JP2913518B2 - Metal oxide thermistor material - Google Patents

Metal oxide thermistor material

Info

Publication number
JP2913518B2
JP2913518B2 JP3017621A JP1762191A JP2913518B2 JP 2913518 B2 JP2913518 B2 JP 2913518B2 JP 3017621 A JP3017621 A JP 3017621A JP 1762191 A JP1762191 A JP 1762191A JP 2913518 B2 JP2913518 B2 JP 2913518B2
Authority
JP
Japan
Prior art keywords
oxide
thermistor
metal oxide
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3017621A
Other languages
Japanese (ja)
Other versions
JPH0541304A (en
Inventor
炯鎮 丁
相玉 ▲ゆん▼
起龍 洪
銓國 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKOKU KAGAKU GIJUTSU KENKYUSHO
Original Assignee
KANKOKU KAGAKU GIJUTSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKOKU KAGAKU GIJUTSU KENKYUSHO filed Critical KANKOKU KAGAKU GIJUTSU KENKYUSHO
Publication of JPH0541304A publication Critical patent/JPH0541304A/en
Application granted granted Critical
Publication of JP2913518B2 publication Critical patent/JP2913518B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds
    • H01C7/046Iron oxides or ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、MnCO−NiO−Z
nO−FeO−TiO系を基本組成とする金属酸化物系
サーミスタ材料に関する。
The present invention relates to a MnCO-NiO-Z
The present invention relates to a metal oxide-based thermistor material having a basic composition of nO-FeO-TiO.

【0002】[0002]

【従来の技術】一般に、サーミスタは温度の変化に伴
い、非常に大きく非直線的に抵抗が変化する半導体素子
の一種である。また、その製法としては、主に、鉄(F
e),ニッケル(Ni),マンガン(Mn),モリブデ
ン(Mo)及びコバルト(Co)等の酸化物を混合し
て、焼結することにより得られる。
2. Description of the Related Art In general, a thermistor is a kind of semiconductor device whose resistance changes very largely and non-linearly with a change in temperature. The production method is mainly iron (F
e), oxides such as nickel (Ni), manganese (Mn), molybdenum (Mo) and cobalt (Co) are mixed and sintered.

【0003】特に、遷移金属酸化物を組合わせて製造し
た金属酸化物系サーミスタは、温度の上昇に伴い電気抵
抗が指数関数的に減少する半導体素子(NTC)であ
り、その原料成分の組成や焼結温度によって結晶構造及
び焼結性が大きく変化するので、常温抵抗及び温度に伴
う抵抗変化にも大きい差異が生じる。これらの特性を利
用して、感温素子,温度補償及び調節素子,電圧調節用
素子等の各種の精密測定機器及び分析機器の核心素子と
して広く使用されている。
[0003] In particular, a metal oxide thermistor manufactured by combining a transition metal oxide is a semiconductor device (NTC) whose electric resistance decreases exponentially with increasing temperature. Since the crystal structure and the sinterability greatly change depending on the sintering temperature, a large difference occurs in the room temperature resistance and the resistance change with temperature. Utilizing these characteristics, it is widely used as a core element of various precision measuring instruments and analytical instruments such as a temperature sensing element, a temperature compensation and adjustment element, and a voltage adjustment element.

【0004】従来の金属酸化物系サーミスタ材料には、
スピネル系であるマンガン−ニッケル−コバルト−銅系
と、ヘマタイト系である鉄−チタン系が使用されてお
り、前者のスピネル系サーミスタの場合、組成によって
広い抵抗範囲が得られ、また、大きなB定数を示すの
で、広範囲に応用できるものとして知られている〔参
照:1.Thermistors(ed.by E.
D.Macklen),Electrochemica
l Pub.,Ayr,Scotland(197
9).2.Semiconducting tempe
rature sensors and their
applications(ed.by H.B.Sa
chse),John and Wiley,New
York(1975).3.Ceramic Mate
rials for electronic(ed.b
y R.C.Buchanan),Marcel De
kker,New York(1986)〕。
[0004] Conventional metal oxide thermistor materials include:
A spinel-based manganese-nickel-cobalt-copper system and a hematite-based iron-titanium system are used. In the case of the former spinel thermistor, a wide resistance range is obtained depending on the composition, and a large B constant is obtained. Are known to be widely applicable [Ref: 1. Thermistors (ed. By E.E.
D. Macclen), Electrochemical
l Pub. , Ayr, Scotland (197
9). 2. Semiconducting tempe
ratture sensors and their
applications (ed. by HB Sa
chse), John and Wiley, New
York (1975). 3. Ceramic Mate
reals for electronic (ed.b
yR. C. Buchanan), Marcel De
kker, New York (1986)].

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このよ
うなスピネル系のマンガン−ニッケル−コバルト−銅系
サーミスタの場合、酸化コバルトの価格が非常に高いの
で、製造費用の面から不利であるという問題点があっ
た。また、酸化銅は、人体に吸収されると、健康を害す
る有害物質として作用するので、サーミスタの製造時
に、公害が発生するという問題点もあった〔参照:Ha
wley’s condensed chemical
dictionary,11th edition
(ed.by N.L.Sax and R.J.Le
wis,Sr.)Van Nostrand Rein
hold Co.,New York(1987)〕。
However, such a spinel-based manganese-nickel-cobalt-copper thermistor is disadvantageous in terms of manufacturing cost because the price of cobalt oxide is very high. was there. In addition, when copper oxide is absorbed by the human body, it acts as a harmful substance that is harmful to human health, so that there is a problem that pollution occurs during the production of the thermistor [see: Ha].
wley's reinforced chemical
dictionary, 11th edition
(Ed.by NL Sax and RJ Le
wis, Sr. ) Van Nostrand Rein
hold Co. , New York (1987)].

【0006】本発明は、安価に、安全に良好な特性を有
する金属酸化物系サーミスタ材料を提供することを目的
とする。
An object of the present invention is to provide a metal oxide-based thermistor material having good properties safely and inexpensively.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
め、本発明は、以下の構成とする。金属酸化物系サーミ
スタが、aMnCO+bNiO+dZnO+fFe
+gTiO系を基本組成とし、組成比が重量比
で、 であるようにする。
In order to achieve the above object, the present invention has the following arrangement. The metal oxide thermistor is aMnCO 3 + bNiO + dZnO + fFe 2
The basic composition is O 3 + gTiO 2 , and the composition ratio is a weight ratio. So that

【0009】つまり、本発明は、金属酸化物系サーミス
タ材料として、高価な酸化コバルトの代わりに低廉な酸
化鉄と酸化チタンを使用して、サーミスタ材料の製造原
価を低くし、また、人体に有害な酸化銅の代わりに無害
な酸化亜鉛を使用して、サーミスタ材料の製造時に伴う
公害問題を回避し、更に、多成分系酸化物系で生じる共
晶反応(eutectic reaction)によ
り、液相焼結を生ぜしめ、焼結温度を低くすることによ
って、少ない製造費用で安全に良好な特性を有するサー
ミスタを製造する。
That is, the present invention uses inexpensive iron oxide and titanium oxide instead of expensive cobalt oxide as the metal oxide-based thermistor material, thereby lowering the manufacturing cost of the thermistor material and causing harm to the human body. The use of harmless zinc oxide instead of pure copper oxide avoids the pollution problems associated with the production of thermistor materials and furthermore, the liquid phase sintering due to the eutectic reaction occurring in the multi-component oxide system. , And by lowering the sintering temperature, a thermistor having good characteristics can be manufactured safely at low manufacturing cost.

【0010】[0010]

【実施例】このような本発明の金属酸化物系サーミスタ
材料の組成は、aMnCO(炭酸マンガン)+bNi
O(酸化ニッケル)+dZnO(酸化亜鉛)+fFe
(酸化鉄)+gTiO(酸化チタン)系を基本組
成とし、その組成比は、重量比で、以下のようになる。
The composition of the metal oxide thermistor material of the present invention is as follows: aMnCO 3 (manganese carbonate) + bNi
O (nickel oxide) + dZnO (zinc oxide) + fFe 2
The basic composition is O 3 (iron oxide) + gTiO 2 (titanium oxide), and the composition ratio is as follows by weight ratio.

【0011】 また、これを3成分系で表すと、図1のように、点a1
〜a6で囲まれた範囲となる。ただし、点a5、a6は
0を含まない。
[0011] Also, when this is represented by a three-component system, as shown in FIG. 1, the point a1
It becomes the range surrounded by ~ a6. However, points a5 and a6
Does not include 0.

【0012】このような材料を用いて、一般に広く使用
する酸化物混合方法にて、NTCサーミスタを製造す
る。以下に、サーミスタの製造過程を具体的に説明す
る。先ず、材料は、実施例1〜3については、図2に示
すように、aMnCO+bNiO+dZnO+fFe
+gTiO系を基本組成とし、組成比が重量比
で、 尚、参考のため、上述の組成範囲でCo が含まれ
る場合について参考例1〜21として図2及び図3に示
した。
Using such a material, an NTC thermistor is manufactured by an oxide mixing method generally used widely. Hereinafter, a manufacturing process of the thermistor concrete to. First, the materials are shown in FIG.
In Suyo, aMnCO 3 + bNiO + dZnO + fFe
2 O 3 + gTiO 2 is used as a basic composition, and the composition ratio is a weight ratio, For reference, Co 3 O 4 is contained in the above composition range.
2 and 3 as Reference Examples 1-21.
did.

【0013】同じく参考として、上述の組成範囲のう
ち、ZnOの組成比dの値が0近傍である場合の本発明
サーミスタ材料の特性を明らかにするために、ZnOが
含まれない場合(d=0)のものを参考例A〜Cとして
図3に示した。尚、図4には、酸化銅を含んだ参考例2
2〜37を示す。
Similarly, for reference, in order to clarify the characteristics of the thermistor material of the present invention when the value of the composition ratio d of ZnO is near 0 in the above composition range, the case where ZnO is not included (d = 0) as Reference Examples A to C
As shown in FIG . FIG. 4 shows Reference Example 2 containing copper oxide.
2 to 37 are shown.

【0014】そして、これら炭酸マンガン,酸化ニッケ
ル,酸化銅,酸化亜鉛,酸化コバルト,酸化鉄及び酸化
チタンを10−4gの精度で、正確に秤量し、ジルコニ
アボールミル中で、蒸留水と共に充分に混合及び粉砕を
行う。このとき使用される原料としては、次の、か焼
(calcination)工程にて、酸化物への転換
が容易な化合物、例えば、水酸化物或いは炭酸塩等を含
んでいてもよい。
Then, these manganese carbonate, nickel oxide, copper oxide, zinc oxide, cobalt oxide, iron oxide and titanium oxide are accurately weighed with an accuracy of 10 −4 g and sufficiently mixed with distilled water in a zirconia ball mill. Mix and grind. The raw material used at this time may include a compound that can be easily converted to an oxide in the next calcination step, such as a hydroxide or a carbonate.

【0015】次に、混合及び粉砕の完了した試料は75
0℃〜850℃で、か焼をした後、ポリビニルアルコー
ル(PVA)水溶液のような一般的な結合剤を微量添加
し、1ton/cmの圧力で、加圧成形した後、アル
ミナ板上に載置して、電気炉中で1000〜1200℃
の温度で2時間焼結を行う。焼結時には、結合剤等の有
機物が揮発するので、600℃で1時間維持し、昇温及
び冷却速度は300℃/hrにする。
Next, the mixed and crushed sample is 75%.
After calcination at 0 ° C. to 850 ° C., a small amount of a general binder such as an aqueous solution of polyvinyl alcohol (PVA) is added, and the mixture is pressure-formed at a pressure of 1 ton / cm 2 , and then placed on an alumina plate. Place and 1000-1200 ° C in electric furnace
Sintering at a temperature of 2 hours. During sintering, organic substances such as a binder are volatilized. Therefore, the temperature is maintained at 600 ° C. for 1 hour, and the rate of temperature rise and cooling is 300 ° C./hr.

【0016】その後、焼結体の両面に銀ペーストをスク
リーン印刷して、電極を形成し、550℃で10分間熱
処理して、24時間放置した後、電気的特性を測定す
る。試料片の電気的特性測定は、種々の温度(例えば、
25℃と85℃)に設定したシリコンオイル恒温槽で2
端子法にて行われ、B定数(抵抗−温度特性における任
意の2温度間の温度に対する抵抗変化の大きさを表す定
数)は、次式によって計算する。ここで、R25℃及び
R85℃は、25℃及び85℃における抵抗値を示す。
Thereafter, silver paste is screen-printed on both sides of the sintered body to form electrodes, heat-treated at 550 ° C. for 10 minutes, left for 24 hours, and then measured for electrical characteristics. Measurement of the electrical properties of the specimen is performed at various temperatures (for example,
25 ° C and 85 ° C) in a silicone oil bath set at 2
This is performed by the terminal method, and the B constant (constant representing the magnitude of the resistance change with respect to the temperature between any two temperatures in the resistance-temperature characteristics) is calculated by the following equation. Here, R25 ° C and R85 ° C indicate resistance values at 25 ° C and 85 ° C.

【0017】B={1n(R85℃/R25℃)}/
(1/358.155−1/298.155) 図2〜図4に、実施例及び参考例毎の比抵抗,B定数及
び焼結温度を示す。尚、図2〜図4において、組成cは
酸化銅(CuO)を示し、組成eは酸化コバルト(Co
)を示す。このような製造過程を経て得た本発明
の金属酸化物系サーミスタはスピネル系構造を有し、
2に示すように、酸化鉄と酸化チタンとをかなりの量添
加しても充分に固溶され、広い抵抗範囲の優秀なサーミ
スタ製造が可能である。
B = {1n (R85 ° C./R25° C.)} /
(1 / 358.155 / 298.155) FIGS. 2 to 4 show the specific resistance, the B constant, and the sintering temperature of each of the examples and the reference examples . 2 to 4, the composition c is
The composition e indicates copper oxide (CuO), and the composition e is cobalt oxide (Co
3 O 4 ). The metal oxide-based thermistor of the present invention obtained through such a manufacturing process has a spinel-based structure .
As shown in FIG. 2, even if a considerable amount of iron oxide and titanium oxide are added, the solid solution is sufficiently formed, and an excellent thermistor having a wide resistance range can be manufactured.

【0018】従って、本発明の金属酸化物系サーミスタ
材料は、高価な酸化コバルトを低廉な酸化鉄及び酸化チ
タンで代替させることによりサーミスタの製造費用を節
減することができ、更に、サーミスタの製造時に有害物
質として作用する酸化銅の使用を排除することで製造作
業の安定性を確保できる。また、参考として図4に示す
ように、酸化銅が添加される場合には、酸化鉄及び酸化
チタンの添加量を大きく変化させることができるので、
抵抗範囲を広範囲に調節することができ、また、B定数
を高めることができる。
[0018] Thus, the metal oxide-based thermistor material of the present invention, can save the manufacturing cost of the thermistor by replacing expensive oxide cobalt at a low iron oxide and titanium oxide, further, the manufacture of the thermistor By eliminating the use of copper oxide, which sometimes acts as a harmful substance, the stability of the manufacturing operation can be ensured. In addition, as shown in FIG. 4 , when copper oxide is added , the addition amounts of iron oxide and titanium oxide can be greatly changed.
The resistance range can be adjusted over a wide range, and the B constant can be increased.

【0019】一方、本発明の金属酸化物系サーミスタ材
料は、多成分系組成で相互に共晶反応が生じ、これによ
り、1000〜1200℃で焼結が行われるので、従来
のマンガン−ニッケル−コバルト−銅系サーミスタの焼
結温度に比べ100℃〜250℃程度、焼結温度を低く
することができ、この点においてもサーミスタの製造費
用を低くすることができる。
On the other hand, in the metal oxide-based thermistor material of the present invention, a eutectic reaction occurs mutually in a multi-component composition, whereby sintering is carried out at 1000 to 1200 ° C. The sintering temperature can be reduced by about 100 ° C. to 250 ° C. as compared with the sintering temperature of the cobalt-copper thermistor. In this respect, the manufacturing cost of the thermistor can be reduced.

【0020】[0020]

【発明の効果】以上説明したように、本発明によると、
高価な酸化コバルトを低廉な酸化鉄及び酸化チタンで代
替させることによりサーミスタの製造費用を節減するこ
とができ、また、酸化鉄と酸化チタンとをかなりの量添
加しても充分に固溶され、広い抵抗範囲の優秀なサーミ
スタ製造が可能である。
As described above, according to the present invention,
Expensive cobalt oxide can save the manufacturing cost of the thermistor by alternative low-Ren iron oxide and titanium oxide, also it is sufficiently dissolved even when the iron oxide and titanium oxide are added considerable amounts An excellent thermistor with a wide resistance range can be manufactured.

【0021】また、サーミスタの製造時に有害物質とし
て作用する酸化銅の使用を排除することで製造作業の安
定性を確保できる。
Further, Ru can ensure the stability of the manufacturing operations by eliminating the use of copper oxide which acts as a harmful substance in the production of a thermistor.

【0022】更に、従来のマンガン−ニッケルーコバル
ト−銅系サーミスタの焼結温度に比べ100℃〜250
℃程度、焼結温度を低くすることができ、この点におい
てもサーミスタの製造費用を低くすることができる。
Furthermore, the sintering temperature of the conventional manganese-nickel-cobalt-copper thermistor is 100 ° C. to 250 ° C.
The sintering temperature can be lowered by about ℃, and also in this regard, the manufacturing cost of the thermistor can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明にかかる金属酸化物系サーミスタ材料
の組成比を示す3成分系の図
3 Figure component system showing the composition ratio of Rukin genus oxide thermistor material written to the present invention; FIG

【図2】 実施例1〜3及び参考例1〜9の材料組成及
び電気的特性を示す図
FIG. 2 is a view showing a material composition and electrical characteristics of Examples 1 to 3 and Reference Examples 1 to 9 ;

【図3】 参考例10〜21及びA〜Cの材料組成及び
電気的特性を示す図
FIG. 3 is a view showing the material composition and electrical characteristics of Reference Examples 10 to 21 and AC .

【図4】 参考例22〜37の材料組成及び電気的特性
を示す図
FIG. 4 is a view showing a material composition and electrical characteristics of Reference Examples 22 to 37 .

───────────────────────────────────────────────────── フロントページの続き (72)発明者 洪 起龍 大韓民国ソウル特別市江南区押▲く▼亭 洞40 (72)発明者 李 銓國 大韓民国ソウル特別市道峰区双門洞199 −1 (56)参考文献 特開 昭56−160007(JP,A) 特開 昭56−33801(JP,A) 特開 昭64−12501(JP,A) 特公 昭25−2242(JP,B1) 特公 昭27−4778(JP,B1) (58)調査した分野(Int.Cl.6,DB名) H01C 7/04 C01G 53/00 A C04B 35/00 J ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hong Ki-ryong 40, Osuku-ku-tei-dong, Gangnam-gu, Seoul, Republic of Korea References JP-A-56-160007 (JP, A) JP-A-56-33801 (JP, A) JP-A-64-12501 (JP, A) JP-B-25-2242 (JP, B1) JP-B Sho-A 27-4778 (JP, B1) (58) Fields investigated (Int. Cl. 6 , DB name) H01C 7/04 C01G 53/00 A C04B 35/00 J

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】aMnCO+bNiO+dZnO+fF
+gTiO系を基本組成とし、組成比が重量
比で、 であることを特徴とする金属酸化物系サーミスタ材料。
1. aMnCO 3 + bNiO + dZnO + fF
e 2 O 3 + gTiO 2 system as a basic composition, and the composition ratio is a weight ratio, A metal oxide thermistor material characterized by the following.
JP3017621A 1990-08-16 1991-02-08 Metal oxide thermistor material Expired - Fee Related JP2913518B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR12585/1990 1990-08-16
KR1019900012585A KR930005249B1 (en) 1990-08-16 1990-08-16 Metal-oxide system thermistor

Publications (2)

Publication Number Publication Date
JPH0541304A JPH0541304A (en) 1993-02-19
JP2913518B2 true JP2913518B2 (en) 1999-06-28

Family

ID=19302379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3017621A Expired - Fee Related JP2913518B2 (en) 1990-08-16 1991-02-08 Metal oxide thermistor material

Country Status (3)

Country Link
JP (1) JP2913518B2 (en)
KR (2) KR930005249B1 (en)
GB (1) GB2247015A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4292057B2 (en) * 2003-11-13 2009-07-08 Tdk株式会社 Thermistor composition and thermistor element
JP2008060612A (en) * 2005-02-08 2008-03-13 Murata Mfg Co Ltd Surface mounting-type negative temperature coefficient thermistor
CN102290175B (en) 2005-02-08 2014-06-11 株式会社村田制作所 Surface mounting-type negative characteristic thermistor
CN102686532B (en) 2010-01-12 2014-05-28 株式会社村田制作所 Semiconductor ceramic composition for NTC thermistors and NTC thermistor
DE102010024863B4 (en) 2010-06-24 2012-03-08 Epcos Ag Non-cobalt NTC ceramic, process for making a cobalt-free NTC ceramic and its use
CN111484314B (en) * 2020-04-03 2022-07-01 广东风华高新科技股份有限公司 NTC thermal sensitive ceramic material and preparation method thereof
CN114999752B (en) * 2022-05-27 2024-07-19 广东新成科技实业有限公司 NTC patch thermistor based on semiconductor material and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL6614015A (en) * 1966-10-05 1968-04-08
JPS5833681B2 (en) * 1979-08-29 1983-07-21 日本電信電話株式会社 High frequency thermistor porcelain
JPS6041014B2 (en) * 1980-02-07 1985-09-13 松下電器産業株式会社 Manufacturing method of oxide semiconductor for thermistor
JPS6014484B2 (en) * 1980-05-13 1985-04-13 松下電器産業株式会社 Manufacturing method of oxide semiconductor for thermistor
FR2582851B1 (en) * 1985-06-04 1988-07-08 Univ Toulouse COMPOSITIONS OF TRANSITION METAL MANGANITES IN THE FORM OF PARTICLES OR IN THE FORM OF CERAMICS, THEIR PREPARATION AND THEIR USE IN PARTICULAR IN THE MANUFACTURE OF THERMISTORS
DE3619746A1 (en) * 1986-06-12 1987-12-17 Basf Ag SUPER PARAMAGNETIC SOLID PARTICLES
JPS6412501A (en) * 1987-07-07 1989-01-17 Matsushita Electric Ind Co Ltd Manufacture of oxide semiconductor for thermistor

Also Published As

Publication number Publication date
GB2247015A (en) 1992-02-19
KR930005249B1 (en) 1993-06-17
KR920004300A (en) 1992-03-27
KR930006337B1 (en) 1993-07-14
GB9116910D0 (en) 1991-09-18
JPH0541304A (en) 1993-02-19

Similar Documents

Publication Publication Date Title
CN107056273A (en) A kind of double-deck negative tempperature coefficient thermistor and preparation method thereof
CN105753474A (en) Strontium-doped lanthanum chromite thermistor material
EP3553796A1 (en) Thermistor sintered body and thermistor element
JP2913518B2 (en) Metal oxide thermistor material
US5246628A (en) Metal oxide group thermistor material
WO1986003051A1 (en) Oxide semiconductor for thermistor and a method of producing the same
CN1118834C (en) Rare earth metal-containing high-temperature thermistor
CN108147790A (en) Medical NTC heat sensitive chips of the high precision high stability containing gold and preparation method thereof
WO1985000690A1 (en) Oxide semiconductor for thermistor
EP1564197B1 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
EP0810612B1 (en) Oxide ceramic thermistor containing indium
CN113979728A (en) Preparation method of double perovskite type and yttrium oxide compounded negative temperature coefficient thermistor material
CN114956789B (en) Linear wide-temperature-area high-temperature-sensitive resistor material and preparation method thereof
KR0135637B1 (en) Thermister composition
KR970007509B1 (en) Ntc thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JP3970851B2 (en) Sintered body for thermistor element, manufacturing method thereof, and temperature sensor
JP4850330B2 (en) THERMISTOR COMPOSITION, PROCESS FOR PRODUCING THE SAME, AND THERMISTOR DEVICE
JP4153112B2 (en) Conductive sintered body and manufacturing method thereof
JP2005170783A (en) Electroconductive material comprising bismuth-terbium-tungsten oxide solid solution and its manufacturing method
JPS61113211A (en) Oxide semiconductor for thermistor
JPS5945964A (en) Ceramic resistor material
JP3391190B2 (en) Thermistor composition
JPS62152104A (en) Ptc ceramic resistor
JPS62108505A (en) Oxide semiconductor for thermistor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees