JP2921159B2 - Filtration Pond Control Method by Fuzzy Inference - Google Patents

Filtration Pond Control Method by Fuzzy Inference

Info

Publication number
JP2921159B2
JP2921159B2 JP9247791A JP9247791A JP2921159B2 JP 2921159 B2 JP2921159 B2 JP 2921159B2 JP 9247791 A JP9247791 A JP 9247791A JP 9247791 A JP9247791 A JP 9247791A JP 2921159 B2 JP2921159 B2 JP 2921159B2
Authority
JP
Japan
Prior art keywords
water
filtration
fuzzy inference
raw water
target value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9247791A
Other languages
Japanese (ja)
Other versions
JPH04322710A (en
Inventor
昭男 早崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP9247791A priority Critical patent/JP2921159B2/en
Publication of JPH04322710A publication Critical patent/JPH04322710A/en
Application granted granted Critical
Publication of JP2921159B2 publication Critical patent/JP2921159B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プロセスコントローラ
等の制御装置で濾過池を制御する際の濾過池制御方式に
関し、特に、ファジイ推論を用いて最適な制御を実現す
る濾過池制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a filter control system for controlling a filter by a control device such as a process controller, and more particularly to a filter control system for realizing optimum control using fuzzy inference.

【0002】[0002]

【従来の技術】浄水場における各種プロセスのうち、沈
澱プロセスで除去できない小さなブロックや浮遊物を取
り除く処理として濾過プロセスがあり、浮遊物を除去す
ることにより高度に浄化された処理水を得ることができ
る。濃度の比較的低い浮遊物質を除去する濾過プロセス
としては砂濾過法があり、濾過池が使用される。濾過池
は、不活性な濾材を充填した層に適当な速度で水を通し
て水中に含まれる浮遊物を分離・保持するもので、長時
間使用すると、濾過層の付着物による汚れのため適当な
濾過速度を維持できなくなり、濾過能力が低下するの
で、これを回避するために濾過層の洗浄が必要になる。
従来の濾過池制御方式は、損失水頭の瞬時値を検出し、
この瞬時値のみで濾過能力を判定している。
2. Description of the Related Art Among various processes in a water purification plant, there is a filtration process as a process for removing small blocks and suspended matter which cannot be removed by a precipitation process, and it is possible to obtain highly purified treated water by removing suspended matter. it can. A sand filtration method is used as a filtration process for removing suspended substances having a relatively low concentration, and a filtration pond is used. A filtration pond separates and retains suspended matter contained in water at an appropriate speed by passing water through a layer filled with an inert filter medium. Since the speed cannot be maintained and the filtration ability is reduced, it is necessary to wash the filtration layer to avoid this.
The conventional filtration pond control method detects the instantaneous value of the head loss,
The filtering capability is determined only by the instantaneous value.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記従
来の濾過池制御方式は、洗浄タイミングを濾過速度及び
浮遊物の抑制量に比例する損失水頭の瞬時値のみで制御
しているため、濾過池の能力を最大限に発揮できず、ま
た濾過池の能力を総合的に判定していないので、複数の
濾過池のマクロ的な運用を考えると、最適な制御は困難
である。
However, in the above-mentioned conventional filter pond control method, the cleaning timing is controlled only by the instantaneous value of the head loss that is proportional to the filtering speed and the amount of suspended matter suppression. Since the capacity cannot be maximized and the capacity of the filtration ponds is not comprehensively determined, optimal control is difficult when considering the macro operation of a plurality of filtration ponds.

【0004】本発明は、このような課題に鑑みて創案さ
れたもので、濾過池の能力を最大限に活用でき、複数の
濾過池のマクロ的運用を最適化し、浄水の利用率を向上
すると共に、省電力と寿命延長を実現する柔軟なアルゴ
リズムの濾過池制御方式を提供することを目的としてい
る。
SUMMARY OF THE INVENTION The present invention has been made in view of such problems, and makes it possible to maximize the capacity of a filtration pond, optimize the macro operation of a plurality of filtration ponds, and improve the utilization rate of purified water. It is another object of the present invention to provide a filter control system with a flexible algorithm that realizes power saving and life extension.

【0005】[0005]

【課題を解決するための手段】本発明における上記課題
を解決するための手段は、複数の濾過池により原水の浮
遊物質を除去し、かつ浄水池から戻される浄水でそれら
濾過池の洗浄を行う浄水場システムの濾過池制御方式に
おいて、原水積算流量と各濾過池の損失水頭と浄水池水
位とにより第1のファジイ推論で原水流量目標値を設定
し、この原水流量目標値と濾過中の濾過池台数と浄水池
水位とから第2のファジイ推論で濾過池の洗浄を決定
し、前記原水流量目標値と浄水池水位とから第3のファ
ジイ推論で所要の濾過工程の濾過池台数を決定する濾過
池制御方式によるものとする。
Means for solving the above problems in the present invention is to remove suspended substances in raw water by a plurality of filtration ponds and to wash the filtration ponds with purified water returned from the purification ponds. In the filter pond control method of the water purification plant system, the target value of the raw water flow is set by the first fuzzy inference based on the integrated flow rate of the raw water, the head loss of each filter pond, and the water level of the water purifier. The washing of the filter ponds is determined by the second fuzzy inference from the number of ponds and the water level of the water purification basin, and the number of filtration ponds of the required filtration step is determined by the third fuzzy inference from the water flow target value of the raw water and the water level of the clean water basin based on the raw water flow target. It is based on the filter pond control method.

【0006】[0006]

【作用】本発明は、濾過池の能力を損失水頭,原水積算
流量,浄水池水位など濾過プロセスの各量を総合的に判
断する方式で、原水流量目標値の決定と濾過池の洗浄判
定及び濾過台数判定をファジイ推論により行っている。
本発明では、3段階のファジイ推論を設け、第1のファ
ジイ推論では、原水積算流量と各濾過池の損失水頭と浄
水池水位により原水流量目標値を設定し、第2のファジ
イ推論では、この原水流量目標値と濾過中の濾過池台数
と浄水池水位とから濾過池の洗浄を決定し、第3のファ
ジイ推論では、前記原水流量目標値と浄水池水位とから
所要の濾過工程の濾過池台数を決定する。
The present invention determines the raw water flow target value, determines the washing of the filtration pond, and evaluates the capacity of the filtration pond comprehensively based on the amount of the filtration process such as head loss, integrated flow rate of raw water, and water level of the purification tank. The number of filtration units is determined by fuzzy inference.
In the present invention, three stages of fuzzy inference are provided, and in the first fuzzy inference, the raw water flow target value is set based on the integrated flow of raw water, the loss head of each filtration pond and the water level of the clean water reservoir, and in the second fuzzy inference, The washing of the filtration pond is determined from the target raw water flow value, the number of filtration ponds during filtration, and the water level of the purification basin. In the third fuzzy inference, the filtration basin of the required filtration process is determined based on the target water flow target value and the water level of the purification basin. Determine the number.

【0007】[0007]

【実施例】以下、図面を参照して、本発明の実施例を詳
細に説明する。図1は、本発明の一実施例の構成図であ
る。図中、1は第1のファジイ推論(1)、2は第2の
ファジイ推論(2)、3は第3のファジイ推論(3)、
4は沈澱池ピット、5a〜5nは複数の濾過池、6は浄
水池である。同図において、実線は水系を示し、沈澱池
ピット4より原水弁7a〜7n及び流量計8a〜8nを
経由して各濾過池5a〜5nで濾過された水は浄水池6
に集められるが、その一部は洗浄ポンプ9により濾過池
5a〜5nへ戻され、それらの洗浄に使用される。この
ようなシステムの濾過池制御方式として、本実施例で
は、流量計8a〜8nで検出した原水流量を積算器10
で積算し、この原水積算流量と、各濾過池5a〜5nの
損失水頭と、浄水池6の水位とを第1のファジイ推論
(1)に入力して原水流量の目標値を設定し、PI制御
器11を介して、原水弁7a〜7nを制御する。この原
水流量の目標値と、濾過中の濾過台数と、浄水池6の水
位とから、第2のファジイ推論(2)は、濾過池の洗浄
を決定し、濾過池洗浄指令を発する。第3のファジイ推
論(3)は、前記原水流量の目標値と、浄水池6の水位
とから所要の濾過工程の濾過池台数を決定し、濾過池濾
過指令を発する。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram of one embodiment of the present invention. In the figure, 1 is a first fuzzy inference (1), 2 is a second fuzzy inference (2), 3 is a third fuzzy inference (3),
Reference numeral 4 denotes a sedimentation pit, 5a to 5n denote a plurality of filtration ponds, and 6 denotes a water purification pond. In the figure, the solid line indicates the water system, and the water filtered from the sedimentation pit 4 via the raw water valves 7a to 7n and the flow meters 8a to 8n in the respective filtration ponds 5a to 5n is supplied to the water purification basin 6.
A part thereof is returned to the filtration ponds 5a to 5n by the washing pump 9 and used for washing them. In the present embodiment, as a filtration pond control method of such a system, the raw water flow rate detected by the flow meters 8a to 8n is calculated by an integrator 10.
The integrated flow rate of raw water, the head loss of each of the filtration ponds 5a to 5n, and the water level of the water purification tank 6 are input to the first fuzzy inference (1) to set a target value of the raw water flow rate. Via the controller 11, the raw water valves 7a to 7n are controlled. From the target value of the raw water flow rate, the number of filters during filtration, and the water level of the water purification tank 6, the second fuzzy inference (2) determines the cleaning of the filter pond and issues a filter pond cleaning command. The third fuzzy inference (3) determines the number of filtration ponds in a required filtration step from the target value of the raw water flow rate and the water level of the water purification basin 6, and issues a filtration basin filtration command.

【0008】次に、実施例のファジイ推論を説明する。
ファジイ推論がメンバーシップ関数とルールマトリック
スで成立することは公知で、それぞれ下記の如くにな
る。
Next, fuzzy inference of the embodiment will be described.
It is publicly known that fuzzy inference is established by a membership function and a rule matrix.

【0009】(1)第1のファジイ推論で、メンバーシ
ップ関数は、現象項目として、損失水頭(LS),原水
積算流量(FQ),浄水池水位(JL)の3種類と、原
因項目として、原水流量目標値(SQ)とがあって、そ
れぞれL,M,Sの3段階が設定され、これに対するル
ールマトリックスは下表の通りである。
(1) In the first fuzzy inference, the membership function has three types of phenomena: loss head (LS), integrated raw water flow (FQ), and water level of the clean water reservoir (JL). There is a raw water flow rate target value (SQ), and three stages of L, M, and S are respectively set, and the rule matrix for them is as shown in the table below.

【0010】[0010]

【表1】 [Table 1]

【0011】(2)第2のファジイ推論で、メンバーシ
ップ関数は、現象項目として、原水流量目標値(S
Q),濾過中の濾過池台数(NR)及び浄水池水位(J
L)の3種類と、原因項目として、濾過池洗浄指令(S
E)とがあって、それぞれL,M,Sの3段階が設定さ
れ、これに対するルールマトリックスは下表の通りであ
る。
(2) In the second fuzzy inference, the membership function determines the raw water flow rate target value (S
Q), number of filtration ponds during filtration (NR) and water level of water purification tank (J
L) and the filter pond cleaning command (S
E), and three levels of L, M, and S are set, and the rule matrix for them is as shown in the table below.

【0012】[0012]

【表2】 [Table 2]

【0013】(3)第3のファジイ推論で、メンバーシ
ップ関数は、現象項目として、原水流量目標値(S
Q),浄水池水位(JL)の2種類と、原因項目とし
て、濾過池濾過指令(RK)とがあって、それぞれL,
M,Sの3段階が設定され、これに対するルールマトリ
ックスは下表の通りである。
(3) In the third fuzzy inference, the membership function defines the raw water flow target value (S
Q), there are two types of water purification tank water level (JL), and as a cause item there is a filtration tank filtration command (RK).
Three levels of M and S are set, and the rule matrix for them is as shown in the table below.

【0014】[0014]

【表3】 [Table 3]

【0015】本実施例は、このような3つのファジイ推
論により濾過池への各指令を決定するわけである。
In this embodiment, each command to the filtration pond is determined by such three fuzzy inferences.

【0016】本実施例は下記の効果が明らかである。This embodiment has the following advantages.

【0017】(1)濾過池の能力を最大限に活用でき
る。
(1) The capacity of the filtration pond can be maximized.

【0018】(2)複数の濾過池のマクロ的運用を最適
化できる。
(2) The macro operation of a plurality of filtration ponds can be optimized.

【0019】(3)浄水を大量に使用する濾過池の洗浄
回数を低減できるので、浄水の利用率を向上させ、洗浄
ポンプ等の運転時間を短縮し、省電力と寿命延長を図れ
る。
(3) Since the number of times of cleaning a filtration pond using a large amount of purified water can be reduced, the utilization rate of purified water can be improved, the operation time of a cleaning pump and the like can be shortened, and power saving and life extension can be achieved.

【0020】(4)濾過池洗浄指令等をファジイ推論で
行い、柔軟なアルゴリズムを構成でき、その変更や修正
も容易である。
(4) A filter cleaning command or the like is performed by fuzzy inference, a flexible algorithm can be configured, and its change and modification are easy.

【0021】[0021]

【発明の効果】以上、説明したとおり、本発明によれ
ば、濾過池の能力を最大限に活用でき、複数の濾過池の
マクロ的運用を最適化し、浄水を大量に使用する濾過池
では洗浄回数を低減して浄水の利用率を向上すると共に
洗浄ポンプの運転時間を短縮して省電力と寿命延長を図
り、柔軟なアルゴリズムを構成し、その変更や修正も容
易なファジイ推論による濾過制御方式を提供することが
できる。
As described above, according to the present invention, the capacity of a filtration pond can be maximized, the macro operation of a plurality of filtration ponds can be optimized, and the filtration ponds using a large amount of purified water can be washed. Filtration control method by fuzzy inference that reduces the number of times to improve the utilization rate of purified water and shortens the operation time of the washing pump to save power and extend the life, configures a flexible algorithm, and easily changes and corrects it Can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の構成図。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,2,3…ファジイ推論、4…沈澱池ピット、5…濾
過池、6…浄水池、7…原水弁、8…流量計、9…洗浄
ポンプ、10…積算器、11…PI制御器。
1,2,3 ... Fuzzy inference, 4 ... Settling pond pit, 5 ... Filter pond, 6 ... Water purifier, 7 ... Raw water valve, 8 ... Flow meter, 9 ... Wash pump, 10 ... Integrator, 11 ... PI controller .

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 複数の濾過池により原水の浮遊物質を除
去し、かつ浄水池から戻される浄水でそれら濾過池の洗
浄を行う浄水場システムの濾過池制御方式において、原
水積算流量と各濾過池の損失水頭と浄水池水位とにより
第1のファジイ推論で原水流量目標値を設定し、この原
水流量目標値と濾過中の濾過池台数と浄水池水位とから
第2のファジイ推論で濾過池の洗浄を決定し、前記原水
流量目標値と浄水池水位とから第3のファジイ推論で所
要の濾過工程の濾過台数を決定することを特徴とする濾
過池制御方式。
1. A filter control system for a water purification plant system for removing suspended solids in raw water by a plurality of filtration ponds and cleaning the filtration ponds with purified water returned from the water purification basin. The raw water flow target value is set by the first fuzzy inference based on the head loss of the water and the water level of the water purification basin, and the target value of the raw water flow, the number of the filtration ponds being filtered, and the water level of the water purification basin are determined by the second fuzzy inference based on the raw water flow target value. A filter control method comprising: determining washing; and determining the number of filters in a required filtering process by a third fuzzy inference from the raw water flow rate target value and the water level of the purification tank.
JP9247791A 1991-04-24 1991-04-24 Filtration Pond Control Method by Fuzzy Inference Expired - Lifetime JP2921159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9247791A JP2921159B2 (en) 1991-04-24 1991-04-24 Filtration Pond Control Method by Fuzzy Inference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9247791A JP2921159B2 (en) 1991-04-24 1991-04-24 Filtration Pond Control Method by Fuzzy Inference

Publications (2)

Publication Number Publication Date
JPH04322710A JPH04322710A (en) 1992-11-12
JP2921159B2 true JP2921159B2 (en) 1999-07-19

Family

ID=14055393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9247791A Expired - Lifetime JP2921159B2 (en) 1991-04-24 1991-04-24 Filtration Pond Control Method by Fuzzy Inference

Country Status (1)

Country Link
JP (1) JP2921159B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626120A3 (en) * 2012-02-13 2015-09-02 Krones AG Method for controlling and/or regulation of filter systems with a media filter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2626120A3 (en) * 2012-02-13 2015-09-02 Krones AG Method for controlling and/or regulation of filter systems with a media filter

Also Published As

Publication number Publication date
JPH04322710A (en) 1992-11-12

Similar Documents

Publication Publication Date Title
CN105073228B (en) Integrated ultrafiltration and reverse osmosis desalinization system
AU685905B2 (en) Beer clarification process by crossflow-microfiltration
CN204958517U (en) Dark bed filtering pond of denitrification of permanent water level and integration of change water level
US20130206699A1 (en) Method for the Open-Loop Control and/or Closed-Loop Control of Filter Systems with a Media Filter
WO2015115591A1 (en) Biofilm filter device, desalination system, and biofilm filter device cleansing method
JP2921159B2 (en) Filtration Pond Control Method by Fuzzy Inference
CN2907825Y (en) Self-cleaning sand shifting filter
CN207347267U (en) A kind of water treatment system of multi-composite type
JP3786885B2 (en) Water purification method for manganese-containing water
CN1238278C (en) Method and device for effluent treatment
JPH06312105A (en) Filtration pond control device
JP2003227149A (en) River water reservoir facility outside of river course in flood
JPH1119485A (en) Method for controlling operation in water treatment using membrane
KR20140004969A (en) Immersion type-pressure type hybrid membrane filtration system and operation method thereof
JP3465256B2 (en) Filter schedule cleaning schedule management device
JPH07100491A (en) Operation of natural filter
JP3195863B2 (en) Filter pond washing control device
JPH0338205A (en) Rapid filtration device
JPH0623240A (en) Operation method of hollow fiber membrane filter
JPH07241562A (en) Membrane filter apparatus using manganese-deposited permeation membrane
JPS6214324B2 (en)
JPH04197484A (en) Method for controlling backwashing of descending flow type biological activated carbon treatment tower
JP4056639B2 (en) Filtration method and filtration device
KR900003727Y1 (en) Automatic separating system of regenerated water
KR200238938Y1 (en) Back flesh and filter Apparatus Using Influent Water Head