JP2914047B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2914047B2
JP2914047B2 JP26696892A JP26696892A JP2914047B2 JP 2914047 B2 JP2914047 B2 JP 2914047B2 JP 26696892 A JP26696892 A JP 26696892A JP 26696892 A JP26696892 A JP 26696892A JP 2914047 B2 JP2914047 B2 JP 2914047B2
Authority
JP
Japan
Prior art keywords
film
metal film
wiring
metal
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26696892A
Other languages
Japanese (ja)
Other versions
JPH06120214A (en
Inventor
修司 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP26696892A priority Critical patent/JP2914047B2/en
Publication of JPH06120214A publication Critical patent/JPH06120214A/en
Application granted granted Critical
Publication of JP2914047B2 publication Critical patent/JP2914047B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係わり、特に平坦性に優れた貴金属配線の製造方法に関
する。
The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for manufacturing a noble metal wiring having excellent flatness.

【0002】[0002]

【従来の技術】最近のVLSIは高性能化,高密度化,
高速化の要求に答えるべく配線の多層化及び微細化が急
速に進んでおり、3層配線品はもとより4層配線品も製
品化されようとしている。又、配線幅も1.0μmを切
るサブミクロン配線も各所に使用されるようになってき
た。従来は加工性の良さやコストの安さなどの面から、
材料としてAl(アルミ)もしくはAl合金が一般的に
使われている。その製造方法につき簡単に以下に説明す
る。
2. Description of the Related Art Recent VLSIs have high performance, high density,
In order to respond to the demand for higher speed, multilayer wiring and miniaturization of wiring are rapidly progressing, and not only three-layer wiring products but also four-layer wiring products are about to be commercialized. Further, submicron wirings having a wiring width of less than 1.0 μm have been used in various places. Conventionally, from the viewpoint of good workability and low cost,
As a material, Al (aluminum) or an Al alloy is generally used. The manufacturing method will be briefly described below.

【0003】まず素子の作り込みが終了したシリコンウ
ェハー全面にAl膜をスパッタ法により被着したのち、
フォトリソグラフィー法によりレジストパターンをAl
膜上に形成しこのレジスト膜をマスクにRIE法(リア
クティブ イオン エッチング法)により、Al膜をエ
ッチングする。次にレジスト膜を除去したのち、層間絶
縁膜を形成し、所定の位置にスルーホールを形成し前記
方法にて第2層目のAl配線を形成する。これの繰り返
しにより多層配線を実現していた。
[0003] First, an Al film is deposited on the entire surface of a silicon wafer on which a device has been formed by a sputtering method.
The resist pattern is changed to Al by photolithography.
The Al film is formed on the film and the Al film is etched by RIE (reactive ion etching) using the resist film as a mask. Next, after removing the resist film, an interlayer insulating film is formed, a through hole is formed at a predetermined position, and a second-layer Al wiring is formed by the above-described method. By repeating this, a multilayer wiring has been realized.

【0004】ここで層間絶縁膜は、下層配線にて生ずる
段差を平坦化し、上層配線の段切れ等発生させないよう
に形成させる。例えばプラズマ化学的気相成長法(PC
VD)にて成長させた酸化膜(P・SiO2 )とSOG
(spin−on−glass)膜を組み合せた膜を使
用するのが一般的である。Al配線の膜厚によって、数
種類のSOG膜を多重に形成したり、エッチバック法と
組み合せて平坦性を向上させる場合もあり、この手法は
段差の厳しくなる上層配線の平坦化には必須となってい
る。
Here, the interlayer insulating film is formed so as to flatten a step generated in the lower wiring and to prevent disconnection or the like of the upper wiring. For example, plasma chemical vapor deposition (PC
VD) grown oxide film (P.SiO 2 ) and SOG
In general, a film obtained by combining a (spin-on-glass) film is used. Depending on the thickness of the Al wiring, several types of SOG films may be formed in multiple layers, or the flatness may be improved in combination with an etch-back method. This method is indispensable for the flattening of the upper wiring where the steps become severe. ing.

【0005】[0005]

【発明が解決しようとする課題】この従来のAl配線で
は、要求される信頼度及び性能を満たすことが出来なく
なってきているという問題がある。LSIの製品寿命を
決定する大きな要因の一つに配線の寿命が挙げられる。
一般に配線の寿命はエレクトロマイグレーション(E/
M)、ストレスマイグレーション(S/M)と呼ばれる
現象によって決定される。このE/M、S/M耐性は配
線を覆う絶縁膜の性質によって左右されるが、基本的に
は配線材料自体に起因するものである。配線材料として
のAlは他金属材料に比べ、クリープ現象が発生しやす
い性質を有しているため慨してS/M寿命は短かい。こ
れを補う目的でCuを添加したり、配線の上下をTiN
やTiWなどの高融点金属で挟み込むなどの対策が取ら
れているが、逆に配線抵抗の増大及び配線段差の増大を
招いている。配線抵抗の増大はRC遅延(R:配線抵
抗,C:寄生容量)の増加を生じ速度性能を律すること
になり、配線段差の増大は、平坦化コストの増加に直結
する。
The conventional Al wiring has a problem that the required reliability and performance cannot be satisfied. One of the major factors that determine the product life of an LSI is the life of the wiring.
Generally, the life of wiring is electromigration (E /
M), and is determined by a phenomenon called stress migration (S / M). The E / M and S / M resistance depends on the properties of the insulating film covering the wiring, but is basically caused by the wiring material itself. Al as a wiring material has a property that a creep phenomenon is easily generated as compared with other metal materials, so that the S / M life is generally short. To supplement this, Cu is added, and TiN
Although measures have been taken such as sandwiching between high melting point metals such as Ti and TiW, wiring resistance increases and wiring steps increase. An increase in the wiring resistance causes an increase in the RC delay (R: wiring resistance, C: parasitic capacitance) and determines the speed performance. An increase in the wiring step directly leads to an increase in flattening cost.

【0006】つまり現状は、信頼性と性能とコストとの
トレードオフの関係を最適化することでLSIの設計、
製造を行っており、さらなる微細化や性能向上は極めて
困難な状況にある。
In other words, at present, the design of the LSI is optimized by optimizing the trade-off relationship between reliability, performance and cost.
Manufacturing is underway, and further miniaturization and performance improvement are extremely difficult.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は前記状況を打破するために考え出されたもので
あり、素子形成の終了したシリコン基板上の絶縁膜に所
定形状の溝を形成する工程と、溝の底部近傍のみにTi
又はTiN及びTiWNを形成する工程と、この金属膜
の表面層のみを貴金属との合金層に変換する工程と、こ
の合金層を析出母材として無電解メッキ法により貴金属
膜をメッキし溝を充填する工程を含むことを特徴として
いる。
SUMMARY OF THE INVENTION A method of manufacturing a semiconductor device according to the present invention has been conceived in order to overcome the above-mentioned situation, and a groove having a predetermined shape is formed in an insulating film on a silicon substrate on which elements have been formed. Forming step and forming Ti only in the vicinity of the bottom of the groove.
Or a step of forming TiN and TiWN, a step of converting only the surface layer of the metal film into an alloy layer with a noble metal, and a step of filling the groove by plating the noble metal film by an electroless plating method using the alloy layer as a base metal. It is characterized by including the step of performing.

【0008】本発明は、Auで形成される配線のE/
M、S/M寿命がAlに比べて数十倍以上長く、しかも
比抵抗ρが20%程度低いことに着目している。
According to the present invention, the E /
It is noted that the M and S / M lifetimes are several tens of times longer than that of Al and the specific resistance ρ is lower by about 20%.

【0009】すなわち、本発明は、配線材料としてAu
を用いることでE/M、S/M寿命を飛躍的に向上さ
せ、しかも同時に平坦化を実現しようとするものであ
る。
That is, according to the present invention, Au is used as a wiring material.
Is to dramatically improve the E / M and S / M lifetimes, and at the same time, to achieve flattening.

【0010】[0010]

【実施例】次に本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0011】図1は本発明の第1の実施例の半導体チッ
プの断面図である。まず同図(a)に示すように素子形
成の終了したシリコン基板1上のプラズマシリコン酸化
膜(P−SiO2 )膜2上にレジストパターン3を形成
する。次いでレジストパターン3をマスクにRIE法に
よりP−SiO2 膜2をエッチングし、溝4を形成す
る。引き続きTi膜5を30〜50nm(ナノメータ)
程度スパッタ法により被着させる。次に同図(b)に示
すようにレジスト膜6を塗布したのちO2 プラズマを用
いてエッチバックを行ない溝内部のみに残存させる。次
にCl2 /Ar/O2 の混合ガスプラズマを用いてTi
膜5を除去し、溝底部のみにTi膜5を残存させる。こ
の様子を同図(c)に示す。次にレジスト膜3,6を除
去し全面にAu膜を約10nmスパッタ被着させ、30
0〜500℃、N2 雰囲気中で熱処理を加えると同図
(d)に示す様に合金層7が形成される。次に王水を用
いてエッチングを行なうとP−SiO2 上の未反応Au
膜が除去される。続いて、例えばエヌイーケムキャット
(株)製の無電解メッキ液であるスーパーメックス液を
用いて、Auメッキを行ない溝4内を充填することで同
図(e)に示す様に第1層目の完全平坦化Au配線8が
完了する。また2層目以降はこの繰り返しをすれば良
い。
FIG. 1 is a sectional view of a semiconductor chip according to a first embodiment of the present invention. First, as shown in FIG. 1A, a resist pattern 3 is formed on a plasma silicon oxide (P-SiO 2 ) film 2 on a silicon substrate 1 on which device formation has been completed. Next, the P-SiO 2 film 2 is etched by RIE using the resist pattern 3 as a mask to form a groove 4. Subsequently, the thickness of the Ti film 5 is set to 30 to 50 nm (nanometer).
It is applied by a sputtering method. Next, as shown in FIG. 2B, after a resist film 6 is applied, the film is etched back using O 2 plasma and is left only inside the groove. Next, using a mixed gas plasma of Cl 2 / Ar / O 2 ,
The film 5 is removed, and the Ti film 5 is left only at the bottom of the groove. This situation is shown in FIG. Next, the resist films 3 and 6 are removed, and an Au film is sputter-deposited on the entire surface by about 10 nm.
When heat treatment is performed at 0 to 500 ° C. in an N 2 atmosphere, an alloy layer 7 is formed as shown in FIG. Next, when etching is performed using aqua regia, unreacted Au on P-SiO 2 is obtained.
The film is removed. Then, Au plating is performed using, for example, a Super Mex solution, which is an electroless plating solution manufactured by NE-Chem Cat Co., Ltd., and the inside of the groove 4 is filled to form the first layer as shown in FIG. Completely planarized Au wiring 8 is completed. This may be repeated for the second and subsequent layers.

【0012】本メッキ液の特徴は、析出性が極めて良好
でわずか1〜2原子のAu原子が存在すればAuの析出
が充分に行える点にある。したがって前記の合金層は極
めて薄いもので良く、合金層でなくともAu原子がわず
かでもTi膜5中に拡散している程度で良い。
The feature of this plating solution is that the deposition property is extremely good, and if only 1 to 2 Au atoms are present, the deposition of Au can be sufficiently performed. Therefore, the alloy layer may be extremely thin, and it is sufficient that even a small amount of Au atoms diffuse into the Ti film 5 even if it is not an alloy layer.

【0013】以上の説明の中で、Ti膜5が別の材料で
あっても差し支えないのは、明白である。例えばTi
膜、TiW膜及びその窒化物であるTiWNなどでも良
い。
In the above description, it is apparent that the Ti film 5 may be made of another material. For example, Ti
A film, a TiW film and a nitride thereof, such as TiWN, may be used.

【0014】また下地材料との耐熱性を確保したい場合
には、TiN又はTiWN膜が適当であり、これらの金
属も前記のCl2 /Ar/O2 混合ガスプラズマによっ
て同様に除去可能である。
In order to ensure the heat resistance with the underlying material, a TiN or TiWN film is suitable, and these metals can be similarly removed by the above-mentioned Cl 2 / Ar / O 2 mixed gas plasma.

【0015】また本実施例ではAuスパッタ膜7を例に
説明したが、Ptを用いても差し支えない。Ptの場合
の方がメッキ活性が強いため、初期のメッキ速度が速い
という利点があるためコスト的な余裕がある場合はPt
の方が良好である。ただしこの時Au膜中にPt原子が
拡散すると層抵抗が上昇するという欠点があるため、使
用には細心の注意が必要である。またレジスト膜6はポ
リイミド等の有機膜であってもO2 プラズマで除去可能
な膜であれば差し支えない。
In this embodiment, the Au sputtered film 7 has been described as an example, but Pt may be used. In the case of Pt, since plating activity is stronger, there is an advantage that the initial plating rate is high.
Is better. However, at this time, if Pt atoms diffuse into the Au film, there is a disadvantage that the layer resistance increases, so that careful use is required. The resist film 6 may be an organic film such as polyimide as long as it can be removed by O 2 plasma.

【0016】次に本発明の第2の実施例を説明する。こ
の第2の実施例は、先の第1の実施例の製造マージンを
広げる場合に有効な手法である。第1の実施例ではTi
膜5を溝底部まで除去したが、仮にバラツキなどのため
に側壁部にTi膜が残存したまま後工程を進めると側壁
部にも合金層が形成されてしまうため、側壁部にもAu
メッキ膜が成長し、結果として両端が盛り上った配線形
状となってしまい、平坦性を大きく損なうことが懸念さ
れる場合に有効なのがこの第2の実施例である。
Next, a second embodiment of the present invention will be described. The second embodiment is an effective method for widening the manufacturing margin of the first embodiment. In the first embodiment, Ti
The film 5 was removed to the bottom of the groove. However, if the subsequent process is performed with the Ti film remaining on the side wall due to variations or the like, an alloy layer is also formed on the side wall.
The second embodiment is effective in the case where the plating film grows, resulting in a wiring shape in which both ends are raised, and there is a concern that the flatness is greatly impaired.

【0017】すなわち図2(a)は、Ti膜5aが側壁
部に残存したようすを示す断面図である。この状態から
全面にP−CVD法により50〜100nm膜厚のP−
SiO2 膜2aを成長させ、CHF3 /O2 の混合ガス
プラズマにてRIE法を用いてエッチバックすると側壁
部のみにP−SiO2 膜2aが残り、残存Ti膜5aを
被覆する。これにより側壁部からのAu析出が防止さ
れ、完全平坦化が可能となる。そして図1(d),
(e)と同様の工程を行う。
FIG. 2A is a cross-sectional view showing a state where the Ti film 5a remains on the side wall. From this state, a 50 to 100 nm thick P-
When the SiO 2 film 2a is grown and etched back by RIE using a mixed gas plasma of CHF 3 / O 2 , the P-SiO 2 film 2a remains only on the side wall and covers the remaining Ti film 5a. As a result, Au deposition from the side wall is prevented, and complete planarization becomes possible. And FIG. 1 (d),
The same step as (e) is performed.

【0018】[0018]

【発明の効果】以上説明したように本発明は、完全に平
坦なAu配線を実現出来るため、従来のAl配線で問題
となっていたE/M、S/M耐性を少なくとも数十倍以
上に飛躍的に延ばすことで解決し、しかも配線抵抗を下
げることでRC遅延を改善することが出来る。さらに従
来用いられていた平坦化のためのコストが一切不必要な
ため、コスト的にも大きなメリットを有する。
As described above, according to the present invention, a completely flat Au wiring can be realized, so that the E / M and S / M resistance, which has been a problem in the conventional Al wiring, is at least several tens times or more. This can be solved by dramatically increasing the length, and the RC delay can be improved by lowering the wiring resistance. Further, since there is no need for the cost for flattening which has been conventionally used, there is a great merit in terms of cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の製造方法の主要工程
を、工程順に示した断面図である。
FIG. 1 is a sectional view showing main steps of a manufacturing method according to a first embodiment of the present invention in the order of steps.

【図2】本発明の第2の実施例の製造方法の一部の工程
を、工程順に示した断面図である。
FIG. 2 is a cross-sectional view showing some steps of a manufacturing method according to a second embodiment of the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 シリコン基板 2,2a P−SiO2 基板 3 レジスト膜 4 溝 5,5a Ti膜 6 レジスト膜 7 合金層 8 Au配線Reference Signs List 1 silicon substrate 2, 2a P-SiO 2 substrate 3 resist film 4 groove 5, 5a Ti film 6 resist film 7 alloy layer 8 Au wiring

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 素子形成の終了した半導体基板主表面上
の絶縁膜上に所定の形状を有するレジストパターンを形
成する工程と、前記レジストパターンをマスクに前記絶
縁膜の厚さ方向一部を除去し、略垂直の側壁面を有する
溝を形成する工程と、全面に第1の金属膜を被着したの
ち塗布膜を形成する工程と、前記溝内部以外の前記第1
の金属膜が露出するように前記塗布膜の一部を除去する
工程と、前記溝内部以外及び前記溝の側壁部の前記第1
の金属膜を除去する工程と、前記レジスト膜及び前記塗
布膜を除去したのち全面に第2の金属膜を被着する工程
と、熱処理を施し前記第1と第2の金属膜を反応させ合
金層を形成したのち、未反応の前記第2の金属膜を除去
する工程と、前記合金層を成長核として無電解メッキ法
により第3の金属膜を成長させ前記溝内を充填する工程
とを含むことを特徴とする半導体装置の製造方法。
1. A step of forming a resist pattern having a predetermined shape on an insulating film on a main surface of a semiconductor substrate on which an element has been formed, and removing a part of the insulating film in a thickness direction using the resist pattern as a mask. Forming a groove having a substantially vertical side wall surface, forming a coating film after applying a first metal film over the entire surface, and forming the first metal film except for the inside of the groove.
Removing a part of the coating film so that the metal film is exposed;
Removing the metal film, applying a second metal film over the entire surface after removing the resist film and the coating film, and subjecting the first and second metal films to a heat treatment to cause an alloy to react. Forming a layer, removing the unreacted second metal film, and growing a third metal film by electroless plating using the alloy layer as a growth nucleus to fill the groove. A method for manufacturing a semiconductor device, comprising:
【請求項2】 前記第1の金属膜がTiまたはその窒化
物であることを特徴とする請求項1に記載の半導体装置
の製造方法。
2. The method according to claim 1, wherein the first metal film is Ti or a nitride thereof.
【請求項3】 前記第1の金属膜がTiW又はその窒化
物であることを特徴とする請求項1に記載の半導体装置
の製造方法。
3. The method according to claim 1, wherein the first metal film is TiW or a nitride thereof.
【請求項4】 前記塗布膜が有機膜であることを特徴と
する請求項1に記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the coating film is an organic film.
【請求項5】 前記第2の金属膜および前記第3の金属
膜が貴金属からなることを特徴とする請求項1に記載の
半導体装置の製造方法。
5. The method according to claim 1, wherein the second metal film and the third metal film are made of a noble metal.
JP26696892A 1992-10-06 1992-10-06 Method for manufacturing semiconductor device Expired - Lifetime JP2914047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26696892A JP2914047B2 (en) 1992-10-06 1992-10-06 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26696892A JP2914047B2 (en) 1992-10-06 1992-10-06 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH06120214A JPH06120214A (en) 1994-04-28
JP2914047B2 true JP2914047B2 (en) 1999-06-28

Family

ID=17438216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26696892A Expired - Lifetime JP2914047B2 (en) 1992-10-06 1992-10-06 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2914047B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878437A (en) * 1994-09-08 1996-03-22 Mitsubishi Electric Corp Manufacture of semiconductor device and semiconductor device

Also Published As

Publication number Publication date
JPH06120214A (en) 1994-04-28

Similar Documents

Publication Publication Date Title
US5793112A (en) Multilevel embedded wiring system
JP2989408B2 (en) Method of forming embedded metal on substrate
US4962060A (en) Making a high speed interconnect system with refractory non-dogbone contacts and an active electromigration suppression mechanism
US6028000A (en) Method of forming contact plugs in semiconductor device having different sized contact holes
US6617242B1 (en) Method for fabricating interlevel contacts of aluminum/refractory metal alloys
US5008216A (en) Process for improved contact stud structure for semiconductor devices
US6492260B1 (en) Method of fabricating damascene metal wiring
JP2797933B2 (en) Method for manufacturing semiconductor device
KR100331906B1 (en) Method for manufacturing a semiconductor device
US6867139B2 (en) Method of manufacturing semiconductor device
JP3063338B2 (en) Semiconductor device and manufacturing method thereof
JP2914047B2 (en) Method for manufacturing semiconductor device
US6395629B1 (en) Interconnect method and structure for semiconductor devices
JPH10172969A (en) Manufacture of semiconductor device
EP0363297B1 (en) Improved contact stud structure for semiconductor devices
JPH06177127A (en) Formation of wiring
US6242811B1 (en) Interlevel contact including aluminum-refractory metal alloy formed during aluminum deposition at an elevated temperature
JP3339901B2 (en) Semiconductor device having a multilayer wiring structure and method of manufacturing the same
JPH07135209A (en) Multilayer wiring structure and manufacture thereof
JPH08139190A (en) Manufacture of semiconductor device
JPH06168906A (en) Semiconductor device and manufacturing method thereof
KR100408182B1 (en) Copper barrier layer for copper layer
JP3340578B2 (en) Multilayer wiring of semiconductor device and method of manufacturing the same
JP2646897B2 (en) Method of forming multilayer wiring
JPH0695516B2 (en) Semiconductor device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990316