JPS6214324B2 - - Google Patents

Info

Publication number
JPS6214324B2
JPS6214324B2 JP53021568A JP2156878A JPS6214324B2 JP S6214324 B2 JPS6214324 B2 JP S6214324B2 JP 53021568 A JP53021568 A JP 53021568A JP 2156878 A JP2156878 A JP 2156878A JP S6214324 B2 JPS6214324 B2 JP S6214324B2
Authority
JP
Japan
Prior art keywords
cleaning
filtration
partial
filtration device
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53021568A
Other languages
Japanese (ja)
Other versions
JPS54116773A (en
Inventor
Yoshio Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2156878A priority Critical patent/JPS54116773A/en
Publication of JPS54116773A publication Critical patent/JPS54116773A/en
Publication of JPS6214324B2 publication Critical patent/JPS6214324B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 本発明は、例えば下水処理等に用いる複数の濾
過装置の洗浄方法に関し、特に濾過装置の運転の
効率化と洗浄用のポンプ、ブロワー等の動力設備
の節減及び制御の簡略化とを図つた洗浄方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for cleaning a plurality of filtration devices used, for example, in sewage treatment, and in particular, to improving the efficiency of operation of filtration devices and saving and controlling power equipment such as pumps and blowers for cleaning. The present invention relates to a cleaning method that is simplified.

上向流濾過装置は、濾層の懸濁固形物(ss)の
捕捉能力が高く且つ上面部が処理水で覆われてい
る等の理由から、近年下水の三次処理用として多
用され始めている。ところが都市部では1個所の
下水処理場における処理量が通常数十万トンにも
及ぶので、濾過装置を数十個並列設置して汚水処
理に当つている。しかし下水は高濁質であるから
濾過装置を1日1回程度洗浄する必要があり、ま
た下水は流量が変動するから、低流量時に濾過装
置を迅速に洗浄して高流量時に備えなければなら
ないという洗浄時期の問題がある。
Upflow filtration devices have recently begun to be widely used for tertiary treatment of sewage because the filter layer has a high ability to capture suspended solids (SS) and the upper surface is covered with treated water. However, in urban areas, the amount of wastewater treated at a single sewage treatment plant typically reaches several hundred thousand tons, so sewage treatment is carried out by installing dozens of filtration devices in parallel. However, since sewage is highly turbid, it is necessary to clean the filtration device about once a day, and since the flow rate of sewage fluctuates, the filtration device must be quickly cleaned during low flow periods and prepared for high flow times. There is a problem with cleaning timing.

上記の要請を満足するため、全部の濾過装置を
複数個づゝのグループに分けてグループ内の濾過
装置を順次一括洗浄しても、1回の洗浄には通常
水洗と水抜き操作とを幾回か繰り返えす必要があ
るので、その都度ポンプ、ブロワー等の洗浄用機
器の起動、停止制御を行わねばならず、制御が複
雑になる。さらにss量が大となればそれに応じて
洗浄スケジユールを調整し、最適条件の下で洗浄
を行うことが必要になる。
In order to satisfy the above requirements, even if all the filtration devices are divided into groups and the filtration devices in each group are sequentially washed all at once, one cleaning usually requires several washing and draining operations. Since it is necessary to repeat the process several times, it is necessary to start and stop the cleaning equipment such as pumps and blowers each time, which makes the control complicated. Furthermore, as the amount of ss increases, it becomes necessary to adjust the cleaning schedule accordingly and perform cleaning under optimal conditions.

本発明は上記諸問題を解決し、変動する洗浄条
件にも適合容易な濾過装置の洗浄方法を提供する
ことを目的とする。
It is an object of the present invention to solve the above-mentioned problems and provide a method for cleaning a filtration device that can be easily adapted to changing cleaning conditions.

以下本発明の実施例を図面を参照して説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明に用いる上向流濾過装置を示
す。該濾過装置は調圧槽1とこれより低所に設け
た濾過槽2とを有し、調圧槽1に原水流入管3、
オーバーフロー管4及び水位検出装置5を設け、
調圧槽1の底と濾過槽3の下部とを原水供給管6
にて連通させ、これに弁7を設ける。濾過時には
弁7を開き、流入管3から濾過すべき原水を注入
して、調圧槽1の水位を濾過塔2の濾抗に相応す
る高さに保持する。この場合調圧槽1内の下向流
が気泡を抱きこまない流速、すなわち0.125m/
秒以下となるように調圧槽1の容量を定めて、濾
過槽2に気泡を含まない原水を供給する。
FIG. 1 shows an upflow filtration device used in the present invention. The filtration device has a pressure regulation tank 1 and a filtration tank 2 located lower than the pressure regulation tank 1, and the pressure regulation tank 1 is connected to a raw water inflow pipe 3,
An overflow pipe 4 and a water level detection device 5 are provided,
The bottom of the pressure regulating tank 1 and the lower part of the filtration tank 3 are connected to the raw water supply pipe 6.
and a valve 7 is provided thereto. During filtration, the valve 7 is opened, raw water to be filtered is injected from the inlet pipe 3, and the water level in the pressure regulating tank 1 is maintained at a height corresponding to the filtration resistance of the filtration tower 2. In this case, the downward flow in the pressure regulating tank 1 has a flow velocity that does not trap air bubbles, that is, 0.125 m/
The capacity of the pressure regulating tank 1 is determined to be less than 1 second, and raw water containing no air bubbles is supplied to the filtration tank 2.

濾過槽2は下部にストレーナ8を均等配置した
支持部9とその上の濾層10とを有し、濾層10
は砂利からなる下方の支持層11とその上に堆積
した砂層12とからなり、砂層12の上面付近に
格子状部材13を設けて砂層12の散乱を防止す
る。濾過槽2の下部に流入した原水はストレーナ
8から濾層10内を上向流し、その間に原水中の
ssが濾層全体に捕捉されるので、濾過槽2の処理
能力は、従来の下向流式濾過槽における表面層濾
過と異なり極めて大きい。また格子状部材13が
あるため、原水を高速で通しても砂層12の表面
が乱舞することなく安定した状態に保たれる。
The filtration tank 2 has a support part 9 in which strainers 8 are evenly arranged at the bottom and a filter layer 10 thereon.
consists of a lower support layer 11 made of gravel and a sand layer 12 deposited thereon, and a grid member 13 is provided near the top surface of the sand layer 12 to prevent the sand layer 12 from scattering. The raw water that has flowed into the lower part of the filter tank 2 flows upward through the filter layer 10 from the strainer 8, and during this time, the raw water in the raw water is
Since ss is captured throughout the filter layer, the processing capacity of the filtration tank 2 is extremely large, unlike surface layer filtration in a conventional downward flow type filtration tank. Furthermore, since the grid member 13 is provided, the surface of the sand layer 12 is kept in a stable state without being disturbed even when raw water is passed through it at high speed.

ssが除去された処理水は濾層10の上方に設け
た溢流樋14に入り、これから処理水管15をへ
て放流され、又は再利用箇所に送られる。
The treated water from which the ss has been removed enters an overflow gutter 14 provided above the filter layer 10, and from there is discharged through a treated water pipe 15 or sent to a reuse site.

上記濾過操作により濾層10内にはssが徐々に
貯溜されて濾抗が増大するが、これは調圧槽1の
水位の増加として水位検出装置5により検出され
る。水位検出装置5の代りに調圧槽1の下部に設
けた圧力計により濾抗を検出してもよい。
Through the above filtration operation, ss is gradually stored in the filter layer 10 and the filtration resistance increases, but this is detected by the water level detection device 5 as an increase in the water level in the pressure regulating tank 1. Instead of the water level detection device 5, a pressure gauge provided at the bottom of the pressure regulating tank 1 may be used to detect the filtration resistance.

濾抗が所定値に達したならば濾層10を洗浄し
て処理能力を回復させなければならない。このた
め以下の部分工程(イ)〜(ト)からなる洗浄操作を行
う。
When the filter resistance reaches a predetermined value, the filter layer 10 must be washed to restore throughput. For this purpose, a cleaning operation consisting of the following partial steps (a) to (g) is performed.

(イ) 水抜工程 弁7を閉じ、濾過槽2の下部に設けた水抜き
管16の弁17を開く。これにより濾過槽2内
の水位は徐々に低下する。水位が濾層10の表
面上数cmにまで低下したとき弁17を閉じる。
弁17を閉じる時期は水抜き時間を設定したタ
イマー又はレベル計5′によつて定めることが
できる。なお、弁7を閉じると調圧槽1内の原
水は水位が上昇し、オーバーフロー管4から図
示しない原水槽に戻される。
(a) Draining process Close the valve 7 and open the valve 17 of the drain pipe 16 provided at the bottom of the filtration tank 2. As a result, the water level in the filter tank 2 gradually decreases. When the water level drops to a few centimeters above the surface of the filter layer 10, the valve 17 is closed.
The time to close the valve 17 can be determined by a timer or a level meter 5' that sets the water draining time. Note that when the valve 7 is closed, the water level of the raw water in the pressure regulating tank 1 rises and is returned from the overflow pipe 4 to a raw water tank (not shown).

(ロ) 空気洗浄工程 水抜工程終了後、濾過槽2の下部に設けた空
気供給管18の弁19を開くか又は弁19を省
略したときは図示しないブロワーを始動させて
槽内に圧縮空気を供給する。これにより砂層1
2を撹乱し、濾材の付着濁質を剥離させる。こ
のとき支持層11の付着濁質も空気により剥離
される。
(b) Air cleaning process After the water draining process is completed, compressed air is supplied into the tank by opening the valve 19 of the air supply pipe 18 provided at the bottom of the filtration tank 2, or by starting the blower (not shown) if the valve 19 is omitted. supply As a result, sand layer 1
2 to remove the suspended matter adhering to the filter medium. At this time, the suspended solids attached to the support layer 11 are also peeled off by the air.

(ハ) 空気・水洗浄工程 一定時間空気洗浄を行つた後、弁7を開いて
原水を供給する。これにより濾層10中に水と
空気の混合体の上向流を生ぜしめて濾層10に
付着した残留濁質を更に剥離し、これと前項の
空気洗浄工程で剥離した濁質とを上方へ移送す
る。水位が溢流樋14付近に達したとき、濾材
の流出を防ぐために弁19を閉じて空気の供給
を停止し、この工程を終る。弁19の閉鎖は水
抜工程におけると同様にタイマー又はレベル計
5′にて行うことができる。
(c) Air/water cleaning process After air cleaning for a certain period of time, valve 7 is opened and raw water is supplied. As a result, an upward flow of a mixture of water and air is generated in the filter layer 10, and the residual suspended solids adhering to the filter layer 10 are further peeled off, and this and the suspended solids peeled off in the air washing step in the previous section are moved upward. Transport. When the water level reaches the vicinity of the overflow gutter 14, the valve 19 is closed to stop the air supply to prevent the filter medium from flowing out, and this process is completed. Closing of the valve 19 can be performed using a timer or a level meter 5' in the same manner as in the draining process.

なお、原水を供給する代りに、原水又は処理
水を水源とする洗浄水管20の弁21を開いて
混合体の水を供給してもよい。本工程は必要が
なければ省略してもよい。
Note that instead of supplying raw water, the mixed water may be supplied by opening the valve 21 of the washing water pipe 20 whose water source is raw water or treated water. This step may be omitted if unnecessary.

(ニ) 水洗浄工程 前項工程終了後弁21を開き、濾過時の原水
供給流量の2〜5倍の流量をもつて原水を供給
する。これにより濁質を含む洗浄排水は溢流樋
14に集められ、これより排水管22、弁23
を通つて洗浄排水処理施設へ送られる。なおこ
の場合処理水管15の弁24は閉じておく。
(d) Water washing step After the above step is completed, the valve 21 is opened and raw water is supplied at a flow rate 2 to 5 times the flow rate of raw water supplied during filtration. As a result, cleaning wastewater containing suspended matter is collected in the overflow gutter 14, and from there, it is sent to the drain pipe 22 and the valve 23.
The wastewater is then sent to a washing wastewater treatment facility. In this case, the valve 24 of the treated water pipe 15 is kept closed.

本工程においては原水の代りに処理水を供給
してもよいが、処理水を供給するとそれだけ処
理水量は減少するから不得策である。
In this step, treated water may be supplied instead of raw water, but this is not a good idea since supplying treated water will reduce the amount of treated water accordingly.

(ホ) くり返えし工程 (イ)〜(ニ)までの工程をくり返えし、濾層10に
捕捉したssを完全に除去する。
(E) Repeating Steps Steps (a) to (d) are repeated to completely remove the SS trapped in the filter layer 10.

(ヘ) 砂締め工程 前項の工程終了後、弁17を開いて濾層10
内に下向流を生ぜしめ、前工程までに多分に展
開気味であつた濾層10の締めつけを行う。こ
の締めつけには、多少でも下向流が生ずればよ
いから、弁17をタイマーで短時間開けばよ
い。
(F) Sand tightening process After completing the process in the previous section, open the valve 17 and remove the filter layer 10.
A downward flow is generated inside the filter, and the filter layer 10, which had been slightly expanded in the previous process, is tightened. For this tightening, it is sufficient to generate even some downward flow, so the valve 17 may be opened for a short time using a timer.

なお本工程及び(イ)工程における水抜き管16
からの流出水は原水槽に戻される。
In addition, the drain pipe 16 in this process and (a) process
Runoff water is returned to the raw water tank.

(ト) 捨水工程 砂締め工程終了後、弁7を開いて原水を供給
し、溢流樋14から処理水を得るが、洗浄後の
濾過工程初期は多少濁質を含んでいるから、一
定期間は弁24を閉じ弁23を開いて処理水を
排水管22から取出し、その後弁23を閉じ弁
24を開いて濾過工程に入る。
(g) Water disposal process After the sand tightening process is completed, the valve 7 is opened to supply raw water and the treated water is obtained from the overflow gutter 14. However, since it contains some turbidity at the beginning of the filtration process after washing, the water is kept constant. During the period, the valve 24 is closed and the valve 23 is opened to take out the treated water from the drain pipe 22, and then the valve 23 is closed and the valve 24 is opened to begin the filtration process.

第2図は上記の如き上向流濾過装置F1,F2
……Fnを運転するための制御系統図である。制
御装置Cは、各濾過装置F1………Fnからの濾抗
信号fと下水処理場への汚水流入量信号gとを入
力して、各濾過装置F1………Fnの洗浄開始時期
を決定し、洗浄工程におけるブロワーB、洗浄ポ
ンプP及び各弁Vの制御信号を出力する。これが
ため、制御装置Cには演算器、シーケンス制御
器、タイマー、リレー等が設けられる。
Figure 2 shows the above-mentioned upward flow filtration devices F 1 , F 2 . . .
... is a control system diagram for operating Fn. The control device C inputs the filtration signal f from each filtration device F1 ...Fn and the sewage inflow signal g to the sewage treatment plant, and determines when to start cleaning each filtration device F1 ...Fn. is determined, and control signals for the blower B, cleaning pump P, and each valve V in the cleaning process are output. For this reason, the control device C is provided with an arithmetic unit, a sequence controller, a timer, a relay, and the like.

ところが、濾過装置を多数並列運転する場合の
並列数は、1日のうちの最大汚水流入量を基にし
て定められるし、1日の汚水流入量は一般に第3
図に示すように正午が最大で早期が最低となる。
したがつて、洗浄に当つては例えば前日の汚水流
入量の変化から当日の洗浄工程時間、等に洗浄開
始時期を定め、汚水流入量が少い時間帯をみはか
らつて洗浄を行うよう制御装置Cによつて洗浄工
程を制御する。
However, when many filtration devices are operated in parallel, the number of parallels is determined based on the maximum amount of sewage inflow in a day, and the amount of sewage inflow in a day is generally
As shown in the figure, it is highest at noon and lowest early in the morning.
Therefore, when cleaning, for example, the cleaning start time is determined based on the change in the amount of sewage inflow from the previous day, and the cleaning process time on the day, etc., and the cleaning is controlled by taking into account the time when the amount of sewage inflow is small. Device C controls the cleaning process.

本発明においては、制御装置F1………Fnを数
個の濾過装置を含むグループに分け、各グループ
内の各濾過装置の洗浄工程を時間的に順次ずらせ
て、グループごとに及びグループ間を通じて洗浄
工程を連続して行うのである。各グループは、グ
ループを構成する濾過装置の洗浄開始時間は異る
が、同時に洗浄工程が進行する。
In the present invention, the control device F 1 ......Fn is divided into groups including several filtration devices, and the cleaning process of each filtration device in each group is sequentially shifted in time for each group and between groups. The cleaning process is performed continuously. Each group has a different cleaning start time for the filtration devices that make up the group, but the cleaning process proceeds at the same time.

第4図は各3個の濾過装置F1,F2,F3とF4
F5,F6及びF7,F8,F9を含む第1、第2、第3
のグループA,B,Cの全体洗浄工程図を示す。
各濾過装置の洗浄工程は濾抗の大なるものから順
次進行するように組合わされており、各濾過装置
は前記工程イ,ロ,ハ,ニを複数回(図では2
回)繰り返したのち工程ヘ,トで洗浄を終了す
る。
Figure 4 shows three filtration devices F 1 , F 2 , F 3 and F 4 ,
1st, 2nd, 3rd including F 5 , F 6 and F 7 , F 8 , F 9
The overall cleaning process diagram for Groups A, B, and C is shown.
The cleaning process of each filtration device is combined so that it proceeds in order from the one with the largest filter resistance, and each filtration device undergoes steps A, B, C, and D multiple times (in the figure, 2
After repeating the process (times), the cleaning process is completed at steps H and H.

最初の水抜工程イの時間aはタイマーにより自
由に設定され、工程ロ,ハの合計時間と工程ニの
時間及び第2回目以降の工程イの時間とをそれぞ
れ一定時間bとし、工程ヘ,トの合計時間をcと
する。また同一グループ内においては、例えば
F1の最初の工程ハの終了と同時にF2の最初の工
程ロが開始し、F2の最初の工程ハの終了と同時
にF3の最初の工程ロが開始するように順次工程
をずらせておく。
The time a for the first water removal step A is freely set by a timer, and the total time of steps B and C, the time of step D, and the time of the second and subsequent steps A are set as a fixed time b, respectively. Let c be the total time. Also, within the same group, for example,
The processes are sequentially shifted so that the first process B of F2 starts at the same time as the first process C of F1 ends, and the first process B of F3 starts at the same time as the first process C of F2 ends. put.

またグループA,Bの間においては、F3の最
後の工程ハの終了と共にF4の最初の工程ロが開
始するように工程を時間的にずらせておく。グル
ープB,C間においても同様である。
Further, between groups A and B, the processes are shifted in time so that the first process B of F4 starts at the end of the last process C of F3 . The same applies to groups B and C.

しかるとき、工程ロ,ハを通じて行われる空気
供給は、ブロワーを停止することなく単に弁19
を開閉するのみで、F1,F2,F3の各々の最初の
工程ロ,ハに順次切換わつて行われ、引続き
F1,F2,F3の最後の工程ロ,ハに順次切換わつ
ていく。同様にしてF3の最後の工程ハが終了す
るとF4の最初の工程ロに切換わつていく。かく
してグループA,B,Cを通じてブロワーは連続
運転されるのである。
In such a case, the air supply carried out through steps B and C can be done by simply turning off the valve 19 without stopping the blower.
By simply opening and closing, the first steps B and C of each of F 1 , F 2 , and F 3 are sequentially switched, and then the process continues.
The process switches sequentially to the final steps B and C of F 1 , F 2 , and F 3 . Similarly, when the last step of F3 is completed, the process switches to the first step of F4 . Thus, the blowers in groups A, B, and C are operated continuously.

工程ニにおける洗浄水供給についても同様にし
て単に弁21を開閉するのみでF1〜F9を通じポ
ンプを連続運転したままで行われる。
The supply of cleaning water in step 2 is similarly carried out by simply opening and closing the valve 21, with the pump continuously operating through F1 to F9 .

いまF1の全洗浄時間をT0とすれば T0=a+(3m−1)b+c 但しmは工程イ,ロ,ハ,ニの繰り返えし回数 第4図の例ではm=2であるから T0=a+5b+c であり、グループA全体の洗浄時間T1は T1=T0+2b すなわち、1個の濾過装置の洗浄時間に僅か2b
の時間を付加するのみで3個の濾過装置の洗浄を
完了することができる。
Now, if the total cleaning time of F1 is T 0 , then T 0 = a + (3m-1) b + c, where m is the number of times steps A, B, C, and D are repeated. In the example in Figure 4, m = 2. Therefore, T 0 = a + 5b + c, and the cleaning time T 1 for the entire group A is T 1 = T 0 + 2b.In other words, the cleaning time for one filtration device is only 2b.
It is possible to complete the cleaning of three filtration devices by adding only .

またグループAとBの洗浄開始時間のずれ(頭
出し時間)Tは T=T1−(a+b+c)=6b n個のグループA,B,C………の連続洗浄時間
Tnは Tn=T0+(n−1)T となる。
Also, the difference in cleaning start time (starting time) between groups A and B is T=T 1 - (a+b+c)=6b Continuous cleaning time for n groups A, B, C...
Tn becomes Tn=T 0 +(n-1)T.

例えば、a=8分、b=7分、c=5分、m=
2、n=2とすれば、 T0=48分、T1=62分、T=42分、T2=102分 T/T=1.291、T/T=2.167 即ち、3個又は6個の濾過装置の洗浄時間は1
個の濾過装置の洗浄時間のそれぞれ1.291倍又は
2.167倍で足り、全体の洗浄時間を大巾に短縮す
ることができる。この場合、工程イ,ヘ,トの時
間は自由に設定しうるが、全洗浄時間に対する影
響は極めて少い。
For example, a=8 minutes, b=7 minutes, c=5 minutes, m=
2. If n=2, T 0 = 48 minutes, T 1 = 62 minutes, T = 42 minutes, T 2 = 102 minutes T 1 /T 0 = 1.291, T 2 /T 0 = 2.167, that is, 3 pieces Or the cleaning time for 6 filtration devices is 1
1.291 times the cleaning time of each filtration device or
2.167 times is sufficient, and the overall cleaning time can be greatly shortened. In this case, the times of steps A, H, and G can be set freely, but the influence on the total cleaning time is extremely small.

なおブロワーに多段ターボを用いて締切運転が
可能な構造とすれば、工程ロ,ハの最後の部分に
おいて洗浄水と空気の供給を止め、弁16を開い
て濁質を含む水を下方に抜くことが可能であり、
これにより工程ニにおける水洗浄を促進すること
ができる。
If the blower has a structure that allows for shut-off operation by using a multi-stage turbo, the supply of cleaning water and air will be stopped at the last part of steps B and C, and the valve 16 will be opened to drain the water containing turbidity downward. It is possible to
This can facilitate water washing in step 2.

また上記のように各洗浄工程を時間的にずらせ
ると、工程ロ,ハにおけるブロワー、又は空気圧
縮機、及び工程ニにおける洗浄水供給ポンプ等の
動力設備は連続洗浄工程に対して各1台で足り、
しかもこれを連続運転して単に弁の切換えのみで
各濾過装置に供給、給水を行うことができるか
ら、前記動力設備の負荷変動が少く、制御及び保
守も容易である。
Furthermore, if each cleaning process is staggered in time as described above, the power equipment such as the blower or air compressor in processes B and C, and the cleaning water supply pump in process D will be one each for each continuous cleaning process. is enough,
Moreover, since this can be operated continuously and water can be supplied to each filtration device simply by switching the valves, there is little load variation in the power equipment, and control and maintenance are easy.

本発明を多数の濾過装置を有する下水処理設備
に適用する場合には、濾過装置を汚水流入量が少
い時間帯において連続洗浄が可能な数ごとの系に
分け、各系を並行にしてそれぞれ連続洗浄すれば
よい。この場合洗浄開始時期及び各洗浄工程の所
要時間等から洗浄用動力設備や各弁の制御に関す
るデータをミニコンに組込めば、全濾過装置の洗
浄の自動化と、最適の洗浄制御が可能となる。
When applying the present invention to a sewage treatment facility that has a large number of filtration devices, the filtration devices are divided into a number of systems capable of continuous cleaning during periods when the amount of sewage inflow is small, and each system is run in parallel. Continuous cleaning is sufficient. In this case, if data regarding the cleaning power equipment and the control of each valve, such as the cleaning start time and the time required for each cleaning process, is incorporated into the minicomputer, it becomes possible to automate the cleaning of the entire filtration device and perform optimal cleaning control.

本発明は上記構成を有し、多数の濾過装置の洗
浄を最小の洗浄設備をもつて迅速に遂行すること
ができ、特に下水処理の如き1日中で汚水流入量
が少い時間帯に最大汚水流入量に見合う多数の濾
過装置を迅速に手際よく洗浄しうる効果があり、
大規模の下水処理施設において濾過装置の洗浄を
自動化する場合に有力な洗浄方法である。
The present invention has the above-mentioned configuration, and can quickly clean a large number of filtration devices with the minimum amount of cleaning equipment.Especially during times of the day when the amount of sewage inflow is small, such as during sewage treatment, the amount of inflow of sewage can be maximized. It has the effect of quickly and efficiently cleaning a large number of filtration devices commensurate with the amount of sewage inflow.
This is an effective cleaning method when automating the cleaning of filtration equipment in large-scale sewage treatment facilities.

なお本発明は工程ヘを除けば下向流濾過装置の
洗浄にも適用することができる。
Note that the present invention can also be applied to cleaning a downward flow filtration device, except for the process.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の一実施例を示し、第1図は上向
流濾過装置の概略構造説明図、第2図は多数の上
向流濾過装置を運転するための制御系統図、第3
図は下水処理場における汚水流入量変動図、第4
図は洗浄工程図である。 2,F1〜Fn……濾過装置、A,B,C……グ
ループ、ロとハ,ニ……部分工程。
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic structural explanatory diagram of an upflow filtration device, FIG. 2 is a control system diagram for operating a large number of upflow filtration devices, and FIG.
The figure is a diagram of fluctuations in sewage inflow at a sewage treatment plant.
The figure is a cleaning process diagram. 2, F 1 to Fn...filtration device, A, B, C... group, B, H, D... partial process.

Claims (1)

【特許請求の範囲】 1 並列運転される多数の濾過装置により汚水処
理をする濾過装置の洗浄方法において、各濾過装
置の洗浄工程中に、少なくも洗浄水供給及び空気
供給を要する部分工程を有し、互いの濾過装置の
前記部分工程の同一の部分工程が重ならず且つ前
段濾過装置における前記部分工程終了と共に次段
濾過装置における対応する前記部分工程が開始す
るよう互に順次時間差を設けて各濾過装置の洗浄
工程を開始させ、複数の濾過装置の洗浄工程を進
行させるようにしたことを特徴とする濾過装置の
洗浄方法。 2 並列運転される多数の濾過装置により汚水処
理をする濾過装置の洗浄方法において、全濾過装
置を複数個の濾過装置を含むグループに分け、各
グループ内の各濾過装置の洗浄工程中に、少なく
も洗浄水供給及び空気供給を要する部分工程を有
し、互いの濾過装置の前記部分工程の同一の部分
工程が重ならず且つ前段濾過装置における前記部
分工程終了と共に次段濾過装置における対応する
前記部分工程が開始するよう互に順次時間差を設
けて各濾過装置の洗浄工程を開始させ、複数の濾
過装置の洗浄工程を進行させるようにし、各グル
ープの洗浄工程に、前段グループの最後に洗浄さ
れる濾過装置の最後の前記部分工程終了と共に次
段グループの最初に洗浄される濾過装置の対応す
る最初の前記部分工程が開始するよう時間差を設
けることを特徴とする濾過装置の洗浄方法。
[Scope of Claims] 1. A method for cleaning a filtration device in which sewage is treated using a large number of filtration devices operated in parallel, including a partial step that requires at least supply of cleaning water and air during the cleaning process of each filtration device. The same partial processes of the partial processes of each filtration apparatus do not overlap, and the corresponding partial processes of the next stage filtration apparatus start at the same time as the partial process of the previous stage filtration apparatus ends. A method for cleaning a filter device, characterized in that the cleaning step for each filter device is started, and the cleaning steps for a plurality of filter devices are progressed. 2. In a method for cleaning filtration equipment that treats sewage using a large number of filtration equipment operated in parallel, all filtration equipment is divided into groups containing a plurality of filtration equipment, and during the cleaning process of each filtration equipment in each group, at least one The same partial processes in the partial processes of each filtration device do not overlap, and when the partial process in the previous stage filtration device is completed, the corresponding partial steps in the next stage filtration device are completed. The cleaning process of each filtration device is started with a time difference in order so that the partial processes start, and the cleaning process of a plurality of filtration devices is progressed. A method for cleaning a filtration device, characterized in that a time difference is provided so that the corresponding first partial step of the filtration device to be cleaned first in the next stage group starts when the last partial step of the filtration device of the next stage group is completed.
JP2156878A 1978-02-28 1978-02-28 Cleaning method for filtering device Granted JPS54116773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2156878A JPS54116773A (en) 1978-02-28 1978-02-28 Cleaning method for filtering device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2156878A JPS54116773A (en) 1978-02-28 1978-02-28 Cleaning method for filtering device

Publications (2)

Publication Number Publication Date
JPS54116773A JPS54116773A (en) 1979-09-11
JPS6214324B2 true JPS6214324B2 (en) 1987-04-01

Family

ID=12058621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2156878A Granted JPS54116773A (en) 1978-02-28 1978-02-28 Cleaning method for filtering device

Country Status (1)

Country Link
JP (1) JPS54116773A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214700A (en) * 1989-02-15 1990-08-27 Nec Corp X-y plotter

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007229658A (en) * 2006-03-02 2007-09-13 Ishigaki Co Ltd Filtration treatment method using fiber filter medium, and filtration apparatus therefor
JP2009226332A (en) * 2008-03-24 2009-10-08 Metawater Co Ltd Method for (back)washing filtration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS452697Y1 (en) * 1966-11-10 1970-02-04
JPS5224349A (en) * 1975-08-19 1977-02-23 Matsushita Electric Ind Co Ltd High-frequency heating device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS452697Y1 (en) * 1966-11-10 1970-02-04
JPS5224349A (en) * 1975-08-19 1977-02-23 Matsushita Electric Ind Co Ltd High-frequency heating device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02214700A (en) * 1989-02-15 1990-08-27 Nec Corp X-y plotter

Also Published As

Publication number Publication date
JPS54116773A (en) 1979-09-11

Similar Documents

Publication Publication Date Title
NO167190B (en) STEERING-RATE CONTROL OF GRANULOUS MEDIUM FILTERS AND OF THE TYPE OF PULSET RENT.
US3638793A (en) Sewage treatment system
US5238560A (en) Washable filter
CN110510729A (en) Cleaning control method, system and corresponding moving bed biological filter tank reactor assembly
CN104096390A (en) Water level-lowering back-flushing system with deep-bed filter
JPS6214324B2 (en)
JP6599096B2 (en) Filtration basin cleaning method and water treatment apparatus
CN104071926B (en) A kind of V-type filter tank
CN207237393U (en) A kind of water treatment system with backwashing function
CN110734125B (en) Water level adjustable efficient filter tank back flushing method and structure
CN102276052B (en) Backwashing apparatus and method for aeration biofilter with lightweight filter material
CN211470913U (en) High-efficient type filtering pond back flush structure of adjustable water level
RU2079437C1 (en) Plant for purification of petroleum-containing sewage water
CN218951139U (en) Denitrification filter tank
GB1604108A (en) Backwash fast filter installation
JPH01199612A (en) Method for controlling cleaning stage of rapid sand-filter bed
JP2921159B2 (en) Filtration Pond Control Method by Fuzzy Inference
RU2650169C1 (en) Water purification treatment plant with pulsed flushing of granular loading
JP2000210540A (en) Membrane filter apparatus
SU905201A1 (en) Water clarification plant
SU962210A1 (en) Apparatus for accumulating and purifying rainfall water
JPS5919586A (en) Backwashing method
JPH0326320A (en) Method for filtering rain water
JPS6316010A (en) Method for washing filter layer
JPH06312105A (en) Filtration pond control device