JP2919944B2 - Method and device for connecting oxide superconducting conductor - Google Patents

Method and device for connecting oxide superconducting conductor

Info

Publication number
JP2919944B2
JP2919944B2 JP30756990A JP30756990A JP2919944B2 JP 2919944 B2 JP2919944 B2 JP 2919944B2 JP 30756990 A JP30756990 A JP 30756990A JP 30756990 A JP30756990 A JP 30756990A JP 2919944 B2 JP2919944 B2 JP 2919944B2
Authority
JP
Japan
Prior art keywords
oxide superconducting
layer
intermediate layer
superconducting layer
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30756990A
Other languages
Japanese (ja)
Other versions
JPH04181664A (en
Inventor
康裕 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP30756990A priority Critical patent/JP2919944B2/en
Publication of JPH04181664A publication Critical patent/JPH04181664A/en
Application granted granted Critical
Publication of JP2919944B2 publication Critical patent/JP2919944B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Electrical Connectors (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、酸化物超電導導体の接続方法および接続
装置に関するもので、酸化物超電導導体の接続部分を薄
膜状の酸化物超電導層を介して接続するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and a device for connecting an oxide superconducting conductor, in which a connecting portion of the oxide superconducting conductor is connected via a thin oxide superconducting layer. Connect.

「従来の技術」 近年になって発見された酸化物超電導体は、結晶の特
定の方向に電流を流し易く、特定の方向に電流を流しに
くいという電気的異方性が大きいために、充分な電流密
度を得るためには、結晶の配向性を制御するような製造
方法をとる必要がある。そこで従来、焼成粉末を金属製
のシース材に充填し、圧延加工を施してテープ状に加工
し、機械的に結晶配向性を整え、更にこの後に本焼成す
るといった製造方法を検討することで実用の電流密度に
近い超電導線材を得るべく研究開発が進められている。
"Prior art" Oxide superconductors discovered in recent years are easy to flow current in a specific direction of the crystal, and have a large electrical anisotropy that current is difficult to flow in a specific direction. In order to obtain a current density, it is necessary to adopt a manufacturing method for controlling the crystal orientation. Conventionally, the manufacturing method of filling the baked powder into a metal sheath material, rolling it, processing it into a tape, mechanically adjusting the crystal orientation, and then sintering it afterwards is considered practical. Research and development are proceeding to obtain a superconducting wire having a current density close to the above.

ところが、粉末の圧密体から形成した酸化物超電導体
は、圧密度を充分に高めたとしても多結晶体であり、多
数の粒界が存在する上に、結晶粒界における超電導状態
の結合度が極めて弱いことが知られていることから、結
晶粒界の少ない薄膜状の超電導層をテープ材に蒸着して
酸化物超電導導体を製造することで電流密度を向上させ
ることがなされている。
However, oxide superconductors formed from powder compacts are polycrystalline even if the compaction density is sufficiently increased, and there are many grain boundaries and the degree of coupling of the superconducting state at the grain boundaries is low. Since it is known that the superconducting layer is extremely weak, a current density is improved by depositing a thin superconducting layer having few crystal grain boundaries on a tape material to produce an oxide superconducting conductor.

「発明が解決しようとする課題」 ところで前記酸化物超電導導体を超電導マグネットの
界磁巻線用あるいは電力輸送線用などとして利用しよう
とした場合、当然のことながら酸化物超電導導体どうし
の接続を行うことが必要になってくる。ところが、前記
の如くテープ材に超電導層を蒸着してなる酸化物超電導
導体を接続する方法は、現在ほとんど提示されておら
ず、現状では、酸化物超電導導体の端部どうしを重ね合
わせるか交差させてテープ材どうしをスポット溶接し、
超電導層どうしを突き合わせて接続する方法が考えられ
ている程度である。
[Problems to be Solved by the Invention] By the way, when trying to use the oxide superconducting conductor for a field winding of a superconducting magnet or for a power transport line, of course, the oxide superconducting conductors are connected to each other. It becomes necessary. However, a method of connecting an oxide superconducting conductor formed by depositing a superconducting layer on a tape material as described above has not been proposed at present, and at present, the ends of the oxide superconducting conductor are overlapped or crossed. Spot welding tape materials together
A method of connecting the superconducting layers with each other has been considered.

ところが、このような接続方法では、接続部の超電導
層どうしが単に接触されているのみであるので、接触部
分において酸化物超電導層の結晶配向性が乱れ、接続部
分の臨界電流密度が大幅に低下する問題があった。
However, in such a connection method, since the superconducting layers of the connection portion are merely in contact with each other, the crystal orientation of the oxide superconducting layer is disturbed at the contact portion, and the critical current density of the connection portion is greatly reduced. There was a problem to do.

本発明は前記課題を解決するためになされたもので、
接続部における臨界電流密度の低下を少なくした状態で
酸化物超電導体どうしの接続ができる方法と装置を提供
することを目的とする。
The present invention has been made to solve the above problems,
It is an object of the present invention to provide a method and an apparatus capable of connecting oxide superconductors in a state in which a decrease in critical current density at a connection portion is reduced.

「課題を解決するための手段」 請求項1に記載した発明は前記課題を解決するため
に、金属製の中空の基材の内部に酸化物超電導層を形成
してなる酸化物超電導導体どうしを接続する方法におい
て、各酸化物超電導導体の端部でその端部の基材の一部
分と酸化物超電導層とを除去して各酸化物超電導導体の
端部に基材からなる舌状突部と酸化物超電導層の露出部
分を形成し、次いで各酸化物超電導導体の基材の舌状突
部どうしを重ね合わせて溶接し、次いでマスク材で各舌
状突部近傍の酸化物超電導層の露出部分を覆うととも
に、マスク材で覆われた両酸化物超電導層の露出部分の
間の舌状突部上にAu、Ptなどの貴金属あるいはSrTiO3
MgOのうちのいずれかからなる接続用中間層を形成し、
次いでマスク材を除去した後、接続用中間層上と酸化物
超電導層の露出部分上と舌状突部上に両酸化物超電導導
体の酸化物超電導層を接続する接続用酸化物超電導層を
蒸着するものである。
[Means for Solving the Problems] The invention described in claim 1 solves the above-mentioned problems by providing oxide superconducting conductors each having an oxide superconducting layer formed inside a hollow metal base material. In the connecting method, at the end of each oxide superconducting conductor, a part of the base material at the end and the oxide superconducting layer are removed, and the tongue-shaped projection made of the base material at the end of each oxide superconducting conductor. The exposed portion of the oxide superconducting layer is formed, and then the tongue-shaped protrusions of the base material of each oxide superconducting conductor are overlapped and welded, and then the oxide superconducting layer near each tongue-shaped protrusion is exposed with a mask material. Noble metal such as Au, Pt or SrTiO 3 on the tongue between the exposed portions of both oxide superconducting layers covered with the mask material,
Forming a connection intermediate layer made of any of MgO,
Next, after removing the mask material, a connecting oxide superconducting layer for connecting the oxide superconducting layers of both oxide superconducting conductors is deposited on the connecting intermediate layer, on the exposed portion of the oxide superconducting layer, and on the tongue-shaped protrusion. Is what you do.

請求項2に記載した発明は前記課題を解決するため
に、金属製の基材上に中間層を介して酸化物超電導層を
形成してなる酸化物超電導導体どうしを接続する方法に
おいて、各酸化物超電導導体の端部で酸化物超電導層よ
りも中間層が前方に突出し、中間層よりも基材が前方に
突出するように各酸化物超電導導体の端部を加工し、次
いで各酸化物超電導導体の基材どうしを重ね合わせて溶
接し、次いでマスク材で各酸化物超電導層の先端側と中
間層の先端部を除く露出部分を覆うとともに、マスク材
で覆われていない基材上と中間層の先端部上にAu,Ptな
どの貴金属あるいはSrTiO3、MgOのうちのいずれかから
なる接続用中間層を形成し、次いでマスク材を除去した
後、接続用中間層上と中間層上と酸化物超電導層上に両
酸化物超電導層を接続する接続用酸化物超電導層を蒸着
するものである。
According to a second aspect of the present invention, there is provided a method for connecting oxide superconducting conductors each comprising an oxide superconducting layer formed on a metal base via an intermediate layer, in order to solve the above-mentioned problems. At the end of the superconductor, the intermediate layer protrudes forward from the oxide superconducting layer, and the end of each oxide superconducting conductor is processed so that the base material protrudes forward than the intermediate layer. The conductor base materials are overlapped and welded, and then the mask material covers the exposed portion of each oxide superconducting layer excluding the tip side and the intermediate layer tip portion. A noble metal such as Au, Pt, or a connection intermediate layer made of any of SrTiO 3 and MgO is formed on the tip of the layer, and after removing the mask material, the connection intermediate layer and the intermediate layer are formed. Connection for connecting both oxide superconducting layers on oxide superconducting layer An oxide superconducting layer is deposited.

請求項3に記載した発明は前記課題を解決するため
に、基材と酸化物超電導層を具備してなる酸化物超電導
導体どうしを接続する装置において、真空排気装置に接
続された内部真空容器と、この内部真空容器の両側部に
接続された予備真空容器と、前記内部真空容器の内部に
設けられたターゲットおよびターゲットホルダとを具備
してなり、前記内部真空容器と予備真空容器は各々容器
本体部と容器本体部の上部開口を開閉する蓋体とからな
り、前記各容器本体部と蓋体との境界部分には、前記内
部真空容器と予備真空容器とを貫通し、前記酸化物超電
導導体を挿通自在な挿通孔が形成し、前記挿通孔の周縁
には真空シール部材が設けてなるものである。
According to a third aspect of the present invention, there is provided an apparatus for connecting oxide superconducting conductors each including a substrate and an oxide superconducting layer, the internal vacuum vessel being connected to a vacuum pumping apparatus. A preliminary vacuum container connected to both sides of the internal vacuum container, and a target and a target holder provided inside the internal vacuum container, wherein the internal vacuum container and the preliminary vacuum container are each a container body. And a lid that opens and closes the upper opening of the container main body. At the boundary between each container main body and the lid, the internal vacuum container and the preliminary vacuum container penetrate, and the oxide superconducting conductor Is formed, and a vacuum seal member is provided on the periphery of the insertion hole.

「作用」 基材の一部分を除去して舌状突部あるいは基材先端部
を形成し、この舌状突部あるいは基材先端部を溶接した
後に酸化物超電導層の接合を行うので、接合時、あるい
は接合後に、酸化物超電導導体に力が作用しても各酸化
物超電導層に不要な負担がかからない。また、基材の舌
状突部あるいは基材先端部の上に中間層を形成し、この
後に酸化物超電導層どうしを接続する接続用酸化物超電
導層を形成するので、接続部分における中間層の存在に
より、酸化物超電導層と基材との反応が抑制され、接続
用酸化物超電導層の臨界電流密度の低下現象が抑制され
る。
"Action" A part of the base material is removed to form a tongue-shaped protrusion or the base end of the base material, and the oxide superconducting layer is bonded after welding the tongue-shaped protrusion or the base end of the base. Alternatively, even if a force acts on the oxide superconducting conductor after the joining, an unnecessary load is not applied to each oxide superconducting layer. In addition, an intermediate layer is formed on the tongue-shaped protrusion or the front end of the base material, and thereafter, an oxide superconducting layer for connection for connecting the oxide superconducting layers is formed. By the presence, the reaction between the oxide superconducting layer and the substrate is suppressed, and the phenomenon of lowering the critical current density of the connecting oxide superconducting layer is suppressed.

更に、基材から露出させた酸化物超電導層をマスク材
で覆ってから接続用中間層を形成し、マスク材を除去し
て酸化物超電導層を再度露出させてから接続用酸化物超
電導層を蒸着するので、基材から露出された酸化物超電
導層が接続用中間層で覆われることがなく、両酸化物超
電導導体の酸化物超電導層は接続用酸化物超電導層で確
実に接続されるので、接続用中間層が超電導接続部の支
障になることはない。また、接続用酸化物超電導層の蒸
着時において、接続用酸化物超電導層のほとんどは接続
用中間層上と各酸化物超電導導体部の露出された酸化物
中間層上に蒸着されるので、接続用酸化物超電導層が蒸
着時に基材と相互拡散反応するおそれは少なくなり、接
続用酸化物超電導層の臨界電流密度が低下することがな
い。
Furthermore, after covering the oxide superconducting layer exposed from the base material with a mask material, an intermediate layer for connection is formed, and after removing the mask material and exposing the oxide superconducting layer again, the oxide superconducting layer for connection is formed. Since the deposition is performed, the oxide superconducting layer exposed from the base material is not covered with the intermediate layer for connection, and the oxide superconducting layers of both oxide superconducting conductors are securely connected by the oxide superconducting layer for connection. The intermediate layer for connection does not hinder the superconducting connection. Also, at the time of deposition of the connecting oxide superconducting layer, most of the connecting oxide superconducting layer is deposited on the connecting intermediate layer and on the exposed oxide intermediate layer of each oxide superconducting conductor portion. The possibility that the oxide superconducting layer for connection will cause an interdiffusion reaction with the substrate at the time of vapor deposition is reduced, and the critical current density of the oxide superconducting layer for connection does not decrease.

一方、酸化物超電導導体を通す挿通孔を形成した内部
真空容器と予備真空容器とを備え、予備真空容器で内部
真空容器の挿通孔を囲み、更に真空シール材も設けてい
るので、内部真空容器の気密性を外部真空容器で確保
し、充分な真空度でもって内部真空容器内で接続用酸化
物超電導層の成膜ができる。従って高い臨界電流密度を
有する接続用酸化物超電導層を形成することができ、こ
れを介して酸化物超電導層が接続される。
On the other hand, an internal vacuum container having an insertion hole through which the oxide superconducting conductor is formed and a preliminary vacuum container are provided. The preliminary vacuum container surrounds the insertion hole of the internal vacuum container, and further has a vacuum seal material. Of the connecting oxide superconducting layer can be formed in the internal vacuum container with a sufficient degree of vacuum by ensuring the airtightness of the external vacuum container. Therefore, a connection oxide superconducting layer having a high critical current density can be formed, and the oxide superconducting layer is connected via this.

「実施例」 第1図ないし第5図は、本発明方法の一例を示すもの
で、第6図と第7図は本発明方法を実施する場合に使用
する成膜装置の一例を示すものである。
"Embodiment" FIGS. 1 to 5 show an example of the method of the present invention, and FIGS. 6 and 7 show an example of a film forming apparatus used in carrying out the method of the present invention. is there.

この例においては、第1図に示すように、金属製の偏
平パイプ状のシース材からなる基材1の内部に酸化物超
電導層2が形成されてなる酸化物超電導導体3を接続す
る場合について説明する。
In this example, as shown in FIG. 1, a case where an oxide superconducting conductor 3 in which an oxide superconducting layer 2 is formed inside a base material 1 made of a metal flat pipe-shaped sheath material is connected. explain.

前記酸化物超電導導体3は、パイプ状の金属製シース
材の内部に、酸化物超電導体の焼結粉末を充填し、前記
シース材に圧延加工などの機械加工を施し、熱処理して
製造されたものである。
The oxide superconducting conductor 3 is manufactured by filling a pipe-shaped metal sheath material with a sintered powder of the oxide superconductor, subjecting the sheath material to mechanical processing such as rolling, and heat treatment. Things.

前記酸化物超電導体3を接続するには、第2図に示す
ように、酸化物超電導導体3の端部の所要長さの部分に
おいて、基材1の上部側と酸化物超電導層2を所定長さ
除去し、基材1の底部先端側の一部分に舌状突部1aを形
成する。あるいは、予め接続する部分が判明している酸
化物超電導導体3にあっては、酸化物超電導導体3の製
造時において、基材1に予め舌状突部1aを形成しておく
こともできる。
To connect the oxide superconductor 3, as shown in FIG. 2, the upper side of the base material 1 and the oxide superconductor layer 2 are fixed at a predetermined length at the end of the oxide superconductor 3. The length is removed, and a tongue-shaped protrusion 1a is formed on a portion of the base 1 at the front end side. Alternatively, in the case of the oxide superconducting conductor 3 in which a portion to be connected is known in advance, the tongue-shaped protrusion 1a can be formed on the base material 1 in advance when the oxide superconducting conductor 3 is manufactured.

次に第2図に示すように端部を加工した酸化物超電導
導体3を2本、第3図に示すように端部どうしを対向さ
せて向かい合わせ、各基材1の舌状突部1aの先端部分を
重ね合わせ、重ね合わせ部分をスポット溶接法などの接
続法によって接続する。
Next, two oxide superconducting conductors 3 whose ends are machined as shown in FIG. 2 are opposed to each other with their ends facing each other as shown in FIG. Are overlapped, and the overlapped portions are connected by a connection method such as a spot welding method.

次に、接続部において、酸化物超電導層2が露出した
部分を覆うようにテープ状のマスク材5を第4図に示す
ように被着する。この場合、マスク材5は、酸化物超電
導層2の露出部分とその周囲の基材1を覆うように被着
する。
Next, a tape-shaped mask material 5 is applied at the connection portion so as to cover a portion where the oxide superconducting layer 2 is exposed, as shown in FIG. In this case, the mask material 5 is applied so as to cover the exposed portion of the oxide superconducting layer 2 and the substrate 1 around the exposed portion.

前記のようにマスク材5を被着したならば、この接続
部分をスパッタ装置あるいはレーザ蒸着装置などの成膜
装置に装入し、第4図に示すように接続用中間層6を形
成する。なお、接続用中間層6を形成する場合、溶射な
どの手段を用いても良い。
After the mask material 5 is applied as described above, the connection portion is inserted into a film forming device such as a sputtering device or a laser vapor deposition device, and a connection intermediate layer 6 is formed as shown in FIG. When the connection intermediate layer 6 is formed, means such as thermal spraying may be used.

この接続用中間層6はSrTiO3、MgOなどの結晶酸化
物、あるいは、金、白金などの貴金属等からなるもので
あり、接続用中間層6は、酸化物超電導層2を構成する
元素と反応性の低いもの、更には、ペロブスカイトを基
本構造とする酸化物超電導体の結晶構造に近い結晶構造
のものを用いることが好ましい。また、接続用中間層6
の熱膨張係数は、酸化物超電導層2の熱膨張係数と金属
製の基材1の熱膨張係数の中間値をとるものがより好ま
しい。接続用中間層6について、このように熱膨張係数
が中間値をとるものを用いることで、後述する熱処理に
伴うヒートサイクルで酸化物超電導層2が基材1と剥離
するおそれを少なくすることができる。
The connection intermediate layer 6 is made of a crystalline oxide such as SrTiO 3 or MgO, or a noble metal such as gold or platinum. The connection intermediate layer 6 reacts with the elements constituting the oxide superconducting layer 2. It is preferable to use an oxide superconductor having low crystallinity and a crystal structure close to the crystal structure of an oxide superconductor having perovskite as a basic structure. In addition, the connection intermediate layer 6
It is more preferable that the coefficient of thermal expansion has an intermediate value between the coefficient of thermal expansion of the oxide superconducting layer 2 and the coefficient of thermal expansion of the metal substrate 1. By using the connection intermediate layer 6 having a thermal expansion coefficient having an intermediate value in this way, the risk that the oxide superconducting layer 2 is peeled off from the base material 1 in a heat cycle accompanying a heat treatment described later can be reduced. it can.

接続用中間層6を形成したならば、各酸化物超電導体
3のマスク材5を基材1から除去し、酸化物超電導層2
の端面を露出させた後に、再び成膜装置に装入して接続
部分に接続用酸化物超電導層7を第5図に示すように成
膜する。この処理によって接続用酸化物超電導層7が、
接続用中間層6の上面と、各酸化物超電導層2の端部露
出部分の上面と、基材1の上面を覆って形成されるの
で、一方の酸化物超電導体3の酸化物超電導層2と、他
方の酸化物超電導層3の酸化物超電導層2とが接続用酸
化物超電導層7を介して接続される。
After the connection intermediate layer 6 is formed, the mask material 5 of each oxide superconductor 3 is removed from the substrate 1 and the oxide superconductor layer 2 is removed.
After exposing the end surface of the substrate, the substrate is again inserted into the film forming apparatus, and the connecting oxide superconducting layer 7 is formed on the connecting portion as shown in FIG. By this processing, the oxide superconducting layer 7 for connection becomes
Since it is formed to cover the upper surface of the connection intermediate layer 6, the upper surface of the exposed end portion of each oxide superconducting layer 2, and the upper surface of the base material 1, the oxide superconducting layer 2 of one oxide superconductor 3 is formed. And the oxide superconducting layer 2 of the other oxide superconducting layer 3 are connected via the connecting oxide superconducting layer 7.

前記接続の際に、基材1を予め溶接で接続しておいて
から接続用中間層6の蒸着と接続用酸化物超電導層7の
蒸着を行うので、蒸着途中あるいは蒸着後において、超
電導導体3に力が作用しても接続等中間層6と接続用酸
化物超電導層7に不要な負荷がかかることがない。
At the time of the connection, the base material 1 is previously connected by welding, and then the deposition of the connection intermediate layer 6 and the deposition of the connection oxide superconducting layer 7 are performed. No unnecessary load is applied to the intermediate layer 6 for connection and the oxide superconducting layer 7 for connection even if a force acts on the oxide superconducting layer 7 for connection.

なお、接続用酸化物超電導層7を形成する場合、必要
に応じて成膜装置の内部で酸化物超電導層7を加熱して
熱処理するか、あるいは成膜後に別途に熱処理すること
で接続用酸化物超電導層7の結晶構造を整え、臨界電流
密度を向上させることができる。そしてこの熱処理によ
って接続用酸化物超電導層7と酸化物超電導層2,2の境
界部分の結晶の整合性が向上するので、接続部分におけ
る臨界電流密度の低下も生じることがない。また、接続
用超電導層7の大部分は接続用中間層6を介して基材1
に接するので、熱処理を施した場合であっても基材1を
構成する金属の元素と熱拡散反応することがなく、接続
用酸化物超電導層7の組成が崩れて接続用超電導層7の
超電導特性が劣化することもない。
When the connection oxide superconducting layer 7 is formed, the oxide superconducting layer 7 may be heated and heat-treated inside the film forming apparatus as necessary, or may be separately heat-treated after the film formation to form the connection oxide superconducting layer 7. The crystal structure of the material superconducting layer 7 can be adjusted and the critical current density can be improved. The heat treatment improves the crystal consistency at the boundary between the connecting oxide superconducting layer 7 and the oxide superconducting layers 2, 2, so that the critical current density at the connecting portion does not decrease. Most of the connection superconducting layer 7 is provided on the base material 1 via the connection intermediate layer 6.
Therefore, even when heat treatment is performed, the composition does not undergo thermal diffusion reaction with the metal elements constituting the base material 1, and the composition of the connecting oxide superconducting layer 7 is destroyed and the superconductivity of the connecting superconducting layer 7 is reduced. There is no deterioration in characteristics.

第6図と第7図に、前記接続用酸化物超電導層7を形
成する場合に用いて好適な成膜装置の一例を示した。
6 and 7 show an example of a film forming apparatus suitable for forming the connection oxide superconducting layer 7.

この成膜装置10は、中央部に設けられた内部真空容器
11と、この内部真空容器11を挾んで両側に設けられた予
備真空容器12,13を主体として構成され、内部真空容器1
1の底部には真空排気装置に連結された排気孔14が形成
されている。また、内部真空容器11の中央部には、ター
ゲットホルダ15に装着されてターゲット16が上向きで設
置されるとともに、内部真空容器11の内部には、図示略
の加熱装置が設けられていて、内部真空容器11の内部を
所望の温度に加熱できるようになっている。
This film forming apparatus 10 has an internal vacuum vessel provided at the center.
11 and auxiliary vacuum vessels 12 and 13 provided on both sides of the internal vacuum vessel 11.
An exhaust hole 14 connected to a vacuum exhaust device is formed at the bottom of 1. Further, in the center of the internal vacuum vessel 11, a target 16 is mounted on the target holder 15 and the target 16 is installed facing upward.A heating device (not shown) is provided inside the internal vacuum vessel 11, The inside of the vacuum vessel 11 can be heated to a desired temperature.

前記ターゲットホルダ15は内部真空容器11の外部に設
けられた高周波電源17に接続されたものである。前記タ
ーゲットホルダ15は、高周波電源17の作用によってター
ゲット16に高周波を印加することで、ターゲット16の構
成粒子を上方に向けて叩き出すことができるようになっ
ている。
The target holder 15 is connected to a high-frequency power supply 17 provided outside the internal vacuum vessel 11. The target holder 15 can strike out constituent particles of the target 16 upward by applying a high frequency to the target 16 by the action of the high-frequency power supply 17.

前記ターゲット16は、酸化物超電導導体3の酸化物超
電導層2と同等、または、近時した組成、あるいは、成
膜中に逃避しやすい成分を多く含有させた複合酸化物の
焼結体、または、酸化物超電導体のバルクなどから形成
されている。現在知られている臨界温度の高い酸化物超
電導体として具体的には、Y−Ba−Cu−O系、Bi−Pb−
Sr−Ca−Cu−O系、Tl−Ba−Ca−Cu−O系などがあるの
で、ターゲット16としてこれらの系のものなどを用いる
ことができる。なお、酸化物超電導体を構成する元素の
中で蒸気圧が高く、蒸着の際に飛散しやすい元素もある
ので、このような元素を含むターゲット16を使用する場
合、蒸気圧の高い元素を目的とする所定の割合よりも多
く含ませたターゲットを使用すれば良い。なお、成膜装
置10によって第4図に示す接続用中間層6を形成する場
合、ターゲット16としてSrTiO3あるいはMgOなどの結晶
酸化物あるいは貴金属のターゲットを用いる。
The target 16 is a sintered body of a composite oxide containing the same or a recent composition as the oxide superconducting layer 2 of the oxide superconducting conductor 3, or containing many components that easily escape during film formation, or , Formed from the bulk of an oxide superconductor. As the oxide superconductor having a high critical temperature known at present, specifically, Y-Ba-Cu-O-based, Bi-Pb-
Since there are an Sr-Ca-Cu-O system, a Tl-Ba-Ca-Cu-O system, etc., these targets can be used as the target 16. Note that among the constituent elements of the oxide superconductor, some elements have a high vapor pressure and are liable to be scattered at the time of vapor deposition.Therefore, when using the target 16 containing such an element, an element having a high vapor pressure is used. What is necessary is just to use the target which included more than the predetermined ratio. When the connection intermediate layer 6 shown in FIG. 4 is formed by the film forming apparatus 10, a crystal oxide such as SrTiO 3 or MgO or a noble metal target is used as the target 16.

前記内部真空容器11と予備真空容器12,13は、一体化
された蓋部11a,12a,13aと、一体化された容器本体部11
b,12b,13bとに分割され、蓋部11a,12a,13aが容器本体部
11b,12b,13bに対して開閉自在に装着されていて、蓋部1
1a,12a,13aで容器本体部11b,12b,13bの上部開口面を閉
じることができるようになっている。また、蓋部11a,12
a,13aの下部側壁には、各々切欠部が形成されいて、蓋
部11a,12a,13aで容器本体部11b,12b,13bを閉じた場合、
各蓋部の切欠部と各底部の切欠部とが合わさって前記酸
化物超電導体3を挿通できる挿通孔19が形成されるよう
になっている。更に、前記各切欠部の内周部には、真空
シール部材20が装着されている。
The internal vacuum vessel 11 and the preliminary vacuum vessels 12 and 13 are integrated with lids 11a, 12a and 13a, and an integrated container body 11
b, 12b, and 13b, and the lids 11a, 12a, and 13a are
11b, 12b, 13b
The upper opening surfaces of the container main bodies 11b, 12b, 13b can be closed by 1a, 12a, 13a. Also, the lids 11a, 12
In the lower side wall of a, 13a, a notch is formed respectively, and when the container body 11b, 12b, 13b is closed by the lids 11a, 12a, 13a,
The notch of each cover and the notch of each bottom are combined to form an insertion hole 19 through which the oxide superconductor 3 can be inserted. Further, a vacuum seal member 20 is mounted on an inner peripheral portion of each of the notches.

第6図と第7図に示す構成の成膜装置10は、第4図に
示す接続用中間層6を形成する場合と、第5図に示す接
続用酸化物超電導層7を形成する場合に使用することが
できる。
The film forming apparatus 10 having the structure shown in FIG. 6 and FIG. 7 is used for forming the connection intermediate layer 6 shown in FIG. 4 and forming the connection oxide superconducting layer 7 shown in FIG. Can be used.

接続用中間層6を形成するには、ターゲット16として
結晶酸化物あるは貴金属などのターゲットを装着し、蓋
部11a,12a,13aを解放する。ここで、第3図に示すよう
に、基材1の舌状突部1a,1aを接続し、更にマスク材5
を装着した状態の酸化物超電導導体3,3を容器本体部11
b,12b,13bの上部の挿通孔に第7図に示すように装着す
る。この場合に第7図に示すように、酸化物超電導導体
3,3の基材1の切り取り部分がターゲット16を向くよう
にセットする。
To form the connection intermediate layer 6, a target such as a crystal oxide or a noble metal is mounted as the target 16, and the lids 11a, 12a, and 13a are released. Here, as shown in FIG. 3, the tongue-like projections 1a, 1a of the base material 1 are connected, and
The oxide superconducting conductors 3, 3 with the
As shown in FIG. 7, the b, 12b, and 13b are mounted in the upper insertion holes. In this case, as shown in FIG.
The substrate 3 is set so that the cut portions of the substrate 1 face the target 16.

この状態で第6図に示すように、蓋部11a,12a,13aを
閉じ、上下の真空シール部材20によって酸化物超電導導
体3,3を挟み、内部真空容器11と予備真空容器12,13を完
全に密閉する。
In this state, as shown in FIG. 6, the lid portions 11a, 12a, and 13a are closed, the oxide superconducting conductors 3, 3 are sandwiched by the upper and lower vacuum seal members 20, and the internal vacuum vessel 11 and the preliminary vacuum vessels 12, 13 are separated. Completely seal.

この後に内部真空容器11を真空排気するとともに、タ
ーゲット16に高周波を印加することで第4図に示すよう
に接続用中間層6を形成することができる。このように
真空排気する場合、内部真空容器11の挿通孔19,19は予
備真空容器12,13によって囲まれ、酸化物超電導導体3,3
に挿通している部分は真空シール部材20…によってシー
ルされるので、内部真空容器11の挿通孔19は完全に密閉
される。
Thereafter, the internal vacuum vessel 11 is evacuated and a high frequency is applied to the target 16, whereby the connection intermediate layer 6 can be formed as shown in FIG. When evacuating in this manner, the insertion holes 19, 19 of the internal vacuum vessel 11 are surrounded by the preliminary vacuum vessels 12, 13, and the oxide superconducting conductors 3, 3
Are sealed by the vacuum seal members 20, so that the insertion hole 19 of the internal vacuum vessel 11 is completely sealed.

接続用中間層6を形成したならば、内部真空容器11の
真空状態を解除するとともに蓋部11a,12a,13aを解放し
て酸化物超電導導体3,3を取り外し、マスク材5,5を除去
するとともにターゲット16を酸化物超電導層形成用のタ
ーゲットに交換し、同様な操作で再び蒸着を行って第5
図に示すように接続用酸化物超電導層7を形成する。
After the connection intermediate layer 6 is formed, the vacuum state of the inner vacuum vessel 11 is released, and the lids 11a, 12a, 13a are released, the oxide superconductors 3, 3 are removed, and the mask materials 5, 5 are removed. At the same time, the target 16 was replaced with a target for forming an oxide superconducting layer, and vapor deposition was performed again in the same manner as described above.
As shown in the figure, the connecting oxide superconducting layer 7 is formed.

以上の操作を行うことで第5図に示すように酸化物超
電導導体3,3の接続作業を完了させることができる。
By performing the above operations, the connection work of the oxide superconductors 3, 3 can be completed as shown in FIG.

第8図ないし第13図は本発明方法の他の例を示すもの
で、この例においては、テープ状の基材20上に、中間層
21と酸化物超電導層22を順次積層してなる酸化物超電導
導体23を接続する場合について説明する。
8 to 13 show another example of the method of the present invention. In this example, an intermediate layer is formed on a tape-shaped base material 20.
The case where the oxide superconducting conductor 23 formed by sequentially laminating the oxide superconducting layer 21 and the oxide superconducting layer 22 will be described.

この例では、まず、接続しようとする酸化物超電導導
体23の各端部を第9図と第10図に示す順序で階段状に加
工する。
In this example, first, each end of the oxide superconducting conductor 23 to be connected is machined stepwise in the order shown in FIG. 9 and FIG.

次に接続しようとする酸化物超電導導体3,3どうしの
基材20の先端部20aを第11図に示すように重ね合わせて
スポット溶接する。
Next, the tip portions 20a of the base materials 20 of the oxide superconducting conductors 3 to be connected are overlapped and spot-welded as shown in FIG.

続いて第11図に示すように酸化物超電導層22の先端側
と中間層21の先端部を除く露出部分を覆い隠すようにマ
スク材24,24を貼着する。
Subsequently, as shown in FIG. 11, mask materials 24, 24 are adhered so as to cover the exposed portion excluding the tip side of the oxide superconducting layer 22 and the tip portion of the intermediate layer 21.

この状態から、第6図と第7図に示す構成の成膜装置
に酸化物超電導体23,23をセットして第12図に示すよう
に接続用中間層25を形成する。ここで第6図に示す成膜
装置において、挿通孔19の形状と真空シール部材20…の
形状を変更して酸化物超電導導体23,23を隙間なく、挾
みつけることができる構成しておくことが内部真空容器
11内を完全に真空シールすることができる。
From this state, the oxide superconductors 23, 23 are set in the film forming apparatus having the structure shown in FIGS. 6 and 7, and the connection intermediate layer 25 is formed as shown in FIG. Here, in the film forming apparatus shown in FIG. 6, the shape of the insertion hole 19 and the shape of the vacuum sealing members 20 are changed so that the oxide superconducting conductors 23 can be sandwiched without any gap. Has an internal vacuum vessel
The inside of 11 can be completely vacuum-sealed.

接続用中間層25を形成したならば、マスク材24,24を
除去し、成膜装置のターゲット16を酸化物超電導層形成
用のターゲットに交換して再び前述のように成膜するこ
とで第13図に示すように酸化物超電導層22,22を接続す
る接続用酸化物超電導層26を形成することができる。
After the connection intermediate layer 25 is formed, the mask materials 24, 24 are removed, the target 16 of the film forming apparatus is replaced with a target for forming an oxide superconducting layer, and the film is formed again as described above. As shown in FIG. 13, a connecting oxide superconducting layer 26 for connecting the oxide superconducting layers 22, 22 can be formed.

また、この接続後、必要に応じて熱処理することで酸
化物超電導層22,22と接続用酸化物超電導層26との結晶
の整合性を整えて接続部分での臨界電流密度の低下を抑
制することができる。
After this connection, if necessary, heat treatment is performed to adjust the crystal consistency between the oxide superconducting layers 22 and 22 and the connecting oxide superconducting layer 26, thereby suppressing a decrease in the critical current density at the connection portion. be able to.

以上説明したように接続することで、先の例で説明し
た場合と同様に酸化物超電導導体23,23を接続すること
ができる。
By connecting as described above, the oxide superconducting conductors 23, 23 can be connected as in the case described in the previous example.

なお、第6図に示す成膜装置10は、酸化物超電導導体
3,23を挿通する挿通孔19の形成と大きさ、並びに、真空
シール部材20の形状を適宜変更することで種々の形状の
酸化物超電導導体の接続用として広く使用することがで
きる。
The film forming apparatus 10 shown in FIG.
By appropriately changing the formation and size of the insertion holes 19 through which the holes 3 and 23 are inserted, and the shape of the vacuum seal member 20, they can be widely used for connecting oxide superconductors of various shapes.

「発明の効果」 以上説明したように本発明の方法は、基材と酸化物超
電導層を具備する酸化物超電導導体どうしを接続する際
に、端部側の基材の一部を舌状突部として残してその他
の部分を除去し、基材の舌状突部どうしを先に接続して
から酸化物超電導層を形成して接続を行うので、接続中
あるいは接続後に酸化物超電導導体に力が作用した場合
であっても酸化物超電導層に不要な負荷がかからない安
全かつ確実な接続方法である。また、酸化物超電導層ど
うしを接続用酸化物超電層で接続するので緻密で結晶の
整合性を取り易い接続用酸化物超電導層で接続すること
ができ、接続部分の臨界電流密度を低下させることなく
良好な接続ができる。
[Effects of the Invention] As described above, the method of the present invention is characterized in that when connecting a substrate and an oxide superconducting conductor having an oxide superconducting layer to each other, a part of the substrate on the end side is tongue-shaped. The remaining portions are removed and the tongue-shaped protrusions of the base material are connected first, and then the oxide superconducting layer is formed to make the connection. This is a safe and reliable connection method in which an unnecessary load is not applied to the oxide superconducting layer even when 作用 acts. In addition, since the oxide superconducting layers are connected to each other by the connecting oxide superconducting layer, they can be connected by the dense oxide superconducting layer that is easy to maintain crystal consistency, and the critical current density of the connecting portion is reduced. A good connection can be made without any problem.

次に、基材から露出させた酸化物超電導層をマスク材
で覆ってから接続用中間層を形成し、マスク材を除去し
て酸化物超電導層を再度露出させてから接続用酸化物超
電導層を蒸着するので、基材から露出された酸化物超電
導層が接続用中間層で覆われることがなく、両酸化物超
電導体の酸化物超電導層は接続用酸化物超電導層で確実
に接続されるので、接続用中間層が超電導接続部の支障
になることはない。また、接続用酸化物超電導層の蒸着
時において、接続用酸化物超電導層のほとんどは接続用
中間層上と各酸化物超電導導体端部の露出された酸化物
中間層上に蒸着されるので、接続用酸化物超電導層が蒸
着時に基材と相互拡散反応するおそれは少なくなり、接
続用酸化物超電導層の臨界電流密度が低下することがな
い。
Next, after covering the oxide superconducting layer exposed from the base material with a mask material, an intermediate layer for connection is formed, the mask material is removed, the oxide superconducting layer is exposed again, and then the oxide superconducting layer for connection is formed. Is deposited, so that the oxide superconducting layer exposed from the base material is not covered with the intermediate layer for connection, and the oxide superconducting layers of both oxide superconductors are reliably connected by the oxide superconducting layer for connection. Therefore, the connection intermediate layer does not hinder the superconducting connection. Also, during the deposition of the connecting oxide superconducting layer, most of the connecting oxide superconducting layer is deposited on the connecting intermediate layer and on the exposed oxide intermediate layer at the end of each oxide superconducting conductor, The risk that the connecting oxide superconducting layer will undergo an interdiffusion reaction with the substrate during deposition is reduced, and the critical current density of the connecting oxide superconducting layer is not reduced.

更に、基材と酸化物超電導層との間に中間層を設ける
構成の酸化物超電導導体を接続する場合、中間層を形成
した後に接続用酸化物超電導層を形成するので、熱処理
時に加熱された場合であっても接続用酸化物超電導層の
元素と基材の元素との相互拡散反応を生じることがな
く、接続用酸化物超電導層の臨界電流密度を低下させる
ことがない。
Furthermore, when connecting an oxide superconducting conductor having a configuration in which an intermediate layer is provided between the base material and the oxide superconducting layer, the oxide superconducting layer for connection is formed after the formation of the intermediate layer. Even in this case, no mutual diffusion reaction occurs between the elements of the connecting oxide superconducting layer and the elements of the base material, and the critical current density of the connecting oxide superconducting layer does not decrease.

一方、本発明の装置によれば、接続するべき酸化物超
電導導体の各酸化物超電導層を接続用酸化物超電導層の
よって接続できるので、接続部分において結晶の整合性
の良好な状態で酸化物超電導導体を接合できる。従って
接続部分で臨界電流密度の低下を引き起こすことなく酸
化物超電導導体を接合することができる。また、酸化物
超電導導体を引き込む内部真空容器の挿通孔に真空シー
ル部材を設けた上に予備真空容器で囲み、この予備真空
容器の挿通孔も真空シール部材を用いて密閉構造に構成
し、酸化物超電導導体の接続部分を内部真空容器内で充
分な真空状態に保持しながら成膜することができるの
で、臨界電流密度の高い接続用酸化物超電導層を形成し
て酸化物超電導導体を良好な状態で接続することができ
る。
On the other hand, according to the apparatus of the present invention, since each oxide superconducting layer of the oxide superconducting conductor to be connected can be connected by the connecting oxide superconducting layer, the oxide superconducting layer can be connected with good crystal alignment at the connecting portion. Superconducting conductors can be joined. Therefore, the oxide superconducting conductor can be joined without lowering the critical current density at the connection portion. In addition, a vacuum sealing member is provided in the insertion hole of the internal vacuum container into which the oxide superconducting conductor is drawn, and the preliminary vacuum container is surrounded by a vacuum sealing member. It is possible to form a film while maintaining the connection portion of the material superconductor in a sufficient vacuum state in the internal vacuum vessel, so that an oxide superconducting layer for connection having a high critical current density is formed to improve the oxide superconductor. Can be connected in state.

【図面の簡単な説明】[Brief description of the drawings]

第1図ないし第5図は本発明方法の一例を説明するため
のもので、第1図は酸化物超電導導体の端部を示す斜視
図、第2図は酸化物超電導導体の端部を加工した状態を
示す斜視図、第3図は端部を加工した一対の酸化物超電
導導体の基材を接続した状態を示す側面図、第4図は接
続用中間層を形成した状態を示す側面図、第5図は接続
用酸化物超電導層を形成した状態を示す側面図、第6図
と第7図は本発明方法の実施に使用する成膜装置の一例
を示すもので、第6図は蓋体を閉じた状態を示す断面
図、第7図は蓋体を解放した状態を示す断面図、第8図
ないし第13図は本発明方法の第2の例を示すもので、第
8図は酸化物超電導導体の断面図、第9図は酸化物超電
導層の端部を加工した状態を示す断面図、第10図は中間
層の端部を加工した状態を示す断面図、第11図は基材ど
うしを接続した状態を示す断面図、第12図は接続用中間
層を形成した状態を示す断面図、第13図は接続用酸化物
超電導層を形成した状態を示す断面図である。 1,20……基材、2,22……酸化物超電導層、3,23……酸化
物超電導導体、5,24……マスク材、6,25……接続用中間
層、7,26……酸化物超電導導体、10……成膜装置、11…
…内部真空容器、12,13……予備真空容器、11a,12a,13a
……蓋体、11b,12b,13b……容器本体部、20……真空シ
ール部材。
1 to 5 are views for explaining an example of the method of the present invention. FIG. 1 is a perspective view showing an end of an oxide superconducting conductor, and FIG. FIG. 3 is a side view showing a state in which a pair of base materials of a pair of oxide superconducting conductors whose ends are processed are connected, and FIG. 4 is a side view showing a state in which a connection intermediate layer is formed. FIG. 5 is a side view showing a state in which an oxide superconducting layer for connection is formed. FIGS. 6 and 7 show an example of a film forming apparatus used for carrying out the method of the present invention. FIG. 7 is a sectional view showing a state in which the lid is closed, FIG. 7 is a sectional view showing a state in which the lid is released, and FIGS. 8 to 13 show a second example of the method of the present invention. Is a cross-sectional view of the oxide superconducting conductor, FIG. 9 is a cross-sectional view showing a state in which an end of the oxide superconducting layer is processed, and FIG. 10 is a state in which an end of the intermediate layer is processed. FIG. 11 is a cross-sectional view showing a state in which base materials are connected to each other, FIG. 12 is a cross-sectional view showing a state in which a connection intermediate layer is formed, and FIG. 13 is a cross-sectional view showing a connection oxide superconducting layer. It is sectional drawing which shows the state which formed. 1,20 base material, 2,22 oxide superconducting layer, 3,23 oxide superconducting conductor, 5,24 mask material, 6,25 intermediate layer for connection, 7,26 ... Oxide superconducting conductor, 10 ... Film forming device, 11 ...
… Internal vacuum vessel, 12,13 …… Preliminary vacuum vessel, 11a, 12a, 13a
... lid, 11b, 12b, 13b ... container body, 20 ... vacuum sealing member.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01B 12/00 - 12/16 H01B 13/00 561 - 565 H01F 6/06 H01R 4/68 H01R 43/00 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01B 12/00-12/16 H01B 13/00 561-565 H01F 6/06 H01R 4/68 H01R 43/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属製の中空の基材の内部に酸化物超電導
層を形成してなる酸化物超電導導体どうしを接続する方
法において、各酸化物超電導導体の端部でその端部の基
材の一部分と酸化物超電導層とを除去して各酸化物超電
導導体の端部に基材からなる舌状突部と酸化物超電導層
の露出部分を形成し、次いで各酸化物超電導導体の基材
の舌状突部どうしを重ね合わせて溶接し、次いでマスク
材で各舌状突部近傍の酸化物超電導層の露出部分を覆う
とともに、マスク材で覆われた両酸化物超電導層の露出
部分の間の舌状突部上にAu、Ptなどの貴金属あるいはSr
TiO3、MgOのうちのいずれかからなる接続用中間層を形
成し、次いでマスク材を除去した後、接続用中間層上と
酸化物超電導層の露出部分上と舌状突部上に両酸化物超
電導導体の酸化物超電導層を接続する接続用酸化物超電
導層を蒸着することを特徴とする酸化物超電導導体の接
続方法。
1. A method for connecting oxide superconducting conductors each comprising an oxide superconducting layer formed inside a hollow metal substrate, wherein the base material is formed at the end of each oxide superconducting conductor. A part of the oxide superconducting layer and an oxide superconducting layer to form a tongue-shaped protrusion at the end of each oxide superconducting conductor and an exposed portion of the oxide superconducting layer. The tongue-shaped protrusions are overlapped and welded, and then the exposed portion of the oxide superconducting layer near each tongue-shaped protrusion is covered with a mask material, and the exposed portion of the oxide superconducting layer covered with the mask material is covered. Noble metal such as Au, Pt or Sr on the tongue between
After forming a connection intermediate layer made of either TiO 3 or MgO, and then removing the mask material, both oxidations are formed on the connection intermediate layer, on the exposed portion of the oxide superconducting layer, and on the tongue-shaped protrusion. A method for connecting an oxide superconducting conductor, comprising depositing an oxide superconducting layer for connection for connecting the oxide superconducting layer of an object superconducting conductor.
【請求項2】金属製の基材上に中間層を介して酸化物超
電導層を形成してなる酸化物超電導導体どうしを接続す
る方法において、各酸化物超電導導体の端部で酸化物超
電導層よりも中間層が前方に突出し、中間層よりも基材
が前方に突出するように各酸化物超電導導体の端部を加
工し、次いで各酸化物超電導導体の基材どうしを重ね合
わせて溶接し、次いでマスク材で各酸化物超電導層の先
端側と中間層の先端部を除く露出部分を覆うとともに、
マスク材で覆われていない基材上と中間層の先端部上に
Au、Ptなどの貴金属あるいはSrTiO3、MgOのうちのいず
れかからなる接続用中間層を形成し、次いでマスク材を
除去した後、接続用中間層上と中間層上と酸化物超電導
層上に両酸化物超電導層を接続する接続用酸化物超電導
層を蒸着することを特徴とする酸化物超電導導体の接続
方法。
2. A method of connecting oxide superconducting conductors each comprising an oxide superconducting layer formed on a metal substrate via an intermediate layer, wherein the oxide superconducting layer is formed at an end of each oxide superconducting conductor. The intermediate layer protrudes forward, the end of each oxide superconducting conductor is processed so that the base material protrudes forward than the intermediate layer, and then the base materials of each oxide superconducting conductor are overlapped and welded. Then, while covering the exposed portion except the tip side of each oxide superconducting layer and the tip portion of the intermediate layer with a mask material,
On the base material not covered with the mask material and on the tip of the intermediate layer
After forming a connection intermediate layer made of any of noble metals such as Au and Pt or SrTiO 3 or MgO, and then removing the mask material, on the connection intermediate layer, on the intermediate layer, and on the oxide superconducting layer A method for connecting an oxide superconducting conductor, comprising depositing a connecting oxide superconducting layer for connecting both oxide superconducting layers.
【請求項3】基材と酸化物超電導層を具備してなる酸化
物超電導導体どうしを接続する装置において、真空排気
装置に接続された内部真空容器と、この内部真空容器の
両側部に接続された予備真空容器と、前記内部真空容器
の内部に設けられたターゲットおよびターゲットホルダ
とを具備してなり、前記内部真空容器と予備真空容器は
各々容器本体部と容器本体部の上部開口を開閉する蓋体
とからなり、前記各容器本体部と蓋体との境界部分に
は、前記内部真空容器と予備真空容器とを貫通し、前記
酸化物超電導導体を挿通自在な挿通孔が形成され、前記
挿通孔の周縁には真空シール部材が設けられてなること
を特徴とする酸化物超電導導体の接続装置。
3. An apparatus for connecting oxide superconducting conductors each comprising a base material and an oxide superconducting layer, comprising: an inner vacuum vessel connected to a vacuum pumping device; and an inner vacuum vessel connected to both sides of the inner vacuum vessel. A preliminary vacuum container, and a target and a target holder provided inside the internal vacuum container, wherein the internal vacuum container and the preliminary vacuum container respectively open and close a container body and an upper opening of the container body. A lid, and at the boundary between each container body and the lid, an insertion hole is formed, which penetrates the internal vacuum container and the preliminary vacuum container, and through which the oxide superconducting conductor can be inserted. A connection device for an oxide superconducting conductor, characterized in that a vacuum seal member is provided at a periphery of the insertion hole.
JP30756990A 1990-11-14 1990-11-14 Method and device for connecting oxide superconducting conductor Expired - Fee Related JP2919944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30756990A JP2919944B2 (en) 1990-11-14 1990-11-14 Method and device for connecting oxide superconducting conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30756990A JP2919944B2 (en) 1990-11-14 1990-11-14 Method and device for connecting oxide superconducting conductor

Publications (2)

Publication Number Publication Date
JPH04181664A JPH04181664A (en) 1992-06-29
JP2919944B2 true JP2919944B2 (en) 1999-07-19

Family

ID=17970657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30756990A Expired - Fee Related JP2919944B2 (en) 1990-11-14 1990-11-14 Method and device for connecting oxide superconducting conductor

Country Status (1)

Country Link
JP (1) JP2919944B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165001A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696942A (en) * 1992-09-14 1994-04-08 Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Oxide superconducting coil and its manufacture
JP2013122981A (en) * 2011-12-12 2013-06-20 Hitachi Ltd Superconducting magnet and method for connecting superconducting wire rod
JP6356046B2 (en) * 2014-11-07 2018-07-11 古河電気工業株式会社 Superconducting wire connection structure, superconducting wire and connection method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165001A1 (en) 2012-05-02 2013-11-07 古河電気工業株式会社 Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
KR20150005897A (en) 2012-05-02 2015-01-15 후루카와 덴키 고교 가부시키가이샤 Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and terminal treatment method of superconducting wire material
US9312052B2 (en) 2012-05-02 2016-04-12 Furukawa Electric Co., Ltd Superconducting wire material, superconducting wire material connection structure, superconducting wire material connection method, and treatment method of superconducting wire material end

Also Published As

Publication number Publication date
JPH04181664A (en) 1992-06-29

Similar Documents

Publication Publication Date Title
US5280013A (en) Method of preparing high temperature superconductor films on opposite sides of a substrate
CA2617210C (en) Architecture for high temperature superconductor wire
EP0884787B1 (en) Oxide superconductor wire and method of manufacturing the same
EP0467237B1 (en) Method of preparing oxide superconducting wire
EP0390704A2 (en) Tunnel junction type Josephson device and method for fabricating the same
JP2919944B2 (en) Method and device for connecting oxide superconducting conductor
JP4182832B2 (en) Superconducting plate connection method and connection part thereof
JP6324202B2 (en) Superconducting wire connection structure, connection method, and superconducting wire
US6553646B1 (en) Method for enclosing a ceramic filament
JP2005044636A (en) Superconductive wire rod
JPH10507590A (en) Multilayer composite and method of manufacture
EP0358545B1 (en) Improvement in a process for producing thallium type superconducting thin film
EP3128618B1 (en) Superconducting wire rod connection structure and connection method, and superconducting wire rod
JP3361016B2 (en) Superconducting member and manufacturing method thereof
JPH0272685A (en) Method for forming weakly coupled superconductor part
JP3061634B2 (en) Oxide superconducting tape conductor
EP0971422A1 (en) Oxide superconducting element and material
JPH09223426A (en) Manufacture of oxide superconducting wire material
JP2976427B2 (en) Method of manufacturing Josephson device
JPH1126822A (en) High temperature superconduction josephson element and its manufacture
EP0461016B1 (en) Superconducting composite element and its fabrication process
JP3102936B2 (en) Superconducting device and manufacturing method thereof
JPS63262808A (en) Joining structure of superconductor
JP3155641B2 (en) Superconducting tunnel junction device
JP2013127918A (en) Oxide superconducting wire, and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees