JPS61113211A - Oxide semiconductor for thermistor - Google Patents

Oxide semiconductor for thermistor

Info

Publication number
JPS61113211A
JPS61113211A JP23571684A JP23571684A JPS61113211A JP S61113211 A JPS61113211 A JP S61113211A JP 23571684 A JP23571684 A JP 23571684A JP 23571684 A JP23571684 A JP 23571684A JP S61113211 A JPS61113211 A JP S61113211A
Authority
JP
Japan
Prior art keywords
thermistor
atomic
oxide semiconductor
atom
metal elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23571684A
Other languages
Japanese (ja)
Other versions
JPH0543161B2 (en
Inventor
畑 拓興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23571684A priority Critical patent/JPS61113211A/en
Priority to US06/902,445 priority patent/US4891158A/en
Priority to PCT/JP1985/000616 priority patent/WO1986003051A1/en
Priority to DE8585905664T priority patent/DE3581807D1/en
Priority to EP85905664A priority patent/EP0207994B1/en
Publication of JPS61113211A publication Critical patent/JPS61113211A/en
Publication of JPH0543161B2 publication Critical patent/JPH0543161B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、150℃〜500℃の範囲で温度センサとし
て利用できるところの負の抵抗温度係数を有するサーミ
スタ用酸化物半導体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an oxide semiconductor for a thermistor having a negative temperature coefficient of resistance and which can be used as a temperature sensor in the range of 150°C to 500°C.

従来例の構成とその問題点 従来から良く知られているMn−Co−Ni−Cu酸化
物系サーミスタ材料は、汎用ディスク型サーミスタとし
て主に用いられてきたが、高温使用下での抵抗値変動が
大きいため、800℃を超えるような高温度では使用す
ることができず、aOO℃以下の温度で使用されてきた
。一方、700〜1000℃の高温で使用できる材料と
しては、安定化ジルコニア(Zr02−Y203r Z
r02−CaO等)、Mg−AI−Cr −F e酸化
物スピネル系等が開発されている(特公昭48−705
号公報、特公昭49−63995号公報、特開昭58−
88756号公報)。しかし、これらの酸化物材料も、
焼成温度が1600℃を超える高温でなければならず、
通常の電気炉(最高1600℃)を用いたのでは焼成で
きないものであった。
Conventional structure and problems The well-known Mn-Co-Ni-Cu oxide thermistor material has been mainly used as a general-purpose disk-type thermistor, but resistance value fluctuations occur under high-temperature use. Because of the large On the other hand, stabilized zirconia (Zr02-Y203r Z
r02-CaO, etc.), Mg-AI-Cr-Fe oxide spinel systems, etc. have been developed (Japanese Patent Publication No. 48-705
Publication No. 49-63995, Japanese Patent Publication No. 1987-63995
88756). However, these oxide materials also
The firing temperature must be a high temperature exceeding 1600℃,
It could not be fired using a normal electric furnace (maximum temperature of 1600°C).

その上、これらの酸化物の焼結体であっても抵抗値の経
時変化が大きく、きわめて安定なものでさえ10%(1
ooo時間後)程度であり、経時安定性に問題があった
Furthermore, even in the case of sintered bodies of these oxides, the resistance value changes significantly over time, and even those that are extremely stable have a resistance value of 10% (10%).
ooo hours), and there was a problem in stability over time.

また、センサ市場から200〜500℃での安定性に優
れたサーミスタの要望が一段と高くなり、これに対応し
たサーミスタ材料(Mn−Ni−Al酸化物系:特開昭
57−95608号公報、(NixMgシZn7 )M
n、04スピネル系:特開昭57−88701 号公報
、(Ni、; Coy Fe、 AI5Mnt) 04
スピネル系:特開昭57−88702号公報等)が提案
されてきたが、まだ評価段階である。本発明者も、上記
要望に対して、Mn−Ni  Cr−Zr酸化物系(特
願昭58−1 :d 1265号)を提案してきた。
In addition, the demand for thermistors with excellent stability at 200 to 500°C has increased in the sensor market, and thermistor materials that meet this demand (Mn-Ni-Al oxide system: JP-A-57-95608, NixMgshiZn7)M
n, 04 spinel system: JP-A-57-88701, (Ni,; Coy Fe, AI5Mnt) 04
Spinel-based materials (Japanese Patent Laid-Open No. 57-88702, etc.) have been proposed, but are still in the evaluation stage. The present inventor has also proposed a Mn--Ni Cr--Zr oxide system (Japanese Patent Application No. 1265/1983) in response to the above demand.

発明の目的 本発明は、上記問題点に鑑みてなされたもので、その目
的とするところは、300℃〜500℃でも適当な抵抗
値を示し、安定に使用できるサーミスタ用酸化物半導体
を提供することにある。
Purpose of the Invention The present invention has been made in view of the above problems, and its purpose is to provide an oxide semiconductor for a thermistor that exhibits an appropriate resistance value even at 300°C to 500°C and can be stably used. There is a particular thing.

発明の構成 上記目的を達成するために1本発明のサーミスタ用酸化
物半導体は、金属酸化物の焼結混合体よりなり、その金
属元素として、マンガン(Mn)so、。
Structure of the Invention In order to achieve the above objects, an oxide semiconductor for a thermistor according to the present invention is made of a sintered mixture of metal oxides, and the metal element thereof is manganese (Mn).

〜98.5原子%ニッケル(Ni)0.1〜5.0原子
%、クロム(Cr )o、a 〜5.0原子%、イツト
リウム(Y) 0.2〜5.0原子%およびジルコニウ
ム(Z r )0.5〜28.0原子%の5種を合計1
00原子%含有してなるものである。
~98.5 at% nickel (Ni) 0.1~5.0 at%, chromium (Cr) o, a ~5.0 at%, yttrium (Y) 0.2~5.0 at%, and zirconium ( Zr) 0.5 to 28.0 atomic% of 5 types in total 1
It contains 00 atomic percent.

さらに上記組成100原子%に対して、外割でケイ素(
Si )を2.0原子%以下(0原子%を含まず)含有
していてもよい。
Furthermore, with respect to the above composition of 100 atomic %, silicon (
Si) may be contained in an amount of 2.0 atomic % or less (excluding 0 atomic %).

実施例の説明 以下、本発明の実施例について説明する。Description of examples Examples of the present invention will be described below.

市販の原料Mn CO3+ N i O+ Cr2o、
およびY2O,を含有したZrO2を後述する表に示す
ようKそれぞれ原子%の組成になるように配合した。サ
ーミスタ製造工程を例示すると、これらの配合組成物を
ボールミルで湿式混合し、そのスラリーを乾燥後100
0℃で仮焼し、その仮焼物を再びボールミルで湿式粉砕
混合した。得られたスラリーを乾燥後、ポリビニルアル
コールをバインダとして添加混合し、所要量とって30
01L X1sfl”のブロックニ成形する。そしてこ
の成形体を1500℃で2時間空気中で焼成した。こう
して得られたブロックから、スライス、研磨により厚み
が150〜400μmのウニバーを取り出し、スクリー
ン印刷法により白金電極を設ける。この電極付与された
ウェハーから所望の寸法のチップにカッティングする。
Commercially available raw materials Mn CO3+ N i O+ Cr2o,
and Y2O, were blended so as to have a composition of K in atomic % as shown in the table below. To illustrate the thermistor manufacturing process, these blended compositions are wet mixed in a ball mill, and the slurry is dried and then
Calcined at 0°C, the calcined product was again wet-pulverized and mixed in a ball mill. After drying the obtained slurry, add and mix polyvinyl alcohol as a binder, take the required amount and add 30
01L A platinum electrode is provided, and the wafer provided with this electrode is cut into chips of desired dimensions.

この素子をアルゴンガス等中性ガス雰囲気もしくは空気
中でガラス管に封入し、外気から密封遮断する。リード
線端子は、その使用温度により、デュメット線、コバー
ル線などスラグリードを用いる。このガラス封入サーミ
スタを500℃の空気中に放置し、1ooo時間後の抵
抗値変化を測定した。また、初期特性として、25℃で
の比抵抗および、ガラス封入サーミスタとしてのサーミ
スタ定数を併せて示した。このうちサーミスタ定数Bは
、800℃と500℃とで測定した2点の抵抗値から求
めたものである。尚、素子寸法は40011mX400
μm×800μmであった。ぐ以下余白) 〈表〉 (11印は比較試料を示す) 前表において、比較用試料は、いずれも500℃での抵
抗経時変化率が5%を越え、実用上安定性に欠けるため
本発明の範囲外とした。これに対し、本発明の範囲内の
試料は、500℃での抵抗経時変化率が全て5%以下で
、安定性が改善されていることがわかる。
This element is sealed in a glass tube in a neutral gas atmosphere such as argon gas or air, and hermetically isolated from the outside air. For the lead wire terminal, a slug lead such as Dumet wire or Kovar wire is used depending on the operating temperature. This glass-encapsulated thermistor was left in air at 500° C., and the change in resistance value after 100 hours was measured. Further, as initial characteristics, the specific resistance at 25° C. and the thermistor constant as a glass-encapsulated thermistor are also shown. Among these, the thermistor constant B was determined from the resistance values at two points measured at 800°C and 500°C. In addition, the element dimensions are 40011m x 400
The size was μm×800 μm. Table 1 (Mark 11 indicates a comparative sample) In the previous table, the comparative samples all had a resistance change rate over time of over 5% at 500°C, and lacked practical stability, so the present invention was excluded. was outside the range. On the other hand, the samples within the scope of the present invention all had resistance change rates over time of 5% or less at 500° C., indicating that the stability was improved.

今回の試料は乾式成形後焼成したものを用いたが、ビー
ドタイプの素子でもよく、素子製造方法により何ら拘束
されるものではない。
The samples used this time were dry-molded and fired, but bead-type elements may also be used, and there are no restrictions on the element manufacturing method.

なお、本発明の実施例においては原料混合および仮焼物
粉砕混合にジルコニア玉石を用いた。
In the examples of the present invention, zirconia boulders were used for mixing raw materials and pulverizing and mixing calcined products.

上記実施例の試料(焼結体)について元素分析を行なっ
た結果、Zrの混入量はサーミスタ構成元素の100原
子%に対して、0.5原子%以下であった。
As a result of elemental analysis of the sample (sintered body) of the above example, the amount of Zr mixed was 0.5 atomic % or less with respect to 100 atomic % of the thermistor constituent elements.

またメノウ玉石を用いた場合には、Siの混入量はl原
子%以下であった。表に示した試料のうち、Siを含む
試料はすべてジルコニア玉石を用いて得たものである。
Further, when agate boulders were used, the amount of Si mixed was less than 1 atomic %. Among the samples shown in the table, all the samples containing Si were obtained using zirconia boulders.

さらに本実施例で用いたZrは全てYと反応させて得た
もの、すなわちイツトリア部分安定化ジルコニアである
。市販、もしくはサンプルとしてメーカから入手したも
のを原則として用いたが、一部はシュウ酸塩から合成し
、これを用いた。
Further, all Zr used in this example was obtained by reacting with Y, that is, itria partially stabilized zirconia. In principle, commercially available materials or samples obtained from manufacturers were used, but some were synthesized from oxalate and used.

発明の効果 以上述べたように、本発明に係るサーミスタ用酸化物半
導体は、金属酸化物の焼結混合体よりなり、その構成金
属元素として、Mn60.0〜985原子%、N i 
O,1〜5.0原子%、Cr O,3〜5.0原子%、
Y O,2〜5.0原子%およびZr0.5〜28.0
原子%の5種を合計100京子%含有しているので、8
00℃〜500℃の範囲でも特性経時変化に優れており
、中・高温で高い信頼性が要求されている温度測定に最
も適している。すなわち、例えば電子レンジや石油燃焼
器における温度制御等の利用分野での貢献が期待できる
ものである。そして、前記構成金属元素に加えて、外割
でSiを2,0原子%以下(0原子%を含まず)を含有
させた場合には、焼結促進効果を示し、緻密なセラミッ
クスを得ることができる。
Effects of the Invention As described above, the oxide semiconductor for thermistor according to the present invention is made of a sintered mixture of metal oxides, and its constituent metal elements include 60.0 to 985 at% of Mn, Ni
O, 1 to 5.0 at%, Cr O, 3 to 5.0 at%,
Y O, 2-5.0 at% and Zr0.5-28.0
It contains a total of 100 Kyoko% of 5 types of atomic%, so 8
It has excellent characteristics over time even in the range of 00°C to 500°C, making it most suitable for temperature measurements that require high reliability at medium and high temperatures. That is, it can be expected to contribute to fields of application such as temperature control in microwave ovens and oil burners. In addition to the above-mentioned constituent metal elements, when Si is contained in an amount of 2.0 atomic % or less (not including 0 atomic %), it exhibits a sintering promotion effect and obtains a dense ceramic. I can do it.

Claims (1)

【特許請求の範囲】 1、金属酸化物の焼結混合体よりなり、その構成金属元
素として、マンガン60.0〜98.5原子%、ニッケ
ル0.1〜5.0原子%、クロム0.3〜5.0原子%
、イットリウム0.2〜5.0原子%およびジルコニウ
ム0.5〜28.0原子%の5種を合計100原子%含
有することを特徴とするサーミスタ用酸化物半導体。 2、金属酸化物の焼結混合体よりなり、その構成金属元
素として、マンガン60.0〜98.5原子%、ニッケ
ル0.1〜5.0原子%、クロム0.3〜5.0原子%
、イットリウム0.2〜5.0原子%およびジルコニウ
ム0.5〜28.0原子%の5種を合計100原子%含
有し、かつケイ素を構成金属元素に対して外割で2.0
原子%以下(0原子%を含まず)含有することを特徴と
するサーミスタ用酸化物半導体。
[Scope of Claims] 1. Consisting of a sintered mixture of metal oxides, its constituent metal elements include 60.0 to 98.5 at. % of manganese, 0.1 to 5.0 at. % of nickel, and 0.0 to 5.0 at. % of chromium. 3-5.0 at%
, 0.2 to 5.0 atom % of yttrium, and 0.5 to 28.0 atom % of zirconium, in total 100 atom %. 2. Consisting of a sintered mixture of metal oxides, its constituent metal elements are 60.0 to 98.5 at.% of manganese, 0.1 to 5.0 at.% of nickel, and 0.3 to 5.0 at.% of chromium. %
, contains 5 types of yttrium 0.2 to 5.0 at % and zirconium 0.5 to 28.0 at %, totaling 100 at %, and silicon at an external ratio of 2.0 to the constituent metal elements.
An oxide semiconductor for a thermistor, characterized in that it contains atomic % or less (excluding 0 atomic %).
JP23571684A 1984-11-08 1984-11-08 Oxide semiconductor for thermistor Granted JPS61113211A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23571684A JPS61113211A (en) 1984-11-08 1984-11-08 Oxide semiconductor for thermistor
US06/902,445 US4891158A (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and manufacturing method thereof
PCT/JP1985/000616 WO1986003051A1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same
DE8585905664T DE3581807D1 (en) 1984-11-08 1985-11-06 SEMICONDUCTOR OXIDE FOR THERMISTOR AND THEIR PRODUCTION.
EP85905664A EP0207994B1 (en) 1984-11-08 1985-11-06 Oxide semiconductor for thermistor and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23571684A JPS61113211A (en) 1984-11-08 1984-11-08 Oxide semiconductor for thermistor

Publications (2)

Publication Number Publication Date
JPS61113211A true JPS61113211A (en) 1986-05-31
JPH0543161B2 JPH0543161B2 (en) 1993-06-30

Family

ID=16990166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23571684A Granted JPS61113211A (en) 1984-11-08 1984-11-08 Oxide semiconductor for thermistor

Country Status (1)

Country Link
JP (1) JPS61113211A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879750A (en) * 1996-03-29 1999-03-09 Denso Corporation Method for manufacturing thermistor materials and thermistors
JP2009067394A (en) * 2007-09-10 2009-04-02 Nippon Steel & Sumikin Metal Products Co Ltd Hoop material bending processing method and binding member manufacturing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5879750A (en) * 1996-03-29 1999-03-09 Denso Corporation Method for manufacturing thermistor materials and thermistors
JP2009067394A (en) * 2007-09-10 2009-04-02 Nippon Steel & Sumikin Metal Products Co Ltd Hoop material bending processing method and binding member manufacturing apparatus

Also Published As

Publication number Publication date
JPH0543161B2 (en) 1993-06-30

Similar Documents

Publication Publication Date Title
US4891158A (en) Oxide semiconductor for thermistor and manufacturing method thereof
JPS6022302A (en) Oxide semiconductor for thermistor
JPS61113211A (en) Oxide semiconductor for thermistor
JPH0541304A (en) Metallic oxide group thermistor material
JPS62108505A (en) Oxide semiconductor for thermistor
JPS62115608A (en) Dielectric porcelain compound
JPS62108503A (en) Oxide semiconductor for thermistor
JPS62108502A (en) Oxide semiconductor for thermistor
JPH0578921B2 (en)
JP3559911B2 (en) Thermistor
JPS62108504A (en) Oxide semiconductor for thermistor
JPS6097601A (en) Oxide semiconductor porcelain for thermistor
JPH0578922B2 (en)
JPS59184501A (en) Oxide semiconductor for thermistor
JPS61113204A (en) Manufacture of oxide semiconductor for thermistor
JPS61113206A (en) Manufacture of oxide semiconductor for thermistor
JPS61113210A (en) Manufacture of oxide semiconductor for thermistor
JPS59208804A (en) Oxide semiconductor for thermistor
JPS61113205A (en) Manufacture of oxide semiconductor for thermistor
JP3391190B2 (en) Thermistor composition
JPS61113208A (en) Manufacture of oxide semiconductor for thermistor
JPS61122156A (en) Manufacture of oxide semiconductor for thermistor
JPS60106107A (en) Method of producing oxide semiconductor porcelain for thermistor
JPS5815069A (en) Ceramic composition for heating body
JPS61168204A (en) Manufacture of oxide semiconductor for thermistor