JPS6014484B2 - Manufacturing method of oxide semiconductor for thermistor - Google Patents

Manufacturing method of oxide semiconductor for thermistor

Info

Publication number
JPS6014484B2
JPS6014484B2 JP6359580A JP6359580A JPS6014484B2 JP S6014484 B2 JPS6014484 B2 JP S6014484B2 JP 6359580 A JP6359580 A JP 6359580A JP 6359580 A JP6359580 A JP 6359580A JP S6014484 B2 JPS6014484 B2 JP S6014484B2
Authority
JP
Japan
Prior art keywords
copper
thermistor
manufacturing
oxide semiconductor
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6359580A
Other languages
Japanese (ja)
Other versions
JPS56160007A (en
Inventor
拓興 畑
孝之 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6359580A priority Critical patent/JPS6014484B2/en
Publication of JPS56160007A publication Critical patent/JPS56160007A/en
Publication of JPS6014484B2 publication Critical patent/JPS6014484B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 本発明は、鉄を固溶ごせたマンガンーニッケルスピネル
に銅を容易にドーピングし、特性範囲の広いサーミスタ
を供給することを特徴とした負の抵抗温度係数を有する
サーミスタ用酸化物半導体の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a thermistor with a wide range of characteristics by easily doping copper into a manganese-nickel spinel in which iron has been dissolved as a solid solution, and which has a negative temperature coefficient of resistance. The present invention relates to a method of manufacturing an oxide semiconductor for a thermistor.

従来、負の抗温度係数を有する市販の汎用サーミスタの
製造方法は、他のセラミックスの製造工程と同様に目的
組成の酸化物を配合し、これを湿式混合、仮焼、湿式粉
砕、造粒、成形、焼成という工程を経るのが一般的であ
る。
Conventionally, the manufacturing method for commercially available general-purpose thermistors with a negative temperature coefficient of resistance involves blending oxides with the desired composition, wet mixing, calcination, wet pulverization, granulation, and the like in the manufacturing process of other ceramics. It is common to go through the steps of molding and firing.

また、酸化マンガン、酸化ニッケル、酸化鋼の3成分か
らなるサーミスタ用酸化物組成は、既に広く知られてい
る。
Further, the oxide composition for thermistors consisting of three components of manganese oxide, nickel oxide, and oxidized steel is already widely known.

(■日立製作所、中央研究所創立二十周年記念論文集、
P30〜46、昭和37年)。本発明は、上記マンガン
、ニッケル、銅に鉄を加えた4成分系サーミスタの製造
方法で、鉄固溶マンガンーニッケルスピネル素子を銅山
ポリカルボン酸銭塩溶液に含浸させることにより、銅を
ドーピングさせてマンガン,ニッケル,鉄および銅の4
成分系サーミスタを得ることを特徴とする。
(■Hitachi, Ltd., Collection of papers commemorating the 20th anniversary of the founding of the Central Research Institute,
P30-46, 1960). The present invention is a method for manufacturing a four-component thermistor in which iron is added to the above-mentioned manganese, nickel, and copper, in which copper is doped by impregnating an iron solid solution manganese-nickel spinel element in a copper mine polycarboxylic acid salt solution. 4 of manganese, nickel, iron and copper
The present invention is characterized by obtaining a component-based thermistor.

以下、実施例を挙げて本発明を詳細に説明する。市販の
原料MnC03,Ni○およびFe203をMn:Ni
:Fe=80:17.5:2.5原子%になるよう配合
し、これをボールミルで2畑寺間混合し、このスラリー
を乾燥後800ooで仮隣し、さらにボールミルで粉砕
、乾燥を行い、造粒、成形工程を経て成形体を得る。
Hereinafter, the present invention will be explained in detail with reference to Examples. Commercially available raw materials MnC03, Ni○ and Fe203 were converted into Mn:Ni
: Fe = 80:17.5:2.5 at. A molded body is obtained through granulation and molding steps.

この成形体を800〜1000℃の低温で焼成し、非常
に多孔質な素子を得る。この素子を銅−ェチンジアミン
四酢酸(以下EDTAと略記)溶液に含浸させた後、2
00℃で乾燥後ii50℃で2時間空気中で焼成した。
ここで、銅−EDTべ溶液の濃度あるし、は浸債時間を
変えることによってドーピング鋼含有量を変化させるこ
とができる。例えばIM鋼一EDTA溶液を用いて1硯
砂間浸潰したものの最終組成比はMn:Ni:Cu:F
e=79.9:17.4:0.4:2.3原子%、則4
銅−EDTA溶液を用いて1分間浸潰したものは、Mn
:Ni:Cu:Fe=79.3:17.2:2.0:1
.5原子%であった。従来のように配合時に組成が決定
されている場合には多様な特性範囲をカバーするのは機
能的でない。すなわち、一特性−組成比と限定される。
ところが本発明の製造方法を用いれば、基本となる鉄園
綾マンガン−ニッケルスピネルを製造しておけば素子特
性の要望に対して、容易に広範囲の特性に対処できる点
で産業上の効果が大きい。特に、マンガンとニッケルは
全組成でスピネルを構成し安定であり、鉄を固溶するこ
とにより高温負荷特性(DCIOV負荷at15000
)にも鰻れ、さらに銅をドーピングすることにより特性
範囲の広いマンガンーニッケルー鉄−銅系組成の特徴を
容易に得ることができるのも大きな利点である。また、
実施例で鉄が選択的に銅と置換されるのは、鉄−EDT
Aの生成定数がマンガン,ニッケル,銅よりも大きいこ
とによる。また、請求範囲の中で限定したサーミスタ組
成の限定理由は、既に市販されている汎用サーミス夕の
特性値(比抵抗100・抑〜IMO・抑、B定数は10
0ぴK〜600ぴK)からくるものである。
This molded body is fired at a low temperature of 800 to 1000°C to obtain a highly porous element. After impregnating this element with a copper-ethindiaminetetraacetic acid (hereinafter abbreviated as EDTA) solution,
After drying at 00°C, it was fired in air at 50°C for 2 hours.
Here, the doped steel content can be changed by changing the concentration of the copper-EDT solution and the immersion time. For example, the final composition ratio of IM steel immersed in 1 inkstone sand using EDTA solution is Mn:Ni:Cu:F
e=79.9:17.4:0.4:2.3 atomic%, rule 4
Mn was soaked for 1 minute using copper-EDTA solution.
:Ni:Cu:Fe=79.3:17.2:2.0:1
.. It was 5 at%. If the composition is determined at the time of compounding as in the past, it is not functional to cover a wide range of properties. In other words, it is limited to one characteristic-composition ratio.
However, if the manufacturing method of the present invention is used, it is industrially effective in that once the basic Tetsuzono Aya manganese-nickel spinel is manufactured, it is possible to easily meet a wide range of device characteristics requirements. . In particular, manganese and nickel constitute spinel in all compositions and are stable, and by incorporating iron as a solid solution, high temperature load characteristics (DCIOV load at 15,000
) also has the great advantage of being able to easily obtain manganese-nickel-iron-copper composition characteristics with a wide range of properties by doping with copper. Also,
In the examples, iron is selectively replaced with copper by iron-EDT.
This is because the production constant of A is larger than that of manganese, nickel, and copper. In addition, the reason for limiting the thermistor composition in the scope of the claims is the characteristic values of general-purpose thermistors already on the market (resistivity 100/low to IMO/low, B constant 10
It comes from 0piK to 600piK).

さらに含浸用客液として銅−ポリカルボン酸鍔塩に限定
するのは、金属とポリカルボン酸との鍔形成能力が大き
く容易に置換反応をおこすと、溶液pHが無機塩のよう
に強酸性でなく素子を溶解せず中性の溶解度が大きいこ
と、さらに焼成途中で有機酸はNQおよびCQとして分
解する利点を持つことによる。以上のように本発明は構
成されているものであり、非常に簡単な方法でもつて容
易に広範囲の特性に対処できるサーミスタ用酸化物半導
体を得ることができ、その産業性は大なるものである。
Furthermore, the impregnation solution is limited to copper-polycarboxylic acid bristle salt because the metal and polycarboxylic acid have a large bristle-forming ability and easily cause a substitution reaction, and the solution pH is strongly acidic like inorganic salts. This is because the organic acid has the advantage that it does not dissolve the element and has a high neutral solubility, and that the organic acid decomposes as NQ and CQ during firing. The present invention is constructed as described above, and it is possible to obtain an oxide semiconductor for a thermistor that can easily handle a wide range of characteristics with a very simple method, and its industrial efficiency is great. .

Claims (1)

【特許請求の範囲】[Claims] 1 金属酸化物の焼結混合体において、その金属元素が
マンガン94.8〜40原子%、ニツケル5〜45原子
%、銅0.1〜15原子%および鉄0.1〜15原子%
の4種を合計100原子%含有するサーミスタ用酸化物
半導体を得るために、マンガン、ニツケルおよび鉄の3
成分系素子を銅−ポリカルボン酸溶液に含浸させた後、
乾燥、焼成させ、銅をドーピングすることを特徴とする
サーミスタ用酸化物半導体の製造方法。
1. In a sintered mixture of metal oxides, the metal elements include 94.8 to 40 at.% of manganese, 5 to 45 at.% of nickel, 0.1 to 15 at.% of copper, and 0.1 to 15 at.% of iron.
In order to obtain an oxide semiconductor for a thermistor containing a total of 100 atomic percent of the four types, manganese, nickel, and iron,
After impregnating the component-based element with the copper-polycarboxylic acid solution,
A method for manufacturing an oxide semiconductor for a thermistor, comprising drying, firing, and doping with copper.
JP6359580A 1980-05-13 1980-05-13 Manufacturing method of oxide semiconductor for thermistor Expired JPS6014484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6359580A JPS6014484B2 (en) 1980-05-13 1980-05-13 Manufacturing method of oxide semiconductor for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6359580A JPS6014484B2 (en) 1980-05-13 1980-05-13 Manufacturing method of oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPS56160007A JPS56160007A (en) 1981-12-09
JPS6014484B2 true JPS6014484B2 (en) 1985-04-13

Family

ID=13233772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6359580A Expired JPS6014484B2 (en) 1980-05-13 1980-05-13 Manufacturing method of oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS6014484B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930005249B1 (en) * 1990-08-16 1993-06-17 한국과학기술연구원 Metal-oxide system thermistor
EP0609776A1 (en) * 1993-02-05 1994-08-10 SIEMENS MATSUSHITA COMPONENTS GmbH & CO. KG Sintered ceramic for highly stable thermistors and process for its production
DE4420657A1 (en) * 1994-06-14 1995-12-21 Siemens Matsushita Components Sintered ceramics for highly stable thermistors and processes for their manufacture
DE102010024863B4 (en) 2010-06-24 2012-03-08 Epcos Ag Non-cobalt NTC ceramic, process for making a cobalt-free NTC ceramic and its use

Also Published As

Publication number Publication date
JPS56160007A (en) 1981-12-09

Similar Documents

Publication Publication Date Title
JPS6014484B2 (en) Manufacturing method of oxide semiconductor for thermistor
JP2004155601A (en) Piezoelectric ceramic composition
GB689520A (en) Heavy-metal oxide resistors and process of making same
CN102992746B (en) Preparation method of high-permeability MnZn soft magnetic ferrite
JPS6041014B2 (en) Manufacturing method of oxide semiconductor for thermistor
JPS6022482B2 (en) Manufacturing method of oxide semiconductor for thermistor
JPS58115027A (en) Oxide magnetic material and preparation thereof
JP3202273B2 (en) Composition for thermistor
JP3246838B2 (en) Oxide magnetic material
JP3246839B2 (en) Oxide magnetic material
JPS6112627B2 (en)
JPS58155701A (en) Method of producing oxide semiconductor for thermistor
JPS5828801A (en) Method of producing oxide semiconductor for thermistor
JP3202278B2 (en) Composition for thermistor
JPS58121602A (en) Method of producing oxide semiconductor for thermistor
JP3167561B2 (en) Oxide magnetic material
JPS6014092B2 (en) heating element
CN102992749A (en) Preparation method of MnZn (Manganese-Zinc) soft magnetic ferrite material containing modified attapulgite
JPH07211514A (en) Production of thermistor element
JP3642184B2 (en) Thermistor composition
JPH01290549A (en) Oxide semiconductor composition for thermistor
JPS6412501A (en) Manufacture of oxide semiconductor for thermistor
JP4492234B2 (en) Thermistor composition and thermistor element
JP3230414B2 (en) Method of manufacturing magnetic core and method of manufacturing inductor
JPH06267724A (en) Oxide magnetic material