JP2917649B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2917649B2
JP2917649B2 JP4045091A JP4509192A JP2917649B2 JP 2917649 B2 JP2917649 B2 JP 2917649B2 JP 4045091 A JP4045091 A JP 4045091A JP 4509192 A JP4509192 A JP 4509192A JP 2917649 B2 JP2917649 B2 JP 2917649B2
Authority
JP
Japan
Prior art keywords
represented
integer
film
fluorine atom
metal alkoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4045091A
Other languages
Japanese (ja)
Other versions
JPH05247653A (en
Inventor
哲哉 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4045091A priority Critical patent/JP2917649B2/en
Publication of JPH05247653A publication Critical patent/JPH05247653A/en
Application granted granted Critical
Publication of JP2917649B2 publication Critical patent/JP2917649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に高誘電率容量膜の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a high dielectric constant capacitance film.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化にともない、
素子パターンの微細化が進んでいる。特にDRAMにお
いて、高密度化のためFET部および容量(キャパシ
タ)部の縮小が必要になっている。さらに、容量部の占
有面積を縮小するため3次元のスタック型容量素子が実
用化されている。
2. Description of the Related Art As semiconductor integrated circuits become more highly integrated,
The miniaturization of element patterns is progressing. In particular, in a DRAM, it is necessary to reduce the size of the FET section and the capacity (capacitor) section for higher density. Further, a three-dimensional stacked capacitive element has been put to practical use in order to reduce the area occupied by the capacitive part.

【0003】容量部のパターンを微細化すると容量値が
低下して、ソフトエラーなどの信頼性上の問題が発生す
るので、高誘電率の容量絶縁膜の適用が検討されてい
る。
[0003] When the pattern of the capacitor portion is miniaturized, the capacitance value decreases, and a reliability problem such as a soft error occurs. Therefore, application of a capacitor insulating film having a high dielectric constant has been studied.

【0004】IEDM(IEEE Internati
onal Electron Devices Mee
ting),Technical Digest,19
89,pp.43〜46において、容量絶縁膜として五
酸化タンタル(Ta2 5 )を用いている。その製造方
法は、ポリシリコンからなる下部電極を形成したのち、
四弗化炭素(CF4 )ガスプラズマ中でクリーニングし
たのち、五塩化タンタル(TaCl5 )および亜酸化窒
素(N2 O)をソースガスとして、基板温度450℃で
プラズマCVD法により五酸化二タンタル(Ta
2 5 )膜を形成する。そのあと窒化チタン膜およびタ
ングステン膜からなる積層構造の上部電極を形成して、
スタック型の容量部を形成する。
[0004] IEEEDM (IEEE International)
online Electron Devices Mee
ting), Technical Digest, 19
89, pp. 43 to 46, tantalum pentoxide (Ta 2 O 5 ) is used as a capacitance insulating film. The manufacturing method is to form a lower electrode made of polysilicon,
After cleaning in a carbon tetrafluoride (CF 4 ) gas plasma, tantalum pentachloride (TaCl 5 ) and nitrous oxide (N 2 O) are used as source gases at a substrate temperature of 450 ° C. by plasma CVD to form tantalum pentoxide. (Ta
2 O 5 ) A film is formed. After that, an upper electrode having a laminated structure composed of a titanium nitride film and a tungsten film is formed,
A stack-type capacitance section is formed.

【0005】[0005]

【発明が解決しようとする課題】従来の五酸化二タンタ
ル(Ta2 5 )膜の形成方法には、つぎのような問題
がある。
The conventional method of forming a tantalum pentoxide (Ta 2 O 5 ) film has the following problems.

【0006】亜酸化窒素(N2 O)が酸化性で、成長
温度が450℃と高いので、下部電極であるポリシリコ
ンの表面が酸化される。
[0006] Since nitrous oxide (N 2 O) is oxidizing and has a high growth temperature of 450 ° C., the surface of polysilicon as a lower electrode is oxidized.

【0007】五酸化二タンタル膜と酸化シリコン膜と
の2層構造になって容量値が低下する。
The capacitance is reduced due to the two-layer structure of the tantalum pentoxide film and the silicon oxide film.

【0008】そのため容量部のパターンを微細化する
と、容量絶縁膜を薄くしても十分な容量値が得られない
ので、ソフトエラー耐性が低下するという問題がある。
[0008] Therefore, when the pattern of the capacitor portion is miniaturized, a sufficient capacitance value cannot be obtained even if the capacitor insulating film is thinned, so that there is a problem that the soft error resistance is reduced.

【0009】[0009]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、減圧法、加圧法、バブリング法のうち1つ以
上を用いて気化させた、弗素原子を含有する金属アルコ
キシドの気化ガスおよび弗素原子を含有しない金属アル
コキシドの気化ガスのうち少なくとも弗素原子を含む気
化ガスを、加圧下、減圧下、常圧下のうちいずれかの圧
力で、200℃以下の温度で水蒸気と反応させて半導体
基板上に高誘電率膜を形成したのち、熱処理を行なうも
のである。
According to the present invention, there is provided a method of manufacturing a semiconductor device, comprising: a vaporization gas of a metal alkoxide containing a fluorine atom, which is vaporized by using at least one of a decompression method, a pressure method and a bubbling method. A semiconductor substrate is formed by reacting a vaporized gas containing at least a fluorine atom among vaporized gases of a metal alkoxide not containing a fluorine atom with water vapor at a temperature of 200 ° C. or less at any one of pressurized, reduced, and normal pressures. After a high dielectric constant film is formed thereon, heat treatment is performed.

【0010】[0010]

【実施例】本発明の第1の実施例に用いる高誘電率容量
膜を形成するための装置について、図2を参照して説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for forming a high dielectric constant capacitance film used in a first embodiment of the present invention will be described with reference to FIG.

【0011】弗素原子を含有する金属アルコキシド、弗
素原子を含有しない金属アルコキシド、純水が各バブラ
ー18a,18b,18cで気化され、各流量コントロ
ーラ17a,17b,17cで制御された窒素(N2
ガスによって反応室に導入される。これらのガスは反応
室で混合され、加熱用ヒーター15aを有するサセプタ
ー14上に設置された半導体基板16表面に高誘電率容
量膜が堆積する。
A metal alkoxide containing a fluorine atom, a metal alkoxide not containing a fluorine atom, and pure water are vaporized by each of the bubblers 18a, 18b and 18c, and nitrogen (N 2 ) controlled by each of the flow controllers 17a, 17b and 17c.
The gas is introduced into the reaction chamber. These gases are mixed in the reaction chamber, and a high dielectric constant capacity film is deposited on the surface of the semiconductor substrate 16 provided on the susceptor 14 having the heater 15a for heating.

【0012】ここで弗素原子を有する金属アルコキシド
としてFTa(OC2 5 4 で表わされるフルオロテ
トラエトキシタンタルを用い、弗素原子を含有しない金
属アルコキシドを用いないで五酸化二タンタル膜を形成
する。バブラー18aおよび18bを60℃に、流量コ
ントローラ17aおよび17bを1l(リットル)/分
に、反応室13のの圧力を700mTorrに、サセプ
ター14の温度を30℃に設定した。
Here, a fluorotetraethoxytantalum represented by FTa (OC 2 H 5 ) 4 is used as a metal alkoxide having a fluorine atom, and a ditantalum pentoxide film is formed without using a metal alkoxide containing no fluorine atom. The bubblers 18a and 18b were set at 60 ° C., the flow controllers 17a and 17b were set at 1 liter / minute, the pressure in the reaction chamber 13 was set at 700 mTorr, and the temperature of the susceptor 14 was set at 30 ° C.

【0013】つぎに本発明の第1の実施例としてスタッ
ク型容量部の製造方法について、図1(a)〜(e)を
参照して説明する。
Next, as a first embodiment of the present invention, a method of manufacturing a stacked capacitor will be described with reference to FIGS. 1 (a) to 1 (e).

【0014】はじめに図1(a)に示すように、シリコ
ン基板1表面にフィールド酸化膜(図示せず)、ゲート
酸化膜2、ポリシリコンゲート電極3を順次形成したの
ち、拡散層4a,4b,4cを形成する。つぎに層間絶
縁膜5を堆積して、拡散層4a,4b,4c上の層間絶
縁膜5をエッチングしたのち、拡散層4a,4b,4c
に接続するポリシリコンからなる下部電極6を形成す
る。
First, as shown in FIG. 1A, a field oxide film (not shown), a gate oxide film 2, and a polysilicon gate electrode 3 are sequentially formed on the surface of a silicon substrate 1, and then diffusion layers 4a, 4b, 4c is formed. Next, an interlayer insulating film 5 is deposited, and after etching the interlayer insulating film 5 on the diffusion layers 4a, 4b, 4c, the diffusion layers 4a, 4b, 4c are formed.
The lower electrode 6 made of polysilicon to be connected to is formed.

【0015】つぎに図1(b)に示すように、厚さ20
nmの五酸化二タンタル膜7を堆積したのち、800℃
の窒素雰囲気で10分間アニールする。ここで五酸化二
タンタル膜7の形成は図2の装置を用いて行なう。
Next, as shown in FIG.
After depositing a tantalum pentoxide film 7 nm
In a nitrogen atmosphere for 10 minutes. Here, the tantalum pentoxide film 7 is formed using the apparatus shown in FIG.

【0016】つぎに図1(c)に示すように、ポリシリ
コンからなる上部電極8を形成する。
Next, as shown in FIG. 1C, an upper electrode 8 made of polysilicon is formed.

【0017】つぎに図1(d)に示すように、再び層間
絶縁膜9を堆積したのち拡散層4bに接続するコンタク
ト10を開口する。
Next, as shown in FIG. 1D, after the interlayer insulating film 9 is deposited again, a contact 10 connected to the diffusion layer 4b is opened.

【0018】つぎに図1(e)に示すように、コンタク
ト10にポリシリコン11を埋設したのち燐などを拡散
する。つぎにアルミニウム−シリコン−銅配線12を形
成してスタック型容量部が完成する。
Next, as shown in FIG. 1E, after the polysilicon 11 is buried in the contact 10, phosphorus or the like is diffused. Next, an aluminum-silicon-copper wiring 12 is formed to complete a stacked capacitor.

【0019】本実施例の容量部の容量値は40fFであ
り、従来の方法で得られた容量値(30fF)よりも大
きな値が得られた。
The capacitance value of the capacitance section of this embodiment is 40 fF, which is larger than the capacitance value (30 fF) obtained by the conventional method.

【0020】透過電子顕微鏡を用いてスタック容量部の
断面を観察した結果、五酸化二タンタル膜のリーク電流
特性は、従来の方法で形成したものと同等であり、実用
上の問題はなかった。
As a result of observing the cross section of the stack capacitor using a transmission electron microscope, the leakage current characteristics of the tantalum pentoxide film were the same as those formed by the conventional method, and there was no practical problem.

【0021】つぎに本発明の第2の実施例について述べ
る。弗素原子を含有する金属アルコキシドとして、FT
a(OC2 5 4 で表わされるフルオロテトラエトキ
シタンタルを用い、弗素原子を含有しない金属アルコキ
シドとしてTa(OC2 55 で表わされるペンタエ
トキシタンタルを用いた。図1のバブラー18a,18
b,18cの温度を60℃に、流量コントローラ17
a,17b,17cの流量を各0.5l(リットル)/
分、1l/分、0.5l/分に、反応室13の圧力を7
60mTorrに、サセプター14の温度を50℃に設
定して、厚さ20nmの五酸化二タンタル膜を堆積し
た。
Next, a second embodiment of the present invention will be described. As a metal alkoxide containing a fluorine atom, FT
Fluorotetraethoxy tantalum represented by a (OC 2 H 5 ) 4 was used, and pentaethoxy tantalum represented by Ta (OC 2 H 5 ) 5 was used as a metal alkoxide containing no fluorine atom. The bubblers 18a and 18 in FIG.
b, 18c to 60 ° C.
The flow rates of a, 17b, and 17c are each 0.5 l (liter) /
Min, 1 l / min and 0.5 l / min, and the pressure in the reaction chamber 13 is reduced to 7
At a temperature of 60 mTorr, the temperature of the susceptor 14 was set to 50 ° C., and a tantalum pentoxide film having a thickness of 20 nm was deposited.

【0022】図1(b)の工程で五酸化二タンタル7を
堆積して、DRAMを形成した。スタック型容量部の容
量値は42fFと、従来の方法による30fFよりも大
きい値が得られた。リーク電流特性は第1の実施例と同
様に従来の方法で形成したものと同等であった。
In the step of FIG. 1B, ditantalum pentoxide 7 was deposited to form a DRAM. The capacitance value of the stack capacitance portion was 42 fF, which was larger than 30 fF by the conventional method. The leakage current characteristics were the same as those formed by the conventional method as in the first embodiment.

【0023】以上、五酸化二タンタルを用いたが、その
代りに二酸化チタン、二酸化ジルコニウム、二酸化ハフ
ニウムのいずれかを用いることができる。
As described above, ditantalum pentoxide is used, but any of titanium dioxide, zirconium dioxide and hafnium dioxide can be used instead.

【0024】ここで、弗素原子を含有する金属アルコキ
シドは、nを1〜4の整数、Rをアルキル基として、F
n Ta(OR)5-n で表わされるフルオロアルコキシタ
ンタル、nを1〜3の整数、Fn Ti(OR)4-n で表
わされるフルオロアルコキシチタン、nを1〜3の整
数、Fn Zr(OR)4-n で表わされるフルオロアルコ
キシジルコニウム、nを1〜3の整数、Fn Hf(O
R)4-n で表わされるフルオロアルコキシハフニウムの
うち少なくとも1つを用いる。
Here, the metal alkoxide containing a fluorine atom is such that n is an integer of 1 to 4, R is an alkyl group, and
n Ta (OR) fluoroalkoxy tantalum represented by 5-n, n the integer of 1 to 3, F n Ti (OR) fluoroalkoxy titanium represented by 4-n, n the integer of 1 to 3, F n Zr (OR) fluoroalkoxy zirconium represented by 4-n, n the integer of 1 to 3, F n Hf (O
R) At least one of fluoroalkoxyhafnium represented by 4-n is used.

【0025】また、弗素原子を含有しない金属アルコキ
シドは、Rをアルキル基として、Ta(OR)5 で表わ
されるペンタアルコキシタンタル、Ti(OR)4 で表
わされるテトラアルコキシチタン、Zr(OR)4 で表
わされるテトラアルコキシジルコニウム、Hf(OR)
4 で表わされるテトラアルコキシハフニウムのうち少な
くとも1つを用いる。
Metal alkoxides containing no fluorine atom include pentaalkoxytantalum represented by Ta (OR) 5 , tetraalkoxytitanium represented by Ti (OR) 4 , and Zr (OR) 4, where R is an alkyl group. Tetraalkoxy zirconium represented, Hf (OR)
At least one of tetraalkoxyhafnium represented by 4 is used.

【0026】さらに金属アルコキシドの気化法として
は、減圧法、加熱法、バブリング法、あるいは、これら
を組み合わせた方法を用いることができる。また高誘電
率容量絶縁膜の堆積温度は200℃以下とし、反応室
は、加圧、減圧、常圧のうちいずれかを選ぶことができ
る。
Further, as a method for vaporizing the metal alkoxide, a reduced pressure method, a heating method, a bubbling method, or a combination thereof can be used. The deposition temperature of the high-dielectric-constant insulating film is set to 200 ° C. or lower, and the reaction chamber can be selected from among pressurized, depressurized and normal pressure.

【0027】なお、本発明はDRAMの容量絶縁膜のほ
か、広く半導体装置用の高誘電率薄膜として用いること
ができる。
The present invention can be widely used as a high dielectric constant thin film for a semiconductor device in addition to a capacitance insulating film of a DRAM.

【0028】[0028]

【発明の効果】ポリシリコンの上にプラズマ反応などを
用いることなく、200℃以下で五酸化タンタル膜など
の高誘電率膜を堆積することができる。ポリシリコン表
面が酸化しないので容量素子の容量値の低下を避けるこ
とができる。
According to the present invention, a high dielectric constant film such as a tantalum pentoxide film can be deposited on polysilicon at 200 ° C. or lower without using a plasma reaction or the like. Since the polysilicon surface is not oxidized, a decrease in the capacitance value of the capacitor can be avoided.

【0029】パターンが微細化された容量素子を薄い容
量絶縁膜を用いて形成しても、十分な容量を得ることが
できる。ソフトエラー耐性を劣化させることなく、高歩
留り、高信頼性の半導体集積回路を形成することができ
る。
Even if a capacitor having a fine pattern is formed using a thin capacitor insulating film, a sufficient capacitance can be obtained. A semiconductor integrated circuit with high yield and high reliability can be formed without deteriorating soft error resistance.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を工程順に示す断面図であ
る。
FIG. 1 is a sectional view showing an embodiment of the present invention in the order of steps.

【図2】本発明の一実施例で用いる高誘電率容量膜を形
成するための装置を示す模式図である。
FIG. 2 is a schematic view showing an apparatus for forming a high dielectric constant capacitance film used in one embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2 ゲート酸化膜 3 ゲート電極 4a,4b,4c 拡散層 5 層間絶縁膜 6 下部電極(ポリシリコン) 7 五酸化二タンタル 8 上部電極(ポリシリコン) 9 層間絶縁膜 10 コンタクト 11 ポリシリコン 12 アルミニウム−シリコン−銅−配線 13 反応室 14 サセプター 15a,15b,15c,15d 加熱用ヒーター 16 半導体基板 17a,17b,17c 流量コントローラ 18a バブラー(弗素原子を含有する金属アルコキ
シド) 18b バブラー(弗素原子を含有しない金属アルコ
キシド) 18c バブラー(純水)
Reference Signs List 1 silicon substrate 2 gate oxide film 3 gate electrode 4a, 4b, 4c diffusion layer 5 interlayer insulating film 6 lower electrode (polysilicon) 7 ditantalum pentoxide 8 upper electrode (polysilicon) 9 interlayer insulating film 10 contact 11 polysilicon 12 Aluminum-silicon-copper-wiring 13 Reaction chamber 14 Susceptor 15a, 15b, 15c, 15d Heating heater 16 Semiconductor substrate 17a, 17b, 17c Flow controller 18a Bubbler (metal alkoxide containing fluorine atom) 18b Bubbler (containing fluorine atom) No metal alkoxide) 18c bubbler (pure water)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI H01L 27/108 ──────────────────────────────────────────────────の Continued on front page (51) Int.Cl. 6 Identification code FI H01L 27/108

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 減圧法、加圧法、バブリング法のうち1
つ以上を用いて気化させた、弗素原子を含有する金属ア
ルコキシドの気化ガスを含む気化ガスを、加圧下、減圧
下、常圧下のうちいずれかの圧力で、200℃以下の温
度で水蒸気と反応させて半導体基板上に高誘電率膜を形
成したのち、熱処理を行なう半導体装置の製造方法。
1. One of a pressure reduction method, a pressure method, and a bubbling method.
A vaporized gas containing a vaporized gas of a metal alkoxide containing a fluorine atom, which has been vaporized using at least one of the above, is reacted with water vapor at a temperature of 200 ° C. or less at any one of pressure, reduced pressure, and normal pressure. Forming a high dielectric constant film on a semiconductor substrate, followed by heat treatment.
【請求項2】 前記弗素原子を含有する金属アルコキシ
ドは、nを1〜4の整数、Rをアルキル基として、Fn
Ta(OR)5-n で表わされるフルオロアルコキシタン
タル、nを1〜3の整数として、Fn Ti(OR)4-n
で表わされるフルオロアルコキシチタン、nを1〜3の
整数として、Fn Zr(OR)4-nで表わされるフルオ
ロアルコキシジルコニウム、nを1〜3の整数として、
FnHf(OR)4-n で表わされるフルオロアルコキシ
ハフニウムのうち少なくとも1つである請求項1記載の
半導体装置の製造方法。
2. The metal alkoxide containing a fluorine atom, wherein n is an integer of 1 to 4, R is an alkyl group,
A fluoroalkoxy tantalum represented by Ta (OR) 5-n, where n is an integer of 1 to 3, and FnTi (OR) 4-n
A fluoroalkoxytitanium represented by the formula, n is an integer of 1 to 3, and a fluoroalkoxyzirconium represented by FnZr (OR) 4-n, n is an integer of 1 to 3,
2. The method for manufacturing a semiconductor device according to claim 1, wherein the compound is at least one of fluoroalkoxyhafnium represented by FnHf (OR) 4-n.
JP4045091A 1992-03-03 1992-03-03 Method for manufacturing semiconductor device Expired - Fee Related JP2917649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4045091A JP2917649B2 (en) 1992-03-03 1992-03-03 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4045091A JP2917649B2 (en) 1992-03-03 1992-03-03 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH05247653A JPH05247653A (en) 1993-09-24
JP2917649B2 true JP2917649B2 (en) 1999-07-12

Family

ID=12709647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4045091A Expired - Fee Related JP2917649B2 (en) 1992-03-03 1992-03-03 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2917649B2 (en)

Also Published As

Publication number Publication date
JPH05247653A (en) 1993-09-24

Similar Documents

Publication Publication Date Title
US5846859A (en) Method for manufacturing a semiconductor memory device having capacitive storage
JP2550852B2 (en) Method of manufacturing thin film capacitor
US5686151A (en) Method of forming a metal oxide film
JP4111427B2 (en) Capacitor manufacturing method for semiconductor device
US6287910B2 (en) Method for forming a capacitor using tantalum nitride as a capacitor dielectric
JP2001237400A (en) Method of manufacturing capacitor of semiconductor device
KR100417855B1 (en) capacitor of semiconductor device and method for fabricating the same
US6828190B2 (en) Method for manufacturing capacitor of semiconductor device having dielectric layer of high dielectric constant
US7371670B2 (en) Method for forming a (TaO)1-x(TiO)xN dielectric layer in a semiconductor device
KR100942958B1 (en) Method for forming thin film and method for forming capacitor of semiconductor device using the same
US6326259B1 (en) Method of manufacturing a capacitor in a semiconductor device
JP2001057414A (en) Capacitor for semiconductor memory element and its manufacture
JP2917649B2 (en) Method for manufacturing semiconductor device
KR100408725B1 (en) A method for forming a capacitor of a semiconductor device
KR100717824B1 (en) Capacitor and method for manufacturing the same
JPH09199445A (en) Manufacture of semiconductor device
US6653198B2 (en) Method for fabricating capacitor in semiconductor device and capacitor fabricated thereby
US6306666B1 (en) Method for fabricating ferroelectric memory device
KR100551884B1 (en) Method of manufacturing a capacitor in a semiconductor device
KR100503961B1 (en) Method of manufacturing a capacitor
KR100422596B1 (en) Method for fabricating capacitor
JPH07273216A (en) Forming method of metal oxide film
KR100761406B1 (en) Method for fabricating capacitor with tantalum oxide
KR100587047B1 (en) Method for manufacturing capac itor in semiconductor memory divice
US6716717B2 (en) Method for fabricating capacitor of semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990323

LAPS Cancellation because of no payment of annual fees