.78497 x 10 -10 A 12 = 0.12647 x 10 -12 Aspherical coefficients r 1: ε = 0.16431 × 10 A 2 = 0.11309 × 10 -2 A 4 = 0.97700 × 10 -5 A 6 = 0.14592 × 10 -6 A 8 = 0.14708 × 10 -9 A 10 = 0.16851 × 10 - 10 A 12 = 0.12321 x 10 -12 r 4 : ε = 0.99991 A 2 = 0.18228 x 10 -2 A 4 = 0.15635 x 10 -4 A 6 = 0.17 170 x 10 -6 A 8 = -0.15512 x 10 -8 A 10 = −0.56544 × 10 −11 A 12 = −0.55094 × 10 −15 r 6 : ε = 0.17888 A 2 = 0.39011 × 10 −4 A 4 = 0.35354 × 10 −4 A 6 = 0.18277 × 10 −6 A 8 = − 0.11572 × 10 -7 A 10 = 0.41379 × 10 -9 A 12 = −0.47714 × 10 -11 r 8 : ε = 0.10000 × 10 A 4 = 0.57941 × 10 -4 A 6 = 0.28082 × 10 -6 A 8 = 0.24493 × 10 -8 A 10 = -0.74654 × 10 -10 A 12 = 0.91740 × 10 -12 r 10: ε = 0.10000 × 10 A 4 = 0.14506 × 10 -5 A 6 = 0.20850 × 10 -6 A 8 = -0.13795 × 10 -7 A 10 = 0.28038 × 10 -9 A 12 = −0.12568 × 10 -11 Aspheric coefficient r 1 : ε = 0.25000 × 10 A 4 = -0.12226 × 10 -4 A 6 = -0.10475 × 10 -7 A 8 = 0.49965 × 10 -10 r 4 : ε = 0.10000 × 10 A 4 = 0.21838 × 10 -6 A 6 = 0.20884 × 10 -7 A 8 = 0.57958 × 10 -10 r 6 : ε = 0 A 4 = 0.36500 × 10 -4 A 6 = 0.58936 × 10 -7 A 8 = −0.48977 × 10 -9 A 10 = -0.14097 x 10 -10 A 12 = 0.20479 x 10 -12 r 8 : e = 0.10000 x 10 A 4 = 0.50828 x 10 -4 A 6 = 0.30784 x 10 -6 A 8 = -0.13168 x 10 -8 A 10 = -0.40828 x 10 -10 A 12 = 0.46214 x 10 -12 r 10 : e = 0.10000 x 10 A 4 = 0.10283 x 10 -4 A 6 = 0.12446 x 10 -6 A 8 = -0.48134 x 10 -8 A 10 = 0.78053 x 10 -10 A 12 = 0.16921 x 10 -12 Aspheric coefficient r 1 : ε = 0.20803 × 10 A 4 = 0.17237 × 10 -4 A 6 = 0.63541 × 10 -7 A 8 = -0.47391 × 10 -9 A 10 = -0.20451 × 10 -11 A 12 = -0.60700 × 10 -14 r 4 : ε = 0.98696 A 4 = 0.28086 × 10 -4 A 6 = −0.73078 × 10 -7 A 8 = −0.67526 × 10 -9 A 10 = −0.82633 × 10 -11 A 12 = −0.19752 × 10 −12 r 6 : ε = −0.22090 A 4 = 0.71791 × 10 −5 A 6 = −0.10362 × 10 −7 A 8 = 0.40625 × 10 −9 A 10 = 0.32410 × 10 −11 A 12 = −0.53636 × 10 -13 r 8: ε = 0.70994 A 4 = 0.30809 × 10 -4 A 6 = -0.14938 × 10 -6 A 8 = 0.19104 × 10 -9 A 10 = 0.66289 × 10 -11 A 12 = -0.31809 × 10 - 13 Aspheric coefficient r 1 : ε = 0 A 4 = −0.88580 × 10 −4 A 6 = −0.21947 × 10 −6 A 8 = −0.21425 × 10 −7 A 10 = 0.81040 × 10 −9 A 12 = −0.11824 × 10 -10 r 4 : ε = 0.10000 x 10 A 4 = 0.12252 x 10 -4 A 6 = 0.72190 x 10 -8 A 8 = -0.21386 x 10 -8 A 10 = -0.28989 x 10 -11 A 12 = -0.26437 × 10 -13 r 6: ε = 0.68081 A 4 = 0.33088 × 10 -4 A 6 = 0.16942 × 10 -6 A 8 = -0.17850 × 10 -9 A 10 = 0.22719 × 10 -12 A 12 = 0.35169 × 10 - 13 r 8 : ε = 0.10019 x 10 A 4 = 0.29143 x 10 -4 A 6 = -0.70790 x 10 -7 A 8 = -0.33869 x 10 -9 A 10 = -0.21763 x 10 -11 A 12 = -0.77879 x 10 -13 r 9 : ε = 0.93078 A 4 = 0.40781 x 10 -5 A 6 = 0.32352 x 10 -7 A 8 = -0.87018 x 10 -9 A 10 = 0.17369 x 10 -11 A 12 = 0.18 480 x 10 -14 Aspheric coefficient r 1 : ε = 0.88047 A 4 = -0.91081 x 10 -4 A 6 = 0.63195 x 10 -6 A 8 = -0.86078 x 10 -8 r 2 : ε = 0.88925 A 4 = 0.47953 x 10 -4 A 6 = 0.18789 x 10 -5 A 8 = -0.11747 x 10 -8 r 4 : ε = 0.94697 A 4 = 0.21869 x 10 -4 A 6 = 0.80788 x 10 -8 A 8 = 0.74423 x 10 -9 r 5 : ε = 0.92858 A 4 = 0.16011 × 10 -4 A 6 = −0.17117 × 10 -6 A 8 = 0.25878 × 10 -10 r 7 : ε = 0.53127 A 4 = −0.39602 × 10 -4 A 6 = −0.57910 × 10 − 6 A 8 = 0.17833 x 10 -8 Aspheric coefficient r 1 : ε = 0.99974 A 4 = -0.11458 x 10 -3 A 5 = 0.55351 x 10 -6 A 6 = -0.36548 x 10 -7 A 7 = -0.20836 x 10 -7 A 8 = -0.25950 x 10 -8 A 9 = -0.26722 x 10 -10 A 10 = -0.22478 x 10 -11 A 11 = 0.87 106 x 10 -13 A 12 = 0.70965 x 10 -14 r 2 : ε = 0.99533 A 4 =-0.38673 x 10 -5 A 5 = 0.77894 × 10 -6 A 6 = 0.44881 × 10 -6 A 7 = 0.56878 × 10 -7 A 8 = 0.52402 × 10 -8 A 9 = 0.24177 × 10 -10 A 10 = 0.15321 × 10 -11 A 11 = -0.20660 x 10 -13 A 12 = -0.72519 x 10 -15 r 4 : e = 0.10460 x 10 A 4 = 0.23043 x 10 -4 A 5 =-0.48540 x 10 -6 A 6 =-0.10846 x 10 -7 A 7 = 0.33309 × 10 -8 A 8 = 0.59141 × 10 -9 A 9 = -0.53330 × 10 -10 A 10 = -0.48335 × 10 -11 A 11 = -0.63408 × 10 -13 A 12 = -0.62213 × 10 -15 r 5: ε = 0.99966 A 4 = 0.66243 × 10 -4 A 5 = -0.24166 × 10 -5 A 6 = 0.60706 × 10 -7 A 7 = 0.33708 × 10 -7 A 8 = 0.25499 × 10 - 8 A 9 = 0.46857 x 10 -10 A 10 = -0.20217 x 10 -10 A 11 = 0.10 135 x 10 -12 A 12 = -0.53 134 x 10 -13 Aspheric coefficient r 1 : ε = 0.94452 A 4 = -0.15559 x 10 -3 A 6 = -0.51681 x 10 -6 A 8 = -0.51738 x 10 -8 A 10 = 0.24615 x 10 -9 A 12 =-0.36511 x 10 -11 r 2: ε = 0.98545 A 4 = -0.11309 × 10 -3 A 6 = -0.66474 × 10 -7 A 8 = 0.43833 × 10 -8 A 10 = 0.25242 × 10 -10 A 12 = 0.90965 × 10 - 13 r 4 : ε = 0.12190 x 10 A 4 = 0.45339 x 10 -4 A 6 = 0.15830 x 10 -6 A 8 = 0.51464 x 10 -9 A 10 = 0.11085 x 10 -11 A 12 = -0.28678 x 10 -13 r 5 : ε = 0.97677 A 4 = 0.51730 x 10 -4 A 6 = -0.91612 x 10 -7 A 8 = 0.59152 x 10 -8 A 10 =-0.34323 x 10 -10 A 12 = 0.20409 x 10 -13 Aspheric coefficient r 1 : ε = 0.94578 A 4 = −0.13691 × 10 −3 A 6 = −0.23575 × 10 −6 A 8 = −0.53927 × 10 −8 A 10 = 0.24048 × 10 −9 A 12 = −0.36885 × 10 -11 r 2 : ε = 0.99970 A 4 = -0.61808 x 10 -4 A 6 = 0.27904 x 10 -6 A 8 = 0.35 480 x 10 -8 A 10 = 0.17 160 x 10 -10 A 12 = 0.57 399 x 10 -13 r 4 : ε = 0.11220 x 10 A 4 = 0.26858 x 10 -4 A 6 = 0.10706 x 10 -6 A 8 = 0.52652 x 10 -9 A 10 = 0.12697 x 10 -11 A 12 = -0.91989 x 10 -14 r 5 : ε = 0.97859 A 4 = 0.51098 x 10 -4 A 6 =-0.35822 x 10 -7 A 8 = 0.55418 x 10 -8 A 10 =-0.27229 x 10 -10 A 12 =-0.13648 x 10 -13 Aspheric coefficient r 1 : ε = 0.27563 × 10 A 4 = −0.57377 × 10 −4 A 6 = −0.28791 × 10 −6 A 8 = −0.25981 × 10 −7 A 10 = 0.71952 × 10 −9 A 12 = − 0.17910 × 10 -10 r 2 : ε = −0.95676 A 4 = 0.32319 × 10 -4 A 6 = 0.39975 × 10 -6 A 8 = −0.29096 × 10 -8 A 10 = −0.86424 × 10 -10 A 12 = − 0.16278 × 10 -11 r 4 : ε = 0.13348 × 10 A 4 = 0.34973 × 10 -4 A 6 = 0.13838 × 10 -6 A 8 = 0.65555 × 10 -9 A 10 = −0.92932 × 10 -11 A 12 = 0.48225 × 10 -12 r 5 : ε = 0.25432 × 10 A 4 = 0.55479 × 10 -4 A 6 = -0.16122 × 10 -6 A 8 = 0.22221 × 10 -8 A 10 = -0.53141 × 10 -10 A 12 = 0.26081 × 10 −12 r 6 : ε = −0.22241 × 10 A 4 = 0.26936 × 10 −4 A 6 = 0.27385 × 10 −8 A 8 = −0.25504 × 10 −8 A 10 = 0.11840 × 10 −10 A 12 = 0.11070 × 10 -13 Aspheric coefficient r 1 : ε = 0.15018 × 10 A 4 = −0.32667 × 10 −4 A 6 = −0.19314 × 10 −6 A 8 = −0.26162 × 10 −7 A 10 = 0.75722 × 10 −9 A 12 = − 0.13941 × 10 -10 r 2 : ε = −0.94829 A 4 = 0.28608 × 10 -4 A 6 = 0.18842 × 10 -6 A 8 = −0.24996 × 10 -8 A 10 = 0.49380 × 10 -10 A 12 = −0.67270 × 10 -11 r 4 : ε = 0.10020 × 10 A 4 = 0.41090 × 10 -4 A 6 = 0.37818 × 10 -7 A 8 = 0.58283 × 10 -9 A 10 = 0.36793 × 10 -10 A 12 = -0.34580 × 10 -12 r 5 : ε = 0.27377 × 10 A 4 = 0.48509 × 10 -4 A 6 = -0.23791 × 10 -6 A 8 = 0.21497 × 10 -8 A 10 = -0.42474 × 10 -10 A 12 = 0.17971 × 10 -12 r 6: ε = -0.21359 × 10 A 4 = 0.29356 × 10 -4 A 6 = 0.29483 × 10 -7 A 8 = -0.25430 × 10 -8 A 10 = 0.79055 × 10 -11 A 12 = 0.40582 × 10 -14 Aspheric coefficient r 1 : ε = -0.17535 A 4 = -0.29592 x 10 -4 A 6 = 0.12066 x 10 -6 A 8 = -0.20055 x 10 -7 A 10 = 0.82177 x 10 -9 A 12 = -0.11741 x 10 -10 r 2 : ε = 0.23617 x 10 A 4 = 0.27941 x 10 -4 A 6 = 0.54904 x 10 -6 A 8 = 0.98187 x 10 -9 A 10 = 0.84612 x 10 -11 A 12 = -0.11309 x 10 -11 r 4 : ε = 0.13359 x 10 A 4 = 0.43666 x 10 -4 A 6 = 0.42178 x 10 -7 A 8 = 0.71801 x 10 -9 A 10 = 0.18344 x 10 -10 A 12 = 0.13664 x 10 -12 r 5 : ε = 0.26567 × 10 A 4 = 0.24062 × 10 -4 A 6 = −0.21968 × 10 -6 A 8 = 0.13828 × 10 -8 A 10 = −0.88598 × 10 -11 A 12 = 0.13382 × 10 -13 r 6 : ε = 0.13573 x 10 A 4 = 0.17944 x 10 -5 A 6 = 0.55391 x 10 -7 A 8 = -0.18417 x 10 -8 A 10 = 0.11461 x 10 -10 A 12 = -0.27 114 x 10 -13 Aspheric coefficient r 1 : ε = 0.25327 × 10 A 4 = −0.14421 × 10 −3 A 6 = −0.86138 × 10 −6 A 8 = −0.58631 × 10 −7 A 10 = 0.64932 × 10 −9 A 12 = 0.63880 × 10 -11 r 2 : ε = 0.15844 × 10 A 4 = 0.39006 × 10 -4 A 6 = -0.40428 × 10 -6 A 8 = -0.29743 × 10 -8 A 10 = 0.12607 × 10 -10 A 12 = 0.19167 × 10 -11 r 3 : ε = 0.30079 × 10 A 4 = 0.35939 × 10 -4 A 6 = -0.40172 × 10 -6 A 8 = 0.31202 × 10 -8 A 10 = -0.44959 × 10 -10 A 12 = 0.15913 × 10 -12 r 4 : ε = 0.69001 × 10 A 4 = 0.16010 × 10 -4 A 6 = 0.20689 × 10 -6 A 8 = -0.34780 × 10 -8 A 10 = 0.11114 × 10 -10 A 12 = -0.91437 × 10 -14 Aspheric coefficient r 1 : ε = 0.25236 × 10 A 4 = −0.13828 × 10 −3 A 6 = −0.78691 × 10 −6 A 8 = −0.64 135 × 10 −7 A 10 = 0.38756 × 10 −9 A 12 = 0.21312 × 10 -11 r 2 : ε = 0.15669 × 10 A 4 = 0.47838 × 10 -4 A 6 = -0.41710 × 10 -6 A 8 = -0.40966 × 10 -8 A 10 = 0.40273 × 10 -11 A 12 = 0.21790 × 10 -11 r 3 : ε = 0.28727 × 10 A 4 = 0.42110 × 10 -4 A 6 = −0.40939 × 10 -6 A 8 = 0.30581 × 10 -8 A 10 = −0.44886 × 10 -10 A 12 = 0.16107 × 10 -12 r 4 : ε = 0.64106 × 10 A 4 = 0.15045 × 10 -4 A 6 = 0.21081 × 10 -6 A 8 = −0.34710 × 10 -8 A 10 = 0.11130 × 10 -10 A 12 = −0.91588 × 10 -14 Aspheric coefficient r 1 : ε = 0.25773 × 10 A 4 = −0.14641 × 10 −3 A 6 = −0.92491 × 10 −6 A 8 = −0.59986 × 10 −7 A 10 = 0.64032 × 10 −9 A 12 = 0.63058 × 10 -11 r 2 : ε = 0.1483 × 10 A 4 = 0.38426 × 10 -4 A 6 = −0.40152 × 10 -6 A 8 = −0.27019 × 10 -8 A 10 = 0.14298 × 10 -10 A 12 = 0.93323 × 10 −11 r 3 : ε = 0.30209 × 10 A 4 = 0.35350 × 10 −4 A 6 = −0.40566 × 10 −6 A 8 = 0.30804 × 10 −8 A 10 = −0.43954 × 10 −10 A 12 = 0.19676 × 10 -12 r 4 : ε = 0.69226 × 10 A 4 = 0.10607 × 10 -4 A 6 = 0.17452 × 10 -6 A 8 = −0.30688 × 10 -8 A 10 = 0.10826 × 10 -10 A 12 = −0.87607 × 10 -14 Figure 1 - Figure 15 is a lens configuration diagram corresponding to the examples 1 to 15, in FIG., (a) denotes a stop, (B) shows the beam restricting plate. The luminous flux regulating plate (B) effectively cuts the coma flare on the telephoto side by moving on the optical axis in conjunction with zooming.

第8図,第10図〜第15図中に示されている光束規制板
(B)の径は、広角端における軸上光束幅及び望遠端に
おける軸上光束幅のうちの少なくとも一方に対して1.2
倍以下であるのが好ましい。これは、前記1.2倍を超え
ると、特に望遠端での中帯光束のコマフレアを有効にカ
ットできなくなるからである。更に、光束規制板(B)
の径が望遠端における軸上光束幅の1.05倍以下である場
合、望遠端の軸外光束におけるコマフレアを有効にカッ
トすることができるので好ましい。
The diameter of the light beam regulating plate (B) shown in FIGS. 8 and 10 to 15 is at least one of the axial light beam width at the wide-angle end and the axial light beam width at the telephoto end. 1.2
It is preferably at most twice. This is because, if the ratio exceeds 1.2 times, the coma flare of the middle band light beam at the telephoto end cannot be effectively cut off. Further, the light flux regulating plate (B)
Is preferably not more than 1.05 times the on-axis light beam width at the telephoto end, because coma flare in the off-axis light beam at the telephoto end can be effectively cut.

また、光束規制板(B)が、広角端から望遠端へのズ
ーミングにおいて、前群との空気間隔を広げるように移
動するのが好ましい。これによって、広角端における周
辺光量を減らすことなく望遠端におけるコマフレアをカ
ットすることができる。
Further, it is preferable that the light flux regulating plate (B) moves so as to widen the air gap with the front lens group during zooming from the wide-angle end to the telephoto end. As a result, the coma flare at the telephoto end can be cut without reducing the amount of peripheral light at the wide-angle end.

光束規制板(B)を広角端から望遠端へのズーミング
において、後群と一体となって移動するようにすれば、
鏡胴構成が容易となるため好ましい。
In zooming from the wide-angle end to the telephoto end, if the light-flux regulating plate (B) is moved integrally with the rear group,
This is preferable because the lens barrel configuration becomes easy.

尚、第1図〜第15図中、矢印は前記前群及び後群の最
広角端(S)から最望遠端(L)にかけての移動を模式
的に示している。更に、必要に応じて、フローティング
に係る前群の移動(第5図)や光束規制板(B)の移動
(第10図〜第15図)をも併せて示す。
1 to 15, arrows schematically show the movement of the front group and the rear group from the wide-angle end (S) to the most telephoto end (L). Furthermore, if necessary, the movement of the front group relating to the floating (FIG. 5) and the movement of the light flux regulating plate (B) (FIGS. 10 to 15) are also shown.

実施例1は物体側より順に、物体側に凸の正メニスカ
スレンズより成る第1レンズ,物体側に凹の負メニスカ
スレンズより成る第2レンズ,両凸の正の第3レンズ及
び絞り(A)から成る前群と、第4レンズ及び第5レン
ズから成る後群とから構成されている。前記第4レンズ
は、ノンパワーに近い正のレンズで構成され、また第5
レンズは、物体側に凹の負メニスカスレンズで構成され
ている。尚、正の第3レンズの像側の面,正の第4レン
ズの物体側の面及び負の第5レンズの物体側の面は非球
面である。
In the first embodiment, in order from the object side, a first lens composed of a positive meniscus lens convex on the object side, a second lens composed of a negative meniscus lens concave on the object side, a biconvex positive third lens, and an aperture (A) And a rear group including the fourth lens and the fifth lens. The fourth lens is composed of a positive lens close to non-power, and the fifth lens
The lens is constituted by a negative meniscus lens concave on the object side. The image-side surface of the positive third lens, the object-side surface of the positive fourth lens, and the object-side surface of the negative fifth lens are aspherical.

実施例2は物体側より順に、物体側に凸の正メニスカ
スレンズより成る第1レンズ,両凹の負の第2レンズ,
両凸の正の第3レンズ及び絞り(A)から成る前群と、
第4レンズ及び第5レンズから成る後群とから構成され
ている。前記第4レンズは、ノンパワーに近い正のレン
ズで構成され、また第5レンズは、物体側に凹の負メニ
スカスレンズで構成されている。尚、正の第1レンズの
物体側の面,負の第2レンズの像側の面,正の第3レン
ズの像側の面,正の第4レンズの物体側の面及び負の第
5レンズの物体側の面は非球面である。
In the second embodiment, in order from the object side, a first lens composed of a positive meniscus lens convex to the object side, a biconcave negative second lens,
A front group consisting of a biconvex positive third lens and an aperture (A);
And a rear group consisting of a fourth lens and a fifth lens. The fourth lens is constituted by a positive lens close to non-power, and the fifth lens is constituted by a negative meniscus lens concave on the object side. Note that the object-side surface of the positive first lens, the image-side surface of the negative second lens, the image-side surface of the positive third lens, the object-side surface of the positive fourth lens, and the negative fifth lens. The object side surface of the lens is aspheric.

実施例3は物体側より順に、物体側に強パワーの正の
第1レンズ,物体側に凹の負メニスカスレンズより成る
第2レンズ,像側に強パワーの正の第3レンズ及び絞り
(A)から成る前群と、第4レンズ及び第5レンズから
成る後群とから構成されている。前記第4レンズは、ノ
ンパワーに近い正のレンズで構成され、また第5レンズ
は、物体側に凹の負メニスカスレンズで構成されてい
る。尚、正の第1レンズの物体側の面,負の第2レンズ
の像側の面,正の第3レンズの像側の面,正の第4レン
ズの物体側の面及び負の第5レンズの物体側の面は非球
面である。
In the third embodiment, in order from the object side, a strong positive first lens on the object side, a second lens having a concave negative meniscus lens on the object side, a strong positive third lens on the image side, and an aperture (A) ) And a rear group including the fourth lens and the fifth lens. The fourth lens is constituted by a positive lens close to non-power, and the fifth lens is constituted by a negative meniscus lens concave on the object side. Note that the object-side surface of the positive first lens, the image-side surface of the negative second lens, the image-side surface of the positive third lens, the object-side surface of the positive fourth lens, and the negative fifth lens. The object side surface of the lens is aspheric.

実施例4は物体側より順に、物体側に凸の正メニスカ
スレンズより成る第1レンズ,物体側に凹の負メニスカ
スレンズより成る第2レンズ,両凸の正の第3レンズ及
び絞り(A)から成る前群と、両凹の負の第4レンズか
ら成る後群とから構成されている。尚、正の第1レンズ
の物体側の面,負の第2レンズの像側の面,正の第3レ
ンズの像側の面及び負の第4レンズの物体側の面は非球
面である。
In the fourth embodiment, in order from the object side, a first lens composed of a positive meniscus lens convex on the object side, a second lens composed of a negative meniscus lens concave on the object side, a biconvex positive third lens, and an aperture (A) And a rear group consisting of a biconcave negative fourth lens. The object-side surface of the positive first lens, the image-side surface of the negative second lens, the image-side surface of the positive third lens, and the object-side surface of the negative fourth lens are aspherical. .

実施例5は物体側より順に、像側に凸の正メニスカス
レンズより成る第1レンズ,両凹の負の第2レンズ,両
凸の正の第3レンズ及び絞り(A)から成る前群と、第
4レンズから成る後群とから構成されている。前記第4
レンズは、物体側に凹の負メニスカスレンズで構成され
ている。尚、正の第1レンズの物体側の面,負の第2レ
ンズの像側の面,正の第3レンズの像側の面並びに負の
第4レンズの物体側の面及び像側の面は非球面である。
また、前群の空気間隔(d4)が微小量変化しているの
は、フローティングによるものである。
The fifth embodiment includes, in order from the object side, a first lens including a positive meniscus lens convex on the image side, a negative second lens biconcave, a positive third lens biconvex, and a front group including a stop (A). , And a rear group consisting of a fourth lens. The fourth
The lens is constituted by a negative meniscus lens concave on the object side. The object side surface of the positive first lens, the image side surface of the negative second lens, the image side surface of the positive third lens, and the object side surface and the image side surface of the negative fourth lens. Is an aspheric surface.
The small change in the air interval (d 4 ) of the front group is due to floating.

実施例6は物体側より順に、両凹の負の第1レンズ及
び両凸の正の第2レンズから成る前群と、第3レンズ及
び第4レンズから成る後群とから構成されている。前記
第3レンズはノンパワーに近い正のレンズで構成され、
また第4レンズは、物体側に凹の負メニスカスレンズで
構成されている。尚、負の第1レンズの物体側の面及び
像側の面,正の第2レンズの像側の面,正の第3レンズ
の物体側の面並びに負の第4レンズの物体側の面は非球
面である。
The sixth embodiment includes, in order from the object side, a front group including a biconcave negative first lens and a biconvex positive second lens, and a rear group including a third lens and a fourth lens. The third lens is composed of a positive lens close to non-power,
The fourth lens is formed of a negative meniscus lens concave on the object side. Note that the object-side surface and the image-side surface of the negative first lens, the image-side surface of the positive second lens, the object-side surface of the positive third lens, and the object-side surface of the negative fourth lens. Is an aspheric surface.

実施例7は物体側より順に、像側に凹の負メニスカス
レンズより成る第1レンズ及び両凸の正の第2レンズか
ら成る前群と、第3レンズ及び第4レンズから成る後群
とから構成されている。前記第3レンズは、ノンパワー
に近い正のレンズで構成され、また第4レンズは、物体
側に凹の負メニスカスレンズで構成されている。尚、負
の第1レンズの物体側の面及び像側の面,正の第2レン
ズの像側の面並びに正の第3レンズの物体側の面は非球
面である。
The seventh embodiment includes, in order from the object side, a front lens group including a negative meniscus lens concave to the image side and a biconvex positive second lens, and a rear lens group including a third lens and a fourth lens. It is configured. The third lens is constituted by a positive lens near non-power, and the fourth lens is constituted by a negative meniscus lens concave on the object side. The object-side surface and image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface of the positive third lens are aspherical.

実施例8は物体側より順に、光束規制板(B),像側
に凹の負メニスカスレンズより成る第1レンズ及び両凸
の正の第2レンズから成る前群と、第3レンズ及び第4
レンズから成る後群とから構成されている。前記第3レ
ンズは、ノンパワーに近い正のレンズで構成され、また
第4レンズは、物体側に凹の負メニスカスレンズで構成
されている。尚、負の第1レンズの物体側の面及び像側
の面,正の第2レンズの像側の面並びに正の第3レンズ
の物体側の面は非球面である。
In the eighth embodiment, in order from the object side, a light flux regulating plate (B), a front lens group consisting of a negative meniscus lens concave on the image side and a biconvex positive second lens, a third lens and a fourth lens
And a rear group consisting of lenses. The third lens is constituted by a positive lens near non-power, and the fourth lens is constituted by a negative meniscus lens concave on the object side. The object-side surface and image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface of the positive third lens are aspherical.

実施例9は物体側より順に、像側に凹の負メニスカス
レンズより成る第1レンズ及び両凸の正の第2レンズか
ら成る前群と、第3レンズ及び第4レンズから成る後群
とから構成されている。前記第3レンズは、ノンパワー
に近い正のレンズで構成され、また第4レンズは、物体
側に凹の負メニスカスレンズで構成されている。尚、負
の第1レンズの物体側の面及び像側の面,正の第2レン
ズの像側の面並びに正の第3レンズの物体側の面は非球
面である。
The ninth embodiment includes, in order from the object side, a front lens group including a negative meniscus lens concave to the image side and a biconvex positive second lens, and a rear lens group including a third lens and a fourth lens. It is configured. The third lens is constituted by a positive lens near non-power, and the fourth lens is constituted by a negative meniscus lens concave on the object side. The object-side surface and image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface of the positive third lens are aspherical.

実施例10は物体側より順に、光束規制板(B)と、物
体側に凹の負メニスカスレンズより成る第1レンズ及び
像側に強パワーの正の第2レンズから成る前群と、両凹
の負の第3レンズから成る後群とから構成されている。
尚、負の第1レンズの物体側の面及び像側の面,正の第
2レンズの像側の面並びに負の第3レンズの物体側の面
及び像側の面は非球面である。
The tenth embodiment includes, in order from the object side, a light flux regulating plate (B), a front lens group including a negative meniscus lens concave on the object side, a front lens group including a strong second lens on the image side, and a biconcave lens. And a rear group consisting of a negative third lens.
The object-side surface and the image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface and the image-side surface of the negative third lens are aspherical.

実施例11は物体側より順に、光束規制板(B)と、物
体側に凹の負メニスカスレンズより成る第1レンズ及び
像側に強パワーの正の第2レンズから成る前群と、両凹
の負の第3レンズから成る後群とから構成されている。
尚、負の第1レンズの物体側の面及び像側の面,正の第
2レンズの像側の面並びに負の第3レンズの物体側の面
及び像側の面は非球面である。
In the eleventh embodiment, in order from the object side, a light flux regulating plate (B), a front lens including a negative meniscus lens concave on the object side, a positive second lens having high power on the image side, and a biconcave lens And a rear group consisting of a negative third lens.
The object-side surface and the image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface and the image-side surface of the negative third lens are aspherical.

実施例12は物体側より順に、光束規制板(B)と、物
体側に凹の負メニスカスレンズより成る第1レンズ及び
像側に強パワーの正の第2レンズから成る前群と、両凹
の負の第3レンズから成る後群とから構成されている。
尚、負の第1レンズの物体側の面及び像側の面,正の第
2レンズの像側の面並びに負の第3レンズの物体側の面
及び像側の面は非球面である。
The twelfth embodiment includes, in order from the object side, a light flux regulating plate (B), a first lens unit having a concave negative meniscus lens on the object side, a front unit having a strong positive second lens on the image side, and a biconcave lens. And a rear group consisting of a negative third lens.
The object-side surface and the image-side surface of the negative first lens, the image-side surface of the positive second lens, and the object-side surface and the image-side surface of the negative third lens are aspherical.

実施例13及び実施例14は、いずれも物体側より順に、
光束規制板(B)と、像側に凸の正メニスカスレンズよ
り成る第1レンズから成る前群と、両凹の負の第2レン
ズから成る後群とから構成されている。
Example 13 and Example 14 are all in order from the object side,
The first lens group includes a light flux regulating plate (B), a first lens group including a positive meniscus lens convex on the image side, and a rear lens group including a biconcave negative second lens.

実施例15は物体側より順に、光束規制板(B)と、第
1レンズから成る前群と、第2レンズから成る後群とか
ら構成されている。前記第1レンズは、像側に凸の正メ
ニスカスレンズ構成され、また第2レンズは物体側に凹
の負メニスカスレンズで構成されている。
The fifteenth embodiment includes, in order from the object side, a light flux regulating plate (B), a front group including a first lens, and a rear group including a second lens. The first lens is constituted by a positive meniscus lens convex on the image side, and the second lens is constituted by a negative meniscus lens concave on the object side.

尚、実施例13〜15を構成する各レンズの物体側の面及
び像側の面は、いずれも非球面である。
The surfaces on the object side and the image side of each lens constituting Examples 13 to 15 are both aspherical.

第16図〜第27図は前記実施例1〜12に対応する収差図
で、それぞれ(S)は広角端焦点距離,(M)は中間焦
点距離,(L)は望遠端焦点距離での収差を示してい
る。また、実線(d)はd線に対する収差を表わし、点
線(SC)は正弦条件を表わす。更に点線(DM)と実線
(DS)はメリディオナル面とサジタル面での非点収差を
それぞれ表わしている。
16 to 27 are aberration diagrams corresponding to Examples 1 to 12, wherein (S) is the focal length at the wide-angle end, (M) is the intermediate focal length, and (L) is the aberration at the telephoto end. Is shown. The solid line (d) represents the aberration with respect to the d-line, and the dotted line (SC) represents the sine condition. Further, a dotted line (DM) and a solid line (DS) represent astigmatism on the meridional surface and the sagittal surface, respectively.

第28図〜第30図は前記実施例13に対応する収差図であ
り、第28図は広角端,第29図は中間焦点距離,第30図は
望遠端における横収差をそれぞれメリディオナル方向
(a)とサジタル方向(b)とに分けて示している。
28 to 30 are aberration diagrams corresponding to Embodiment 13 described above. FIG. 28 shows lateral aberrations at the wide angle end, FIG. 29 shows intermediate focal lengths, and FIG. 30 shows lateral aberrations at the telephoto end in the meridional direction (a ) And the sagittal direction (b).

第31図〜第33図は前記実施例14に対応する収差図であ
り、第31図は広角端,第32図は中間焦点距離,第33図は
望遠端における横収差をそれぞれメリディオナル方向
(a)とサジタル方向(b)とに分けて示している。
FIGS. 31 to 33 are aberration diagrams corresponding to the 14th embodiment. FIG. 31 shows lateral aberrations at the wide angle end, FIG. 32 shows an intermediate focal length, and FIG. 33 shows lateral aberrations at the telephoto end in the meridional direction (a ) And the sagittal direction (b).

第34図〜第36図は前記実施例15に対応する収差図であ
り、第34図は広角端,第35図は中間焦点距離,第36図は
望遠端における横収差をそれぞれメリディオナル方向
(a)とサジタル方向(b)とに分けて示している。
34 to 36 are aberration diagrams corresponding to the above-described Embodiment 15. FIG. 34 shows the lateral aberration at the wide angle end, FIG. 35 shows the intermediate focal length, and FIG. 36 shows the lateral aberration at the telephoto end in the meridional direction (a ) And the sagittal direction (b).

第1表〜第15表はそれぞれ実施例1〜15に対応して、
前記yの値に対する各非球面における の値を示している。
Tables 1 to 15 correspond to Examples 1 to 15, respectively.
At each aspheric surface for the value of y Are shown.

また、第16表は実施例1〜15における の値をそれぞれ示している。Table 16 shows the results in Examples 1 to 15. Are shown respectively.

上記のように実施例1〜15は、およそ焦点距離が38〜
90mmの仕様を中心としている。従来のこの仕様のズーム
レンズは、7〜8枚程度のレンズで構成されている。斯
るズームレンズとしては、例えば7枚のレンズ構成にお
いて1面の非球面が用いられたもの等がある。
As described above, Examples 1 to 15 have a focal length of about 38 to
Mainly 90mm specifications. A conventional zoom lens of this specification is composed of about seven to eight lenses. As such a zoom lens, for example, there is a lens in which one aspherical surface is used in a seven-lens configuration.

ところが、本発明においては、非球面が3面以上用い
られているため、レンズの構成枚数を4〜5枚とし、レ
ンズ全長を5〜10mm短縮することが可能となる。
However, in the present invention, since three or more aspherical surfaces are used, it is possible to reduce the total length of the lens by 5 to 10 mm by setting the number of lenses to four to five.

発明の効果 以上説明したように、本発明によれば高い光学性能を
維持しながら、少ない枚数のレンズでコンパクトなズー
ムレンズを実現することができる。また、本発明に係る
ズームレンズを、ズームレンズ内蔵型レンズシャッター
カメラに適用すれば、該カメラのコンパクト化,低コス
ト化を達成することができる。
Effects of the Invention As described above, according to the present invention, a compact zoom lens can be realized with a small number of lenses while maintaining high optical performance. Further, if the zoom lens according to the present invention is applied to a lens shutter camera with a built-in zoom lens, the camera can be made compact and low cost.

【図面の簡単な説明】[Brief description of the drawings]

第1図,第2図,第3図,第4図,第5図,第6図,第
7図,第8図,第9図,第10図,第11図,第12図,第13
図,第14図及び第15図は、それぞれ本発明の実施例1〜
15に対応するレンズ構成図である。第16図,第17図,第
18図,第19図,第20図,第21図,第22図,第23図,第24
図,第25図,第26図及び第27図は、それぞれ実施例1〜
12に対応する収差図である。第28図,第29図及び第30図
は実施例13に対応する収差図、第31図,第32図及び第33
図は実施例14に対応する収差図、第34図,第35図及び第
36図は実施例15に対応する収差図である。
FIG. 1, FIG. 2, FIG. 3, FIG. 4, FIG. 5, FIG. 6, FIG. 7, FIG. 8, FIG. 9, FIG.
FIG. 14, FIG. 14 and FIG.
FIG. 15 is a lens configuration diagram corresponding to FIG. Fig. 16, Fig. 17,
18, 19, 20, 21, 22, 23, 24
FIG. 25, FIG. 26, and FIG.
FIG. 14 is an aberration diagram corresponding to FIG. 28, 29, and 30 are aberration diagrams corresponding to Example 13, and FIGS. 31, 32, and 33.
The figures are aberration diagrams corresponding to Example 14, FIGS. 34, 35 and
FIG. 36 is an aberration diagram corresponding to Example 15.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋村 淳司 大阪府大阪市中央区安土町2丁目3番13 号 大阪国際ビル ミノルタカメラ株式 会社内 (72)発明者 梅田 宏 大阪府大阪市中央区安土町2丁目3番13 号 大阪国際ビル ミノルタカメラ株式 会社内 (72)発明者 升本 久幸 大阪府大阪市中央区安土町2丁目3番13 号 大阪国際ビル ミノルタカメラ株式 会社内 (56)参考文献 特開 平1−193807(JP,A) 特開 昭64−52111(JP,A) 特開 昭64−42618(JP,A) 特開 昭63−311224(JP,A) 特開 昭63−266413(JP,A) 特開 昭62−56917(JP,A) 特開 平3−116110(JP,A) 特開 平2−52308(JP,A) 特開 平2−18511(JP,A) 特開 平2−6917(JP,A) 特開 昭56−128911(JP,A) 特開 昭60−191216(JP,A) 特開 昭61−87119(JP,A) 特開 昭61−87120(JP,A) 特開 昭62−251710(JP,A) (58)調査した分野(Int.Cl.6,DB名) G02B 9/00 - 17/08 G02B 21/02 - 21/04 G02B 25/00 - 25/04 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Junji Hashimura 2-3-13 Azuchicho, Chuo-ku, Osaka-shi, Osaka-shi Osaka International Building Minolta Camera Co., Ltd. (72) Inventor Hiroshi Umeda Azuchi, Chuo-ku, Osaka-shi, Osaka Osaka International Building Minolta Camera Co., Ltd. (72) Inventor Hisayuki Masumoto 2-3-3 Azuchicho, Chuo-ku, Osaka-shi, Osaka-shi Osaka International Building Minolta Camera Co., Ltd. (56) References JP-A-1-193807 (JP, A) JP-A-64-52111 (JP, A) JP-A-64-42618 (JP, A) JP-A-63-311224 (JP, A) JP-A-63-266413 (JP, A) JP, A) JP-A-62-56917 (JP, A) JP-A-3-116110 (JP, A) JP-A-2-52308 (JP, A) JP-A-2-18511 (JP, A) JP Hei 2-6917 ( JP-A-56-128911 (JP, A) JP-A-60-191216 (JP, A) JP-A-61-87119 (JP, A) JP-A-61-87120 (JP, A) 62-251710 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G02B 9/00-17/08 G02B 21/02-21/04 G02B 25/00-25/04

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、正の屈折力を有する前群
と、負の屈折力を有する後群と、から成り、前群と後群
との間隔を変化させることによって全系の焦点距離を変
化させるズームレンズにおいて、 前記後群を独立した2枚のレンズで構成し、前記前群に
少なくとも2面以上、前記後群に少なくとも1面以上の
非球面を用いて収差補正するとともに、 前記前群に設けられた非球面はすべて以下の条件式を
満足し、かつ、少なくとも1面は以下の条件式を満足
する一方、前記後群に設けられた非球面のうちの少なく
とも1面は以下の条件式を満足することを特徴とする
ズームレンズ; 非球面の最大有効径をymaxとするとき、y<0.7ymax
る任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.7ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.8ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 x(y):非球面の面形状、 x0(y):非球面の参照面形状、 ただし、 r:非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai:非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
1. A focusing system comprising a front group having a positive refractive power and a rear group having a negative refractive power in order from the object side. In a zoom lens that changes the distance, the rear group is composed of two independent lenses, and the aberration correction is performed using at least two or more aspheric surfaces in the front group and at least one or more aspheric surfaces in the rear group. All the aspheric surfaces provided in the front group satisfy the following conditional expressions, and at least one surface satisfies the following conditional expression, while at least one of the aspheric surfaces provided in the rear group is A zoom lens characterized by satisfying the following conditional expression: When the maximum effective diameter of the aspheric surface is y max , for any height y in the vertical direction of the optical axis such that y <0.7y max , When the maximum effective diameter of the aspheric surface is y max , 0.7y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , When the maximum effective diameter of the aspheric surface is y max , 0.8y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, x (y) : aspherical surface shape, x 0 (y): aspherical reference surface shape, however, r: reference radius of curvature of the aspherical surface, ε: quadratic surface parameter, A i : aspherical surface coefficient,: paraxial radius of curvature of the aspherical surface {(1 /) = (1 / r) +2
A 2 },
【請求項2】物体側より順に、正の屈折力を有する前群
と、負の屈折力を有する後群と、から成り、前群と後群
との間隔を変化させることによって全系の焦点距離を変
化させるズームレンズにおいて、 前記後群を独立した2枚のレンズで構成し、前記前群に
少なくとも1面以上、前記後群に少なくとも2面以上の
非球面を用いて収差補正するとともに、 前記前群に設けられた非球面のうちの少なくとも1面は
以下の条件式を満足する一方、前記後群に設けられた
非球面はすべて以下の条件式を満足し、かつ、少なく
とも1面は以下の条件式を満足することを特徴とする
ズームレンズ; 非球面の最大有効径をymaxとするとき、0.7ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、y<0.8ymax
る任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.8ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 x(y):非球面の面形状、 x0(y):非球面の参照面形状、 ただし、 r:非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai:非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
2. A focusing system comprising a front group having a positive refractive power and a rear group having a negative refractive power in order from the object side. The focal length of the entire system is changed by changing the distance between the front group and the rear group. In a zoom lens that changes the distance, the rear group is composed of two independent lenses, and the aberration correction is performed using at least one or more aspheric surfaces in the front group and at least two or more aspheric surfaces in the rear group. At least one of the aspherical surfaces provided in the front group satisfies the following conditional expression, while all the aspherical surfaces provided in the rear group satisfy the following conditional expression, and at least one surface has zoom lens satisfies the following condition: when the y max the maximum effective diameter of the aspherical surface, 0.7y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , When the maximum effective diameter of the aspherical surface is y max , for any height y in the vertical direction of the optical axis such that y <0.8y max , When the maximum effective diameter of the aspheric surface is y max , 0.8y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, x (y) : aspherical surface shape, x 0 (y): aspherical reference surface shape, however, r: reference radius of curvature of the aspherical surface, ε: quadratic surface parameter, A i : aspherical surface coefficient,: paraxial radius of curvature of the aspherical surface {(1 /) = (1 / r) +2
A 2 },
【請求項3】物体側より順に、正の屈折力を有する前群
と、負の屈折力を有する後群と、から成り、前群と後群
との間隔を変化させることによって全系の焦点距離を変
化させるズームレンズにおいて、 絞りを前後群間に配置し、前記前群に少なくとも2面以
上、前記後群に少なくとも1面以上の非球面を用いて収
差補正するとともに、 前記前群に設けられた非球面はすべて以下の条件式を
満足し、かつ、少なくとも1面は以下の条件式を満足
する一方、前記後群に設けられた非球面のうちの少なく
とも1面は以下の条件式を満足することを特徴とする
ズームレンズ; 非球面の最大有効径をymaxとするとき、y<0.7ymax
る任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.7ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.8ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 x(y):非球面の面形状、 x0(y):非球面の参照面形状、 ただし、 r:非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai:非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
3. A focusing system comprising a front group having a positive refractive power and a rear group having a negative refractive power in order from the object side. The focal length of the entire system is changed by changing the distance between the front group and the rear group. In a zoom lens that changes the distance, an aperture is disposed between the front and rear groups, aberration is corrected using at least two aspheric surfaces in the front group, and at least one aspheric surface in the rear group, and provided in the front group. The obtained aspheric surfaces all satisfy the following conditional expression, and at least one surface satisfies the following conditional expression, while at least one of the aspheric surfaces provided in the rear group satisfies the following conditional expression. satisfaction zoom characterized by a lens; when the maximum effective diameter of the aspherical surface and y max, y <of 0.7Y max becomes arbitrary optical axis perpendicular direction relative to the height y, When the maximum effective diameter of the aspheric surface is y max , 0.7y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , When the maximum effective diameter of the aspheric surface is y max , 0.8y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, x (y) : aspherical surface shape, x 0 (y): aspherical reference surface shape, however, r: reference radius of curvature of the aspherical surface, ε: quadratic surface parameter, A i : aspherical surface coefficient,: paraxial radius of curvature of the aspherical surface {(1 /) = (1 / r) +2
A 2 },
【請求項4】物体側より順に、正の屈折力を有する前群
と、負の屈折力を有する後群と、から成り、前群と後群
との間隔を変化させることによって全系の焦点距離を変
化させるズームレンズにおいて、 絞りを前後群間に配置し、前記前群に少なくとも1面以
上、前記後群に少なくとも2面以上の非球面を用いて収
差補正するとともに、 前記前群に設けられた非球面のうちの少なくとも1面は
以下の条件式を満足する一方、前記後群に設けられた
非球面はすべて以下の条件式を満足し、かつ、少なく
とも1面は以下の条件式を満足することを特徴とする
ズームレンズ; 非球面の最大有効径をymaxとするとき、0.7ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、y<0.8ymax
る任意の光軸垂直方向の高さyに対して、 非球面の最大有効径をymaxとするとき、0.8ymax<y<
1.0ymaxなる任意の光軸垂直方向の高さyに対して、 ここで、 φ1:前群の屈折力、 φ2:後群の屈折力、 N :非球面の物体側媒質の屈折率、 N′:非球面の像側媒質の屈折率、 x(y):非球面の面形状、 x0(y):非球面の参照面形状、 ただし、 r:非球面の基準曲率半径、 ε:2次曲面パラメータ、 Ai:非球面係数、 :非球面の近軸曲率半径{(1/)=(1/r)+2
A2}、 である。
4. A focusing system comprising a front group having a positive refractive power and a rear group having a negative refractive power in order from the object side. In a zoom lens that changes the distance, an aperture is arranged between the front and rear groups, aberration is corrected using at least one aspheric surface in the front group, and at least two aspheric surfaces in the rear group, and provided in the front group. At least one surface of the obtained aspheric surfaces satisfies the following conditional expression, while all the aspheric surfaces provided in the rear group satisfy the following conditional expression, and at least one surface satisfies the following conditional expression. satisfaction zoom characterized by a lens; when the maximum effective diameter of the aspherical surface and y max, 0.7y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , When the maximum effective diameter of the aspherical surface is y max , for any height y in the vertical direction of the optical axis such that y <0.8y max , When the maximum effective diameter of the aspheric surface is y max , 0.8y max <y <
For any height y in the vertical direction of the optical axis of 1.0y max , Here, φ 1 : refractive power of the front group, φ 2 : refractive power of the rear group, N: refractive index of the aspherical object side medium, N ′: refractive index of the aspherical image side medium, x (y) : aspherical surface shape, x 0 (y): aspherical reference surface shape, however, r: reference radius of curvature of the aspherical surface, ε: quadratic surface parameter, A i : aspherical surface coefficient,: paraxial radius of curvature of the aspherical surface {(1 /) = (1 / r) +2
A 2 },
JP1266602A 1989-10-13 1989-10-13 Compact zoom lens Expired - Lifetime JP2900434B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1266602A JP2900434B2 (en) 1989-10-13 1989-10-13 Compact zoom lens
US07/595,389 US5327290A (en) 1989-10-13 1990-10-10 Compact size zoom lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1266602A JP2900434B2 (en) 1989-10-13 1989-10-13 Compact zoom lens

Publications (2)

Publication Number Publication Date
JPH03127008A JPH03127008A (en) 1991-05-30
JP2900434B2 true JP2900434B2 (en) 1999-06-02

Family

ID=17433096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1266602A Expired - Lifetime JP2900434B2 (en) 1989-10-13 1989-10-13 Compact zoom lens

Country Status (1)

Country Link
JP (1) JP2900434B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2811828B2 (en) * 1989-11-17 1998-10-15 キヤノン株式会社 Zoom lens having simple configuration and camera having the same
JP3314786B2 (en) * 1991-10-22 2002-08-12 オリンパス光学工業株式会社 Zoom lens using plastic
JPH05188293A (en) * 1992-01-14 1993-07-30 Asahi Optical Co Ltd Zoom lens
US5418647A (en) * 1992-01-14 1995-05-23 Konica Corporation Compact zoom lens for use in a lens shutter camera
US5610767A (en) * 1992-04-06 1997-03-11 Asahi Kogaku Kogyo Kabushiki Kaisha Zoom lens system with small numbers of lenses and wide viewing angle
US5570235A (en) * 1993-09-02 1996-10-29 Asahi Kogaku Kogyo Kabushiki Kaisha Compact zoom lens
JP3087550B2 (en) * 1993-11-25 2000-09-11 キヤノン株式会社 Small zoom lens
JP3383061B2 (en) * 1994-02-15 2003-03-04 オリンパス光学工業株式会社 Zoom lens and camera with zoom lens
JP3366101B2 (en) * 1994-03-23 2003-01-14 オリンパス光学工業株式会社 High zoom ratio 2-group zoom lens
JP3412939B2 (en) * 1994-12-22 2003-06-03 キヤノン株式会社 Zoom lens
JP3414552B2 (en) * 1995-06-06 2003-06-09 オリンパス光学工業株式会社 Zoom lens
JP3435364B2 (en) * 1998-12-24 2003-08-11 ペンタックス株式会社 Zoom lens system
JP5592708B2 (en) * 2010-06-14 2014-09-17 オリンパス株式会社 Imaging optical system and imaging apparatus using the same
CN104730694A (en) * 2015-03-13 2015-06-24 中国科学院西安光学精密机械研究所 Long-pupillary-distance and shortwave infrared spectral imaging objective lens

Also Published As

Publication number Publication date
JPH03127008A (en) 1991-05-30

Similar Documents

Publication Publication Date Title
US6844991B2 (en) Fisheye lens
JP2924116B2 (en) Zoom lens
JP2924117B2 (en) Zoom lens
JP2870035B2 (en) High-magnification zoom lens system including wide-angle range
JP3200925B2 (en) Zoom lens with wide angle of view
JP3033136B2 (en) Compact zoom lens
JP3033149B2 (en) Compact zoom lens
JP3033141B2 (en) Compact zoom lens
JP3033137B2 (en) Compact zoom lens
JP2900434B2 (en) Compact zoom lens
JP3028581B2 (en) High magnification zoom lens
JP2002006214A (en) Zoom lens and photographing device equipped with the same
JPH0921952A (en) Zoom lens
JP3033138B2 (en) Compact zoom lens
JP2900435B2 (en) Compact zoom lens
JP3394624B2 (en) Zoom lens
JP2924115B2 (en) Zoom lens
JP3033148B2 (en) Compact zoom lens
JPH05127082A (en) Small-sized zoom lens
JP3021596B2 (en) Compact zoom lens
JP2924119B2 (en) Zoom lens
JP2924153B2 (en) Compact zoom lens
JP3087303B2 (en) Compact zoom lens
JP3021487B2 (en) Compact zoom lens
JPH07104183A (en) Bright triplet lens

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080319

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090319

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100319

Year of fee payment: 11