JP2916513B2 - Cascode type distributed amplifier - Google Patents

Cascode type distributed amplifier

Info

Publication number
JP2916513B2
JP2916513B2 JP1275661A JP27566189A JP2916513B2 JP 2916513 B2 JP2916513 B2 JP 2916513B2 JP 1275661 A JP1275661 A JP 1275661A JP 27566189 A JP27566189 A JP 27566189A JP 2916513 B2 JP2916513 B2 JP 2916513B2
Authority
JP
Japan
Prior art keywords
transmission
circuit
transmission line
distributed amplifier
transmission circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1275661A
Other languages
Japanese (ja)
Other versions
JPH03136510A (en
Inventor
博行 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP1275661A priority Critical patent/JP2916513B2/en
Publication of JPH03136510A publication Critical patent/JPH03136510A/en
Application granted granted Critical
Publication of JP2916513B2 publication Critical patent/JP2916513B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

本発明は、CHz帯の高周波信号を増幅するカスコード
形分布増幅器に関する。
The present invention relates to a cascode distributed amplifier for amplifying a CHz band high frequency signal.

【従来の技術】[Prior art]

従来、第2図を伴って次に述べる原理的な分布増幅器
が提案されている。 すなわち、順次直列に接続されている複数(n+1)
個の伝送線路LA1、LA2………LAn、LA(n+1)を有し、且つ
伝送線路LA1側の一端から高周波信号入力端子1を導出
しているとともに、伝送線路LA(n+1)側の他端を抵抗素
子R1と容量素子C1と(いずれも図示せず)が直列に接続
されている第1の終端用回路B1を通じて接地に接続して
いる第1の伝送回路G1を有する。 また、順次直列に接続されている複数(n+1)個の
伝送線路LB1、LB2………LBn、LB(n+1)を有し、且つ伝送
線路LB(n+1)側の一端から高周波信号出力端子2を導出
しているとともに、伝送線路LB1側の他端を抵抗素子R2
と容量素子C2と(いずれも図示せず)が直列に接続され
ている第2の終端用回路B2を通じて接地に接続している
第2の伝送回路G2を有する。 さらに、ソースをともに接地に接続し、また、ドレイ
ンを第2の伝送回路G2の伝送線路LB1及びLB2間の接続中
点、LB2及びLB3間の接続中点………LBn及びLB(n+1)間の
接続中点にそれぞれ接続し、さらに、ゲートを第1の伝
送回路G1の伝送線路LA1及びLA2間の接続中点、LA2及びL
A3間の接続中点………LAn及びLA(n+1)間の接続中点にそ
れぞれ接続している複数n個の電界効果型トランジスタ
TA1、TA2………TAnを有する。 以上が、従来提案されている原理的な分布増幅器の構
成である。 また、従来、第3図を伴って、次に述べるカスコード
形分布増幅器も提案されている。 第3図において、第2図との対応部分には同一符号を
付し詳細説明を省略する。 第3図に示す従来提案されているカスコード形分布増
幅器は、第2図で上述した原理的な分布増幅器におい
て、順次直列に接続されている複数n個の伝送線路L
C1、LC2………LCnを有し、且つ伝送線路LC1側の一端か
らバイアス電源供給端子3を導出している第3の伝送回
G3と、複数n個の電界効果トランジスタTB1、TB2……
…TBnとを有し、そして、電界効果トランジスタTB1、TB
2………TB(n-1)、TBnが、それらのソースを、伝送線路L
D1、LD2………LD(n-1)、LDnをそれぞれ通じて、電界効
果型トランジスタTA1、TA2………TA(n-1)、TAnのドレイ
ンにそれぞれ接続し、ドレインを伝送線路LE1、LE2……
…LE(n-1)、LEnをそれぞれ通じて、第2の伝送回路G2の
伝送線路LB1及びLB2間の接続中点、LB2及びLB3間の接続
中点、………LB(n-1)及びLBn間の接続中点、LBn及びLB
(n+1)間の接続中点にそれぞれ接続し、ゲートを第3の
伝送回路G3の伝送線路LC1及びLC2間の接続中点、LC2
びLC3間の接続中点、………LC(n-1)及びLCn間の接続中
点、第3の伝送回路G3の伝送線路LCn側の他端にそれぞ
れ接続している態様で、電界効果トランジスタTA1、TA2
………TA(n-1)、TAnのドレインと、第2の伝送回路G2の
伝送線路LB1及びLB2間の接続中点、LB2及びLB3間の接続
中点、………LB(n-1)及びLBn間の接続中点、LBn及びLB
(n+1)間の接続中点との間にそれぞれ介挿されているこ
とを除いて、第2図で上述した原理的な分布増幅器と同
様の構成を有する。 第2図で上述した従来の原理的な分布増幅器によれ
ば、詳細説明は省略するが、高周波信号入力端子1にGH
z帯の高周波信号を供給することによって、その高周波
信号が、第1の伝送回路G1に伝送し、そして、それにも
とずき第1の伝送回路G1の伝送線路LA1及びLA2間の接続
中点、LA2及びLA3間の接続中点………LAn及びLA(n+1)
の接続中点でそれぞれ得られる高周波信号成分が、電界
効果トランジスタTA1、TA2………TAnによってそれぞれ
増幅され、次で、それら増幅された高周波信号成分が、
第2の伝送回路G2の伝送線路LB1及びLB2間の接続中点、
LB2及びLB3間の接続中点………LBn及びLB(n+1)間の接続
中点をそれぞれ通って、第2の伝送回路G2に供給され、
よって、高周波信号入力端子1に供給される高周波信号
が、電界効果トランジスタTA1〜TAnによって増幅され
て、高周波信号出力端子2に出力される。 そして、この場合、第1の伝送回路G1の伝送線路LA1
及びLA2間の接続中点、LA2及びLA3間の接続中点………L
An及びLA(n+1)間の接続中点のそれぞれと接地との間に
分布容量を有し、従って、第1の伝送回路G1が分布形に
構成され、また、第2の伝送回路G2の伝送線路LB1及びL
B2間の接続中点、LB2及びLB3間の接続中点………LBn
びLB(n+1)間の接続中点のそれぞれと接地との間にも分
布容量を有し、従って、第2の伝送回路G2も分布形に構
成されている。 以上のことから、第2図で上述した従来の原理的な分
布増幅器によれば、詳細説明は省略するが、広帯域増幅
特性を有している。 また、第3図に示す従来のカスコード形分布増幅器に
よれば、上述した事項を除いて第2図で上述した従来の
分布増幅器と同様の構成を有していて、電界効果トラン
ジスタTA1及びTB1、TA2及びTB2………TAn及びTBnがそれ
ぞれカスコード形に接続されていることから、詳細説明
は省略するが、第2の伝送回路G2の伝送線路LB1及びLB2
間の接続中点、LB2及びLB3間の接続中点………LBn及びL
B(n+1)間の接続中点から電界効果トランジスタTA1、TA2
………TAn側をそれぞれみた出力インピーダンスが、第
2図で上述した従来の原理的な分布増幅器の場合に比し
高く、このため、第1の伝送回路G1の伝送線路LA1及びL
A2間の接続中点、LA2及びLA3間の接続中点………LAn
びLA(n+1)間の接続中点でそれぞれ得られる高周波信号
成分を、第2図で上述した従来の分布増幅器の場合に比
し、高い電力にそれぞれ増幅して、第2の伝送回路G2の
伝送線路LB1及びLB2間の接続中点、LB2及びLB3間の接続
中点………LBn及びLB(n+1)間の接続中点にそれぞれ出力
させることができるとともに、第1の伝送回路G1の伝送
線路LA1及びLA2間の接続中点、LA2及びLA3間の接続中点
………LAn及びLA(n+1)間の接続中点でそれぞれ得られる
高周波信号成分が、第2の伝送回路G2の伝送線路LB1
びLB2間の接続中点、LB2及びLB3間の接続中点………LBn
及びLB(n+1)間の接続中点にそれぞれ漏れるおそれが、
第2図で上述した従来の分布増幅器の場合に比し格段的
に低いので、第2図で上述した従来の分布増幅器の場合
に比し、より良好な広帯域増幅特性を有する。
2. Description of the Related Art A conventional distributed amplifier described below with reference to FIG. 2 has been proposed. That is, a plurality (n + 1) sequentially connected in series
Number of transmission lines LA 1, LA 2 ......... LA n , have the LA (n + 1), and from one end of the transmission line LA 1 side together is derived a high frequency signal input terminal 1, the transmission line LA ( a first transmission circuit in which the other end on the ( n + 1) side is connected to the ground through a first termination circuit B1 in which a resistance element R1, a capacitance element C1, and a capacitance element C1 (both not shown) are connected in series; Has G1. Further, it has a plurality of (n + 1) transmission lines LB 1 , LB 2 ... LB n , LB (n + 1) sequentially connected in series, and one end on the side of the transmission line LB (n + 1) And the other end of the transmission line LB 1 side is connected to a resistor R2
And a second transmission circuit G2 connected to ground through a second termination circuit B2 in which the capacitor C2 and a capacitor C2 (both not shown) are connected in series. Furthermore, connected to both a source grounded, and a connection point between the transmission lines LB 1 and LB 2 of the drain second transmission circuit G2, the connection midpoint between the LB 2 and LB 3 ......... LB n and LB (n + 1) are connected to connection points, respectively, and gates are further connected to connection points LA 2 and L 2 between transmission lines LA 1 and LA 2 of the first transmission circuit G1.
A connection midpoint between A 3 ... A plurality of n field-effect transistors connected respectively to a connection midpoint between LA n and LA (n + 1)
TA 1 , TA 2 ... TA n . The above is the configuration of a theoretically proposed distributed amplifier. Conventionally, a cascode distributed amplifier described below with reference to FIG. 3 has also been proposed. 3, parts corresponding to those in FIG. 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. The cascode-type distributed amplifier proposed in the prior art shown in FIG. 3 is different from the fundamental distributed amplifier described in FIG. 2 in that a plurality of n transmission lines L connected in series are connected in series.
A third transmission circuit G3 having C 1 , LC 2 ... LC n and extending a bias power supply terminal 3 from one end of the transmission line LC 1 side, and a plurality of n field effect transistors TB 1 , TB 2 ……
… TB n and field effect transistors TB 1 , TB
2 ……… TB (n-1) , TB n use their transmission lines L
D 1 , LD 2 ……… LD (n-1) and LD n are respectively connected to the drains of the field effect transistors TA 1 , TA 2 ……… TA (n-1) and TA n , respectively. The drain is connected to the transmission line LE 1 , LE 2 ……
... LE (n-1), through each of the LE n, a connection point between the transmission lines LB 1 and LB 2 of the second transmission circuit G2, the connection midpoint between the LB 2 and LB 3, ......... LB Connection point between (n-1) and LB n , LB n and LB
(n + 1) respectively to a connection midpoint connected between a connection midpoint between the connection point, LC 2 and LC 3 between the transmission line LC 1 and LC 2 of the gate third transmission circuit G3, ...... The field effect transistors TA 1 and TA 2 are connected in such a manner that they are connected to the connection midpoint between LC (n−1) and LC n and the other end of the third transmission circuit G3 on the transmission line LC n side, respectively.
......... TA (n-1), and the drain of the TA n, a connection point between the transmission lines LB 1 and LB 2 of the second transmission circuit G2, the connection midpoint between the LB 2 and LB 3, ......... Connection midpoint between LB (n-1) and LB n , LB n and LB
It has the same configuration as the principle distributed amplifier described above with reference to FIG. 2, except that it is interposed between the connection middle point between (n + 1) . According to the conventional principle of the distributed amplifier described above with reference to FIG.
By supplying a high-frequency signal of the z range, the high-frequency signal, and transmits the first transmission circuit G1, and a first transmission circuit connected between the transmission lines LA 1 and LA 2 of G1 Ki it also bets not a Midpoint, connection midpoint between LA 2 and LA 3 ... High-frequency signal components obtained at the connection midpoint between LA n and LA (n + 1) are field-effect transistors TA 1 and TA 2 , respectively. Each amplified by TA n , then the amplified high frequency signal components are:
Connection point between the transmission lines LB 1 and LB 2 of the second transmission circuit G2,
A connection midpoint between LB 2 and LB 3 is supplied to the second transmission circuit G2 through a connection midpoint between LB n and LB (n + 1) , respectively.
Therefore, the high frequency signal supplied to the high frequency signal input terminal 1 is amplified by the field effect transistor TA 1 to Ta n, is output to the high-frequency signal output terminal 2. Then, in this case, the transmission line LA 1 of the first transmission circuit G1
Connection midpoint between and LA 2, a connection point between LA 2 and LA 3 ......... L
It has a distributed capacitance between each of the connection midpoints between A n and LA (n + 1) and ground, so that the first transmission circuit G1 is configured in a distributed manner and the second transmission circuit G2 transmission lines LB 1 and L
Connection point between the B 2, also between the respective ground connection midpoint between the connection midpoint ......... LB n and LB (n + 1) between LB 2 and LB 3 has a volume of distribution, Therefore, the second transmission circuit G2 is also configured in a distributed manner. From the above, according to the conventional principle of the distributed amplifier described above with reference to FIG. 2, although the detailed description is omitted, it has a wideband amplification characteristic. Further, according to the conventional cascode type distributed amplifier shown in FIG. 3, have the same configuration as a conventional distributed amplifier described above in Figure 2, except the matters described above, the field effect transistor TA 1 and TB 1 , TA 2 and TB 2 ... TA n and TB n are connected in a cascode form, respectively. Therefore, detailed description is omitted, but the transmission lines LB 1 and LB 2 of the second transmission circuit G2 are omitted.
Connection point between the connection midpoint between the LB 2 and LB 3 ......... LB n and L
From the connection midpoint between B (n + 1), the field-effect transistors TA 1 and TA 2
... The output impedance on the TA n side is higher than that of the conventional principle of the distributed amplifier described above with reference to FIG. 2, and therefore, the transmission lines LA 1 and L 1 of the first transmission circuit G1.
The high-frequency signal components obtained at the connection midpoint between A 2 and the connection midpoint between LA 2 and LA 3 , respectively, are described above with reference to FIG. 2 at the connection midpoint between LA n and LA (n + 1) . compared to the conventional distributed amplifier amplifies each of higher power, a connection point between the transmission lines LB 1 and LB 2 of the second transmission circuit G2, the connection midpoint between the LB 2 and LB 3 ...... ... it is possible to output to the connection point between LB n and LB (n + 1), a connection point between the transmission lines LA 1 and LA 2 of the first transmission circuit G1, between LA 2 and LA 3 connection point ......... LA n and LA (n + 1) the high frequency signal components obtained respectively connection point between the connection midpoint between the transmission lines LB 1 and LB 2 of the second transmission circuit G2 of, Connection midpoint between LB 2 and LB 3 …… LB n
And LB (n + 1) may leak to the connection midpoint, respectively.
Since it is much lower than that of the conventional distributed amplifier described above with reference to FIG. 2, it has better broadband amplification characteristics than the conventional distributed amplifier described above with reference to FIG.

【発明が解決しようとする課題】[Problems to be solved by the invention]

しかしながら、第3図で前述した従来のカスコード形
分布増幅器の場合、第3の伝送回路G3の伝送線路LCn
の一端が、電界効果トランジスタTBnのゲートに終絡
し、また、第3の伝送回路G3の伝送線路LC1側の一端か
ら直接的にバイアス電源供給端子3が導出されていて、
第3の伝送回路G3の伝送線路LC1側の一端からバイアス
電源供給端子3側をみたインピーダンスが、第3の伝送
回路G3の特性インピーダンスに比し十分低い構成を有す
るため、電界効果トランジスタTB1、TB2………T
B(n-1)、TBnのゲート寄生容量をそれぞれ介して第3の
伝送回路G3の伝送線路LC1及びLC2の接続中点、LC2及びL
C3の接続中点………LC(n-1)及びLCnの接続中点、第3の
伝送回路G3の伝送線路LCn側の一端にそれぞれ漏れ込む
のを予儀なくされる高周波成分が、減衰しないととも
に、第3の伝送回路G3の伝送線路LC1側の一端において
高周波成分の反射を生ずる。 このため、第3図で前述した従来のカスコード形分布
増幅器の場合、良好な広帯域増幅特性を有せしめること
が困難である、という欠点を有していた。 よって、本発明は、上述した欠点のない、新規なカス
コード形分布増幅器を提案せんとするものである。
However, in the case of FIG. 3 in the conventional cascode type distributed amplifier described above, the transmission line LC n-side of the one end of the third transmission circuit G3 is, to Tsui絡to the gate of the field effect transistor TB n, The third directly bias power supply terminal 3 from one end of the transmission line LC 1 side of the transmission circuit G3 is being derived,
Order to have impedance viewed third bias power supply terminal 3 side from one end of the transmission line LC 1 side of the transmission circuit G3 of the third transmission circuit sufficiently low structure than the characteristic impedance of the G3 of the field effect transistor TB 1 , TB 2 ……… T
B (n-1), a connection point of the transmission line LC 1 and LC 2 of the third transmission circuit G3 respectively via the gate parasitic capacitance of TB n, LC 2 and L
Connection point connection point ......... LC (n-1) and LC n of C 3, the high-frequency component eliminated third予儀from leaking respectively to the transmission line LC n-side end of the transmission circuit G3 of but with not attenuated, resulting in reflection of the high frequency components in the third end of the transmission line LC 1 side of the transmission circuit G3 of. For this reason, the conventional cascode type distributed amplifier described above with reference to FIG. 3 has a drawback that it is difficult to provide good broadband amplification characteristics. Therefore, the present invention proposes a novel cascode type distributed amplifier that does not have the above-mentioned disadvantages.

【課題を解決するための手段】[Means for Solving the Problems]

本発明によるカスコード形分布増幅器は、第3図で前
述した従来のカスコード形分布増幅器の場合と同様に、
順次直列に接続されている複数(n+1)個の伝送線
路LA1、LA2………LAn、LA(n+1)を有し、且つ伝送線路LA
1側の一端から高周波信号入力端子を導出しているとと
もに、伝送線路LA(n+1)側の他端を抵抗素子R1と容量素
子C1とが直列に接続されている第1の終端用回路を通じ
て接地に接続している第1の伝送回路と、順次直列に
接続されている複数(n+1)個の伝送線路LB1、LB2
……LBn、LB(n+1)を有し、且つ伝送線路LB(n+1)側の一
端から高周波信号出力端子を導出しているとともに、伝
送線路LB1側の他端を抵抗素子R2と容量素子C2とが直列
に接続されている第2の終端用回路を通じて接地に接続
している第2の伝送回路と、順次直列に接続されてい
る複数n個の伝送線路LC1、LC2………LCnを有し、且つ
伝送線路LC1側の一端からバイアス電源供給端子を導出
している第3の伝送回路と、ソースをともに接地に接
続し、ゲートを第1の伝送回路の伝送線路LA1及びLA2
の接続中点、LA2及びLA3間の接続中点、………LAn及びL
A(n+1)間の接続中点にそれぞれ接続している複数n個の
電界効果型トランジスタTA1、TA2………TAnと、ソー
スを電界効果型トランジスタTA1、TA2………TA(n-1)、T
Anのドレインにそれぞれ接続し、ドレインを第2の伝送
回路の伝送線路LB1及びLB2間の接続中点、LB2及びLB3
の接続中点………LB(n-1)及びLBn間の接続中点、LBn
びLB(n+1)間の接続中点にそれぞれ接続し、ゲートを第
3の伝送回路の伝送線路LC1及びLC2間の接続中点、LC2
及びLC3間の接続中点………LC(n-1)及びLCn間の接続中
点、第3の伝送回路の伝送線路LCn側の他端にそれぞれ
接続している複数n個の電界効果型トランジスタTB1、T
B2………TB(n-1)、TBnとを有する。 しかしながら、本発明によるカスコード形分布増幅器
は、このような構成を有するカスコード形分布増幅器に
おいて、第3の伝送回路の伝送線路LCn側の一端が、
伝送線路LC(n+1)と、抵抗素子R3と容量素子C3とが直列
に接続されている第3の終端用回路とをそれらの順に通
じて、接地に接続され、また、第3の伝送回路から導
出されているバイアス電源供給端子と第3の伝送回路の
伝送線路LC1側の一端との間に、第3の終端用回路の抵
抗素子R3と等しい抵抗値を有する抵抗素子R4が介挿され
ている。
The cascode-type distributed amplifier according to the present invention is similar to the conventional cascode-type distributed amplifier described above with reference to FIG.
A plurality of (n + 1) transmission lines LA 1 , LA 2 ... LA n , LA (n + 1) sequentially connected in series, and the transmission line LA
A first terminating circuit in which a high-frequency signal input terminal is derived from one end on one side and a resistor R1 and a capacitor C1 are connected in series with the other end on the transmission line LA (n + 1) side Through a first transmission circuit connected to ground through a plurality of (n + 1) transmission lines LB 1 , LB 2 ...
... LB n and LB (n + 1) , and a high-frequency signal output terminal is led out from one end on the transmission line LB (n + 1) side, and the other end on the transmission line LB 1 side is connected to a resistance element. A second transmission circuit connected to ground through a second termination circuit in which R2 and the capacitance element C2 are connected in series; and a plurality of n transmission lines LC 1 , LC connected in series sequentially 2 ... A third transmission circuit having LC n and extending a bias power supply terminal from one end of the transmission line LC 1 , a source connected to ground, and a gate connected to the first transmission circuit connection point between the connection midpoint, LA 2 and LA 3 between the transmission lines LA 1 and LA 2 of, ......... LA n and L
A plurality of n field-effect transistors TA 1 , TA 2, ..., TA n connected to the connection midpoint between A (n + 1) and the sources are field-effect transistors TA 1 , TA 2 ,. … TA (n-1) , T
Respectively connected to the drain of the A n, a connection point between the transmission lines LB 1 and LB 2 of the second transmission circuit to the drain, a connection point between LB 2 and LB 3 ......... LB (n-1 ) and A connection midpoint between LB n, a connection midpoint between LB n and LB (n + 1) , respectively, and a gate connected between transmission lines LC 1 and LC 2 of the third transmission circuit, LC 2
And a connection point between the connection point ......... LC (n-1) and LC n between LC 3, a plurality of n that are respectively connected to the transmission line LC n-side other end of the third transmission circuit Field effect transistors TB 1 and T
B 2 ..., TB (n-1) and TB n . However, cascode-type distributed amplifier according to the present invention is a cascode type distributed amplifier having such a configuration, the transmission line LC n-side end of the third transmission circuit,
The transmission line LC (n + 1) and the third termination circuit in which the resistance element R3 and the capacitance element C3 are connected in series are connected to ground in that order, and are connected to the ground. between one end of the transmission line LC 1 side of the bias power supply terminal and a third transmission circuit that is derived from the circuit, the resistance element R4 having the same resistance value as the resistor element R3 of the third termination circuit is mediated Has been inserted.

【作用・効果】[Action / Effect]

本発明によるカスコード形分布増幅器によれば、第3
の伝送回路の伝送線路LCn側の一端が、伝送線路LC(n+1)
と、抵抗素子R3と容量素子C3とが直列に接続されている
第3の終端用回路とをそれらの順に通じて、接地に接続
され、また、第3の伝送回路から導出されているバイア
ス電源供給端子と第3の伝送回路の上記伝送線路LC1
の一端との間に、第3の終端用回路の抵抗素子R3と等し
い抵抗値を有する抵抗素子R4が介挿されていることを除
いて、第3図で前述した従来のカスコード形分布増幅器
の場合と同様の構成を有する。 このため、詳細説明は省略するが、第3図で前述した
従来のカスコード形分布増幅器の場合と同様のカスコー
ド形分布増幅器としての機能が得られる。 しかしながら、本発明によるカスコード形分布増幅器
の場合、上述したように、第3の伝送回路の伝送線路LC
n側の一端が、伝送線路LC(n+1)と、抵抗素子R3と容量素
子C3とが直列に接続されている第3の終端用回路とをそ
れらの順に通じて、接地に接続され、また、第3の伝送
回路から導出されているバイアス電源供給端子と第3の
伝送回路の伝送線路LC1側の一端との間に、第3の終端
用回路の抵抗素子R3と等しい抵抗値を有する抵抗素子R4
が介挿されているので、電界効果トランジスタTB1、TB2
………TBnのゲート寄生容量をそれぞれ介して第3の伝
送回路の伝送線路LC1及びLC2間の接続中点、LC2及びLC3
間の接続中点………LCn及びLC(n+1)間の接続中点にそれ
ぞれ漏れ込むのを予儀なくされる高周波成分を、伝送線
路LC(n+1)を通じて、第3の終端用回路によって効果的
に吸収減衰させることができる。 また、第2の伝送回路からバイアス電源供給端子と第
3の伝送回路の伝送線路LC1側の一端との間に、第3の
終端用回路の抵抗素子R3と等しい抵抗値を有する抵抗素
子R4が介挿されている構成を有するので、その抵抗素子
R4によって、電界効果トランジスタTB1、TB2………TBn
のゲート寄生容量をそれぞれ介して、第3の伝送回路の
伝送線路LC1及びLC2間の接続中点、LC2及びLC3間の接続
中点………LC(n-1)及びLCn間の接続中点にそれぞれ漏れ
込むのを予儀なくされる上述した高周波信号成分を、抵
抗素子R4によって効果的に吸収減衰させることができ、
従って、上述した第3の伝送回路に漏れ込むのを予儀な
くされる高周波信号成分を、第3の伝送回路の伝送線路
LC1側の一端側で実質的に反射させなくさせることがで
きる。 よって、本発明によるカスコード形分布増幅器によれ
ば、第3図で前述した従来のカスコード形分布増幅器の
場合に比しより良好な広帯域増幅特性を、容易に、有せ
しめることができる。
According to the cascode type distributed amplifier according to the present invention, the third
One end of the transmission circuit on the transmission line LC n side is the transmission line LC (n + 1)
And a third terminating circuit in which the resistance element R3 and the capacitance element C3 are connected in series, in that order, connected to ground, and a bias power supply derived from the third transmission circuit. except that between the supply terminal and the transmission line LC 1 side of the one end of the third transmission circuit, the resistance element R4 having the same resistance value as the resistor element R3 of the third termination circuit is interposed Thus, it has a configuration similar to that of the conventional cascode type distributed amplifier described above with reference to FIG. For this reason, although the detailed description is omitted, a function as a cascode type distributed amplifier similar to the case of the conventional cascode type distributed amplifier described above with reference to FIG. 3 is obtained. However, in the case of the cascode distributed amplifier according to the present invention, as described above, the transmission line LC of the third transmission circuit is used.
One end on the n side is connected to ground through a transmission line LC (n + 1) and a third termination circuit in which the resistance element R3 and the capacitance element C3 are connected in series, in that order, Furthermore, between one end of the transmission line LC 1 side of the third bias power supply terminal and a third transmission circuit is derived from the transmission circuit, the same resistance value as the resistor element R3 of the third termination circuit Resistance element R4
Are inserted, the field effect transistors TB 1 and TB 2
……… A midpoint of connection between the transmission lines LC 1 and LC 2 of the third transmission circuit, LC 2 and LC 3 via the gate parasitic capacitance of TB n respectively
Intermediate connection point between LC n and LC (n + 1) A high frequency component which is unavoidable to leak into the connection midpoint between LC n and LC (n + 1) is transmitted through the transmission line LC (n + 1) to the third point. It can be effectively absorbed and attenuated by the termination circuit. Furthermore, between one end of the transmission line LC 1 side of the second transmission circuit bias power supply terminal from a third transmission circuit, the resistor element having the same resistance value as the resistor element R3 of the third termination circuit R4 Is inserted, so that the resistance element
Depending on R4, the field-effect transistors TB 1 , TB 2 ……… TB n
Through the gate parasitic capacitance of the respective connection point between the transmission line LC 1 and LC 2 of the third transmission circuit, connected between the LC 2 and LC 3 midpoint ......... LC (n-1) and LC n The high-frequency signal components described above, which are unavoidably leaked to the connection midpoint between them, can be effectively absorbed and attenuated by the resistance element R4,
Therefore, the high-frequency signal component that is liable to leak into the third transmission circuit is transmitted to the transmission line of the third transmission circuit.
It is possible to substantially prevent reflection at one end of the LC 1 . Therefore, the cascode type distributed amplifier according to the present invention can easily have better broadband amplification characteristics than the conventional cascode type distributed amplifier described above with reference to FIG.

【実施例】【Example】

次に、第1図を伴って、本発明によるカスコード形分
布増幅器の実施例を述べよう。 第1図において、第3図との対応部分には同一符号を
付して詳細説明を省略する。 第1図に示す本発明によるカスコード形分布増幅器
は、次の事項を除いて、第3図で前述した従来のカスコ
ード形分布増幅器と同様の構成を有する。 すなわち、第3の伝送回路G3の伝送線路LCn側の一端
が、伝送線路LC(n+1)と、抵抗素子R3と容量素子C3とが
直列に接続されている第3の終端用回路B3とをそれらの
順に通じて、接地に接続されている。 また、第3の伝送回路G3から導出されているバイアス
電源供給端子3と第3の伝送回路G3の伝送線路LC1側の
一端との間に、第3の終端用回路B3の抵抗素子R3と等し
い抵抗値を有する抵抗素子R4が介挿されている。 以上が、本発明によるカスコード形分布増幅器の実施
例の構成である。 このような構成を有する本発明によるカスコード形分
布増幅器によれば、上述した事項を除いて、第3図で前
述した従来のカスコード形分布増幅器と同様の構成を有
するので、詳細説明は省略するが、第3図で前述した従
来のカスコード形分布増幅器の場合と同様のカスコード
形分布増幅器としての機能が得られる。 しかしながら、第3図に示す本発明によるカスコード
形分布増幅器の場合、第3の伝送回路G3の伝送線路LCn
側の一端が、伝送線路LC(n+1)と、抵抗素子R3と容量素
子C3とが直列に接続されている第3の終端用回路B3とを
それらの順に通じて、接地に接続されている構成を有す
るので、電界効果トランジスタTB1、TB2………TBnのゲ
ート寄生容量をそれぞれ介して第3の伝送回路G3の伝送
線路LC1及びLC2間の接続中点、LC2及びLC3間の接続中点
………LCn及びLC(n+1)間の接続中点にそれぞれ漏れ込む
のを予儀なくされる高周波成分を、伝送線路LC(n+1)
通じて、第3の終端用回路B3によって効果的に吸収減衰
させることができる。 また、第3の伝送回路G3から導出されているバイアス
電源供給端子3と第3の伝送回路G3の伝送線路LC1側の
一端との間に、第3の終端用回路B3の抵抗素子R3と等し
い抵抗値を有する抵抗素子R4が介挿されているので、そ
の抵抗素子R4によって、上述した漏れ込むのを予儀なく
される高周波信号成分を、効果的に吸収減衰させること
ができ、従って、第3の伝送回路G3に漏れ込むのを予儀
なくされた高周波信号成分を、伝送線路LC1側の一端側
で実質的に反射させなくさせることができる。 このため、第1図に示す本発明によるカスコード形分
布増幅器によれば、第3図で前述した従来のカスコード
形分布増幅器の場合に比しより良好な広帯域増幅特性
を、容易に、有せしめることができる。 ちなみに、第3図で前述した従来のカスコード形分布
増幅器の場合、S21パラメータ、及びS11及びS22パラメ
ータでみた帯域増幅特性が、第4図、及び第5図にそれ
ぞれ示すように得られるとき、第1図に示す本発明によ
るカスコード形分布増幅器の場合、第3図との対応部分
が第3図の場合と同じ条件で、同じS21パラメータ、及
びS11及びS22パラメータでみた帯域増幅特性が、第6図
及び第7図にそれぞれ示すように良好に得られた。
Next, an embodiment of a cascode type distributed amplifier according to the present invention will be described with reference to FIG. In FIG. 1, parts corresponding to those in FIG. 3 are denoted by the same reference numerals, and detailed description thereof will be omitted. The cascode distributed amplifier according to the present invention shown in FIG. 1 has the same configuration as the conventional cascode distributed amplifier described above with reference to FIG. 3, except for the following. That is, one end of the transmission line LC n-side of the third transmission circuit G3 is, the transmission line LC (n + 1) and the third termination circuit to the resistor element R3 and the capacitor C3 are connected in series B3 And in that order are connected to ground. Between the transmission line LC 1 side of the one end of the third bias power supply terminal 3 which is derived from the transmission circuit G3 of the third transmission circuit G3, and the resistance element R3 of the third termination circuit B3 A resistance element R4 having the same resistance value is inserted. The above is the configuration of the embodiment of the cascode distributed amplifier according to the present invention. The cascode-type distributed amplifier according to the present invention having such a configuration has the same configuration as the conventional cascode-type distributed amplifier described above with reference to FIG. A function as a cascode-type distributed amplifier similar to that of the conventional cascode-type distributed amplifier described above with reference to FIG. 3 can be obtained. However, in the case of the cascode distributed amplifier according to the present invention shown in FIG. 3, the transmission line LC n of the third transmission circuit G3 is used.
One end on the side is connected to ground through a transmission line LC (n + 1) and a third termination circuit B3 in which a resistance element R3 and a capacitance element C3 are connected in series in that order. because it has a structure which are field effect transistors TB 1, TB 2 ......... TB n connection point between the transmission line LC 1 and LC 2 of the third transmission circuit G3 respectively via the gate parasitic capacitance of, LC 2 and the connection point ......... LC n and LC (n + 1) high frequency components eliminated予儀from leaking each connection point between between LC 3, through the transmission line LC (n + 1), the The third terminating circuit B3 can effectively absorb and attenuate. Between the transmission line LC 1 side of the one end of the third bias power supply terminal 3 which is derived from the transmission circuit G3 of the third transmission circuit G3, and the resistance element R3 of the third termination circuit B3 Since the resistance element R4 having the same resistance value is interposed, the high-frequency signal component which is supposed to leak as described above can be effectively absorbed and attenuated by the resistance element R4. the third high-frequency signal components lost予儀from leaking to the transmission circuit G3, it is possible to not substantially reflects at one end of the transmission line LC 1 side. For this reason, according to the cascode type distributed amplifier of the present invention shown in FIG. 1, it is possible to easily have better broadband amplification characteristics than the conventional cascode type distributed amplifier described above with reference to FIG. Can be. Incidentally, in the case of the conventional cascode type distributed amplifier described above in FIG. 3, S 21 parameter, and band amplification characteristics viewed in S 11 and S 22 parameters are obtained as shown FIG. 4, and FIG. 5 respectively At the same time, in the case of the cascode distributed amplifier according to the present invention shown in FIG. 1, the band corresponding to FIG. 3 is the same as that of FIG. 3 under the same conditions as the S 21 parameter and the S 11 and S 22 parameters. Amplification characteristics were favorably obtained as shown in FIGS. 6 and 7, respectively.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明によるカスコード形分布増幅器の実施
例を示す接続図である。 第2図は、従来の原理的な分布増幅器を示す接続図であ
る。 第3図は、従来のカスコード形分布増幅器を示す接続図
である。 第4図〜第7図は、本発明の説明に供する、帯域増幅特
性を示す図である。 1……高周波信号入力端子 2……高周波信号出力端子 3……バイアス電源供給端子B1、B2、B3 ……第1、第2、第3の終端用回路G1、G2、G3 ……第1、第2、第3の伝送路
FIG. 1 is a connection diagram showing an embodiment of a cascode distributed amplifier according to the present invention. FIG. 2 is a connection diagram showing a conventional basic distributed amplifier. FIG. 3 is a connection diagram showing a conventional cascode type distributed amplifier. FIG. 4 to FIG. 7 are diagrams showing band amplification characteristics for explanation of the present invention. 1 high-frequency signal input terminal 2 high-frequency signal output terminal 3 bias power supply terminals B1, B2, B3 first, second, and third termination circuits G1, G2, G3 first, Second and third transmission paths

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−96007(JP,A) 特開 昭63−120506(JP,A) 特開 昭62−95006(JP,A) 実開 昭63−181017(JP,U) IEEE MTT−S,Digest pp.165−168 1989年電子情報通信学会秋季全国大会 C−364 (58)調査した分野(Int.Cl.6,DB名) H03F 3/60 JOIS PATOLIS──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-96007 (JP, A) JP-A-63-120506 (JP, A) JP-A-62-95006 (JP, A) 181017 (JP, U) IEEE MTT-S, Digest pp. 165-168 1989 IEICE Autumn National Convention C-364 (58) Field surveyed (Int. Cl. 6 , DB name) H03F 3/60 JOIS PATOLIS

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】順次直列に接続されている複数(n+1)
個の伝送線路LA1、LA2………LAn、LA(n+1)を有し、且つ
上記伝送線路LA1側の一端から高周波信号入力端子を導
出しているとともに、上記伝送線路LA(n+1)側の他端を
抵抗素子R1と容量素子C1とが直列に接続されている第1
の終端用回路を通じて接地に接続している第1の伝送回
路と、 順次直列に接続されている複数(n+1)個の伝送線路
LB1、LB2………LBn、LB(n+1)を有し、且つ上記伝送線路
LB(n+1)側の一端から高周波信号出力端子を導出してい
るとともに、上記伝送線路LB1側の他端を抵抗素子R2と
容量素子C2とが直列に接続されている第2の終端用回路
を通じて接地に接続している第2の伝送回路と、 順次直列に接続されている複数n個の伝送線路LC1、LC2
………LCnを有し、且つ上記伝送線路LC1側の一端からバ
イアス電源供給端子を導出している第3の伝送回路と、 ソースをともに接地に接続し、ゲートを上記第1の伝送
回路の伝送線路LA1及びLA2間の接続中点、LA2及びLA3
の接続中点………LAn及びLA(n+1)間の接続中点にそれぞ
れ接続している、複数n個の電界効果型トランジスタTA
1、TA2………TAnと、 ソースを上記電界効果型トランジスタTA1、TA2………TA
(n-1)、TAnのドレインにそれぞれ接続し、ドレインを上
記第2の伝送回路の伝送線路LB1及びLB2間の接続中点、
LB2及びLB3間の接続中点………LB(n-1)及びLBn間の接続
中点、LBn及びLB(n+1)間の接続中点にそれぞれ接続し、
ゲートを上記第3の伝送回路の伝送線路LC1及びLC2間の
接続中点、LC2及びLC3間の接続中点、………LC(n-1)
びLCn間の接続中点、上記第3の伝送回路の伝送線路LCn
側の他端にそれぞれ接続している、複数n個の電界効果
型トランジスタTB1、TB2………TB(n-1)、TBnとを有する
カスコード形分布増幅器において、 上記第3の伝送回路の上記伝送線路LCn側の一端が、伝
送線路LC(n+1)と、抵抗素子R3と容量素子C3とが直列に
接続されている第3の終端用回路とをそれらの順に通じ
て、接地に接続され、 上記第3の伝送回路から導出されているバイアス電源供
給端子と、上記第3の伝送回路の上記伝送線路LC1側の
一端との間に、上記第3の終端用回路の抵抗素子R3と等
しい抵抗値を有する抵抗素子R4が介挿されていることを
特徴とするカスコード形分布増幅器。
1. A plurality (n + 1) sequentially connected in series
Number of transmission lines LA 1, LA 2 ......... LA n , have the LA (n + 1), and with which to derive the high frequency signal input terminal from one end of the transmission line LA 1 side, the transmission line LA The other end on the (n + 1) side is a first terminal in which a resistance element R1 and a capacitance element C1 are connected in series.
A first transmission circuit connected to ground through a terminating circuit, and a plurality of (n + 1) transmission lines sequentially connected in series
LB 1 , LB 2 ... LB n , LB (n + 1) , and the transmission line
LB (n + 1) at one end with which to derive the high frequency signal output terminal from the side, the second end of the other end of the transmission line LB 1 side and the resistance element R2 and the capacitor C2 are connected in series A second transmission circuit connected to ground through a circuit for use, and a plurality of n transmission lines LC 1 , LC 2 connected in series
... A third transmission circuit having LC n and extending a bias power supply terminal from one end of the transmission line LC 1 , a source connected to ground, and a gate connected to the first transmission line A connection point between the transmission lines LA 1 and LA 2 of the circuit, a connection point between LA 2 and LA 3 ..., A plurality of points respectively connected to connection points between LA n and LA (n + 1) n field effect transistors TA
1 , TA 2 ... TA n and the source are the field effect transistors TA 1 , TA 2 ... TA
(n-1) , respectively connected to the drains of TA n , the drains being connected midpoints between the transmission lines LB 1 and LB 2 of the second transmission circuit,
A connection midpoint between LB 2 and LB 3 ... a connection midpoint between LB (n-1) and LB n, a connection midpoint between LB n and LB (n + 1) , respectively;
Connection point between the transmission line LC 1 and LC 2 of the gate the third transmission circuit, a connection point between the LC 2 and LC 3, ......... LC (n- 1) and a connection point between the LC n , The transmission line LC n of the third transmission circuit.
A cascode-type distributed amplifier having a plurality of n field-effect transistors TB 1 , TB 2, ..., TB (n-1) , TB n connected to the other end of the third transmission line, respectively. One end of the circuit on the side of the transmission line LC n passes through the transmission line LC (n + 1) and a third termination circuit in which a resistance element R3 and a capacitance element C3 are connected in series in that order. , is connected to ground, the bias power supply terminal which is derived from the third transmission circuit, between one end of the third the transmission line LC 1 side of the transmission circuit, the third termination circuit A cascode-type distributed amplifier, wherein a resistance element R4 having a resistance value equal to that of the resistance element R3 is interposed.
JP1275661A 1989-10-23 1989-10-23 Cascode type distributed amplifier Expired - Fee Related JP2916513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1275661A JP2916513B2 (en) 1989-10-23 1989-10-23 Cascode type distributed amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1275661A JP2916513B2 (en) 1989-10-23 1989-10-23 Cascode type distributed amplifier

Publications (2)

Publication Number Publication Date
JPH03136510A JPH03136510A (en) 1991-06-11
JP2916513B2 true JP2916513B2 (en) 1999-07-05

Family

ID=17558582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1275661A Expired - Fee Related JP2916513B2 (en) 1989-10-23 1989-10-23 Cascode type distributed amplifier

Country Status (1)

Country Link
JP (1) JP2916513B2 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
1989年電子情報通信学会秋季全国大会 C−364
IEEE MTT−S,Digest pp.165−168

Also Published As

Publication number Publication date
JPH03136510A (en) 1991-06-11

Similar Documents

Publication Publication Date Title
US4284957A (en) CMOS Operational amplifier with reduced power dissipation
US7733173B2 (en) Unilateral feedback power amplifier and method for realizing the same
WO2007049391A1 (en) Distribution type amplifier and integrated circuit
US6894566B2 (en) Active load device that enables biasing of a very wide band distributed amplifier circuit with gain control
US7242253B2 (en) Low noise amplifier
CN111756336A (en) Improved Darlington structure broadband low-noise amplifier
US4406990A (en) Direct coupled DC amplification circuit
JP2916513B2 (en) Cascode type distributed amplifier
JPS59193631A (en) Funable receiver input circuit
KR100240640B1 (en) Active balun circuit
US4110559A (en) Loud-speaker output circuit
JPH04233813A (en) Wide-band amplifier
JP3373435B2 (en) Resistive feedback transistor
KR100249497B1 (en) An active blaun circuit for low noise and high amflification
JP3182735B2 (en) Low noise distributed amplifier
JPH03211904A (en) High frequency amplifier
JP2003017951A (en) Amplifier for fm antenna
US6496065B1 (en) Linear amplifier using frequency 2nd order intermodulation feed-forwarding method
KR100325056B1 (en) Linear amplifier using low frequency 2nd order intermodulation feed-forwarding
JP3905873B2 (en) Distributed amplifier
US4198610A (en) Audio amplifier
JP3902994B2 (en) Distributed amplifier
JPH04269005A (en) Negative feedback amplifier
JP2013157813A (en) Traveling wave amplifier
JPH0241929Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees