EP0810612B1 - Oxide ceramic thermistor containing indium - Google Patents

Oxide ceramic thermistor containing indium Download PDF

Info

Publication number
EP0810612B1
EP0810612B1 EP97201533A EP97201533A EP0810612B1 EP 0810612 B1 EP0810612 B1 EP 0810612B1 EP 97201533 A EP97201533 A EP 97201533A EP 97201533 A EP97201533 A EP 97201533A EP 0810612 B1 EP0810612 B1 EP 0810612B1
Authority
EP
European Patent Office
Prior art keywords
thermistor
spinel
oxide
composition
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97201533A
Other languages
German (de)
French (fr)
Other versions
EP0810612A1 (en
Inventor
Wilhelm Albert Dr. Groen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Corporate Intellectual Property GmbH
Philips Patentverwaltung GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Corporate Intellectual Property GmbH, Philips Patentverwaltung GmbH, Koninklijke Philips Electronics NV filed Critical Philips Corporate Intellectual Property GmbH
Publication of EP0810612A1 publication Critical patent/EP0810612A1/en
Application granted granted Critical
Publication of EP0810612B1 publication Critical patent/EP0810612B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/04Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient
    • H01C7/042Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material having negative temperature coefficient mainly consisting of inorganic non-metallic substances
    • H01C7/043Oxides or oxidic compounds

Definitions

  • the invention relates to a thermistor with a semiconductor ceramic with an indium-containing manganese-nickel-oxide spinel.
  • Thermistors also called NTC resistors, have a negative temperature coefficient (NTC), their resistivity decreases with temperature approximately exponentially.
  • NTC negative temperature coefficient
  • Semiconducting oxide ceramics are used. Ceramic thermistors are widely used as temperature sensors, e.g. B. in the food and plastics industries, in automotive electronics, in portable measuring instruments and in medical technology, also as a clinical thermometer. Part of the applications concerns the temperature compensation of coils, the working point stabilization of Transistors and the overtemperature protection of electronic devices. Beneficial Applications also arise in low-temperature measuring technology, as Radiation receivers in pyrometers and as transmitters in flow anemometers.
  • oxide spinels An important group of ceramic materials for the manufacture of thermistors are the oxide spinels. These are ionic crystals with the composition AB 2 O 4 , the structure of which is determined by the cubic closest packing of the large negatively charged oxygen ions O 2- . The larger cations A occupy octahedral gaps of the anion lattice, the smaller cations B the tetrahedral gaps of the anion lattice.
  • Today's thermistor components are based almost exclusively on mixed crystals with a spinel structure, which are generally composed of 2 to 4 cations from the group manganese, nickel, cobalt, iron, copper and titanium.
  • One problem, however, is the thermal stability of these connections. In order to obtain uniform spinel phases, precise process control is necessary even in the manufacturing process. In addition, the working temperatures must not exceed certain upper limit values.
  • NTC resistors with the general formula Zn z Fe xz III Ni Mn 2-xz III Mn z IV O 4 with 0 ⁇ z ⁇ x. These oxide spinels form a uniform spinel phase, they do not fall into separate oxide phases during production and can therefore be produced with a reproducible setting of the thermistor parameters.
  • the object is achieved by a thermistor with a semiconductor ceramic with an indium-containing manganese-nickel-oxide spinel.
  • a thermistor with a semiconductor ceramic with an oxide spinel that the Containing elements of manganese, nickel and indium is thermodynamically very stable because Indium only occurs in one oxidation state (+3) and therefore not with oxygen the atmosphere reacts. It continues to be characterized by high values for the specific resistance and the B value.
  • the oxide spinel has the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 x x 0,7 0.75.
  • Spinels with this composition are particularly stable at high working temperatures because their crystal structure is monomorphic, ie they do not change at higher temperatures.
  • the spinel has the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.5 ⁇ x ⁇ 0.66.
  • a thermistor with such a composition has a surprisingly high thermal stability of the resistance value in the long-term test.
  • Fig. 1 Specific resistance and B value as a function of the indium content x in Mn 2.33-x In x Ni 0.67 O 4 .
  • the thermistor according to the invention contains a semiconductor ceramic with an oxide spinel, which contains the elements manganese, nickel and indium, in particular those of the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 x x 0,7 0.75 . Due to the low electron affinity and the high ionization potential of the indium (+3), this oxide spinel is redox-stable and does not change through interaction with the atmosphere at elevated temperatures.
  • the composition of the spinel is preferably chosen so that it is close to the phase transition from the cubic to the tetragonal spinel structure and the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 ⁇ x ⁇ 0 , 75 has. Surprisingly, it has been found that these compositions show minimal aging.
  • the thermistor is manufactured according to the usual ceramic manufacturing methods, depending on the desired tolerances and the field of application numerous variants are possible.
  • the starting compounds can be from Oxides, hydroxides, carbonates, oxalates and the like. use. These are according to weighed the desired composition, wet milled, dried and granulated. Then you can the oxide mixture at 900 ° C to 1000 ° C. calcine to achieve pre-compaction and chemical homogenization. The calcined mixture is ground again and with a binder composition suspended. This is followed by the design.
  • the powder suspension can be cast into foils or for circuits using thick film technology Substrate to be screen printed. The suspension can also be processed into granules are, from which any shape can then be pressed. Subsequently first the binder burnout and then the final sintering takes place the spinel phase is formed. In a further process step, the Contacts applied.
  • Single-phase oxide spinels are formed, which contain the elements manganese, nickel and Contain indium. This is confirmed by X-ray examinations.
  • the corresponding starting oxides are mixed in a stoichiometric mixing ratio and ground with zircon grinding balls for 16 hours.
  • the premixed powder is granulated with a conventional binder preparation. Tablets with a diameter of 6 mm and a thickness of 1 mm are pressed from the granules. These tablets are sintered in the air for six hours at 1250 ° C. X-ray diffraction images show that the semiconductor ceramic obtained in this way is a single-phase material with a spinel structure.
  • the relative density of the mixed crystal oxides is greater than 97% of the theoretical density.
  • Fig. 1 shows that the main thermistor parameters, ie the specific resistance (R 25 ) and the B value increase with increasing indium content.
  • the aging tests were carried out at 150 ° C for 1800 h.
  • the thermistor parameters R 25 and the thermal constant B were measured at intervals. The tests showed that the aging is practically complete after 150 h.
  • the experiments further showed that the relative change in the resistance R / R 0 with time near the phase boundary between the cubic and tetragonal phase boundary has a minimum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Description

Die Erfindung betrifft einen Thermistor mit einer Halbleiterkeramik mit einem indiumhaltigen Mangan-Nickel-Oxid-Spinell.The invention relates to a thermistor with a semiconductor ceramic with an indium-containing manganese-nickel-oxide spinel.

Thermistoren, auch NTC-Widerstände genannt, haben einen negativen Temperaturkoeffizienten (NTC), ihr spezifischer Widerstand nimmt mit der Temperatur annähernd exponentiell ab. Als widerstandsbestimmende Materialien werden üblicherweise halbleitende Oxidkeramiken verwendet. Keramische Thermistoren sind als Temperatursensoren weitverbreitet, z. B. in der Lebensmittel- und Kunststoffindustrie, in der Kfz-Elektronik, in transportablen Betriebsmeßgeräten und in der medizinischen Technik, auch als Fieberthermometer. Ein Teil der Anwendungen betrifft die Temperaturkompensation von Spulen, die Arbeitspunktstabilisierung von Transistoren und die Übertemperatursicherung von elektronischen Geräten. Vorteilhafte Anwendungen ergeben sich auch in der Tieftemperatur-Meßtechnik, als Strahlungsempfänger in Pyrometern und als Geber in Strömungsanemometern.Thermistors, also called NTC resistors, have a negative temperature coefficient (NTC), their resistivity decreases with temperature approximately exponentially. As resistance determining materials Usually semiconducting oxide ceramics are used. Ceramic thermistors are widely used as temperature sensors, e.g. B. in the food and plastics industries, in automotive electronics, in portable measuring instruments and in medical technology, also as a clinical thermometer. Part of the applications concerns the temperature compensation of coils, the working point stabilization of Transistors and the overtemperature protection of electronic devices. Beneficial Applications also arise in low-temperature measuring technology, as Radiation receivers in pyrometers and as transmitters in flow anemometers.

Es existiert eine Vielzahl von halbleitenden Oxidkeramiken mit NTC-Characteristik. Für die praktische Anwendbarkeit müssen neben der Temperaturabhängigkeit des Widerstandes weitere Bedingungen wie gute Sinterbarkeit, mechanische und chemische Stabilität erfüllt sein.There are a number of semiconducting oxide ceramics with NTC characteristics. In addition to the temperature dependence of the Resistance other conditions such as good sinterability, mechanical and chemical Stability must be fulfilled.

Eine wichtige Gruppe von keramischen Werkstoffen für die Herstellung von Thermistoren sind die Oxid-Spinelle. Dabei handelt es sich um Ionenkristalle der Zusammensetzung AB2O4, deren Aufbau durch die kubisch dichteste Kugelpackung der großen negativ geladenen Sauerstoffionen O2-, bestimmt wird. Die größeren Kationen A besetzen Oktaederlücken des Anionengitters, die kleineren Kationen B die Tetraederlücken des Anionengitters. Heutige Thermistor-Bauelemente basieren fast ausschließlich auf Mischkristallen mit Spinellstruktur, die sich im allgemeinen aus 2 bis 4 Kationen der Gruppe Mangan, Nickel, Cobalt, Eisen, Kupfer und Titan zusammensetzen. Ein Problem ist jedoch die thermische Stabilität dieser Verbindungen. Um einheitliche Spinellphasen zu erhalten, ist schon beim Herstellungsverfahren eine genaue Prozeßführung notwendig. Außerdem dürfen die Arbeitstemperaturen bestimmte obere Grenzwerte nicht überschreiten.An important group of ceramic materials for the manufacture of thermistors are the oxide spinels. These are ionic crystals with the composition AB 2 O 4 , the structure of which is determined by the cubic closest packing of the large negatively charged oxygen ions O 2- . The larger cations A occupy octahedral gaps of the anion lattice, the smaller cations B the tetrahedral gaps of the anion lattice. Today's thermistor components are based almost exclusively on mixed crystals with a spinel structure, which are generally composed of 2 to 4 cations from the group manganese, nickel, cobalt, iron, copper and titanium. One problem, however, is the thermal stability of these connections. In order to obtain uniform spinel phases, precise process control is necessary even in the manufacturing process. In addition, the working temperatures must not exceed certain upper limit values.

Es ist in der DE-C-42 13 629 vorgeschlagen worden, NTC-Widerstände mit der allgemeinen Formel ZnzFex-z IIINi Mn2-x-z IIIMnz IVO4 mit 0 < z < x herzustellen. Diese Oxidspinelle bilden eine einheitliche Spinellphase, sie verfallen bei der Herstellung nicht in separate Oxidphasen und lassen sich daher mit reproduzierbarer Einstellung der Thermistorparameter herstellen.It has been proposed in DE-C-42 13 629 to produce NTC resistors with the general formula Zn z Fe xz III Ni Mn 2-xz III Mn z IV O 4 with 0 <z <x. These oxide spinels form a uniform spinel phase, they do not fall into separate oxide phases during production and can therefore be produced with a reproducible setting of the thermistor parameters.

Im Gebrauch verändert sich jedoch in diesen Spinellphasen durch Wechselwirkung mit der Atmosphäre die Oxidationsstufen des Eisens und damit auch die Themistorparameter. Außerdem lassen sich so nur Spinelle mit bestimmten Thermistorparameterbereichen herstellen.In use, however, changes in these spinel phases through interaction with the atmosphere, the oxidation levels of iron and thus the themistor parameters. In addition, only spinels with certain thermistor parameter ranges can be created in this way produce.

Es ist daher eine Aufgabe der vorliegenden Erfindung, einen Thermistor mit einer Halbleiterkeramik mit einem Oxid-Spinell zu schaffen, der thermisch stabil ist und hohe Thermistorparameter aufweist.It is therefore an object of the present invention to provide a thermistor with a To create semiconductor ceramics with an oxide spinel that is thermally stable and has high thermistor parameters.

Erfindungsgemäß wird die Aufgabe gelöst durch einen Thermistor mit einer Halbleiterkeramik mit einem indiumhaltigen Mangan-Nickel-Oxid-Spinell.According to the invention, the object is achieved by a thermistor with a semiconductor ceramic with an indium-containing manganese-nickel-oxide spinel.

Ein Thermistor mit einer Halbleiterkeramik mit einem Oxid-Spinell, der die Elemente Mangan, Nickel und Indium enthält, ist thermodynamisch sehr stabil, weil Indium nur in einer Oxidatonsstufe (+3) auftritt und daher nicht mit dem Sauerstoff der Atmospäre reagiert. Er zeichnet sich weiterhin durch hohe Werte für den spezifischen Widerstand und den B-Wert aus.A thermistor with a semiconductor ceramic with an oxide spinel that the Containing elements of manganese, nickel and indium is thermodynamically very stable because Indium only occurs in one oxidation state (+3) and therefore not with oxygen the atmosphere reacts. It continues to be characterized by high values for the specific resistance and the B value.

Es ist im Rahmen der vorliegenden Erfindung besonders bevorzugt, daß der Oxid-Spinell die Zusammensetzung Mn2,33-xInxNi0,67O4 mit 0,05 ≤ x ≤ 0,75 hat. Spinelle mit dieser Zusammensetzung zeichnen sich durch eine besondere Stabilität bei hohen Arbeitstemperaturen aus, weil ihre Kristallstruktur monomorph ist, d.h. sie verändert sich nicht bei höheren Temperaturen.It is particularly preferred in the context of the present invention that the oxide spinel has the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 x x 0,7 0.75. Spinels with this composition are particularly stable at high working temperatures because their crystal structure is monomorphic, ie they do not change at higher temperatures.

Es ist bevorzugt, daß der Spinell die Zusammensetzung Mn2,33-xInxNi0,67O4 mit 0,5 ≤ x ≤ 0,66 hat.It is preferred that the spinel has the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.5 ≤ x ≤ 0.66.

Es ist besonders bevorzugt, daß der Spinell die Zusammensetzung Mn2,33-xInxNi0,67O4 mit x =0.58 ± 0,02 hat. Ein Thermistor mit einer derartigen Zusammensetzung hat eine überraschend hohe thermische Stabilität des Widerstandswertes im Langzeittest.It is particularly preferred that the spinel has the composition Mn 2.33-x In x Ni 0.67 O 4 with x = 0.58 ± 0.02. A thermistor with such a composition has a surprisingly high thermal stability of the resistance value in the long-term test.

Nachfolgend wird die Erfindung anhand von Beispielen und einer Zeichnung weiter erläutert.The invention will be further elucidated below with the aid of examples and a drawing explained.

Fig. 1: Spezifischer Widerstand und B-Wert als Funktion des Indium-Gehaltes x in Mn2.33-xInxNi0.67O4. Fig. 1 : Specific resistance and B value as a function of the indium content x in Mn 2.33-x In x Ni 0.67 O 4 .

Der erfindungsgemäße Thermistor enthält eine Halbleiterkeramik mit einem Oxid-Spinell, der die Elemente Mangan, Nickel und Indium enthält, insbesondere solche der Zusammensetzung Mn2,33-xInxNi0,67O4 mit 0,05 ≤ x ≤ 0,75. Durch die geringe Elektronenaffinität und das hohe Ionisationspotential des Indiums(+3) ist dieser Oxid-Spinell redoxstabil und verändert sich nicht durch Wechselwirkung mit der Atmosphäre bei erhöhten Temperaturen. The thermistor according to the invention contains a semiconductor ceramic with an oxide spinel, which contains the elements manganese, nickel and indium, in particular those of the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 x x 0,7 0.75 . Due to the low electron affinity and the high ionization potential of the indium (+3), this oxide spinel is redox-stable and does not change through interaction with the atmosphere at elevated temperatures.

Die Zusammensetzung des Spinell wird bevorzugt so gewählt, daß sie in der Nähe des Phasenüberganges von der kubischen zur tetragonalen Spinell-Struktur liegt und die Zusammensetzung Mn2,33-xInxNi0,67O4 mit 0,05 ≤ x ≤ 0,75 hat. Überraschenderweise wurde gefunden, daß diese Zusammensetzungen minimale Alterung zeigen.The composition of the spinel is preferably chosen so that it is close to the phase transition from the cubic to the tetragonal spinel structure and the composition Mn 2.33-x In x Ni 0.67 O 4 with 0.05 ≤ x ≤ 0 , 75 has. Surprisingly, it has been found that these compositions show minimal aging.

Die Herstellung des Thermistors erfolgt nach den üblichen keramischen Fertigungsmethoden, wobei je nach den angestrebten Toleranzen und dem Anwendungsgebiet zahlreiche Varianten möglich sind. Als Ausgangsverbindungen kann man von Oxiden, Hydroxiden, Carbonaten, Oxalaten u. ä. verwenden. Diese werden gemäß der gewünschten Zusammensetzung eingewogen, naß gemahlen, getrocknet und granuliert. Anschließend kann man das Oxid- Gemisch bei 900°C bis 1000°C kalzinieren, um eine Vorverdichtung und chemische Homogenisierung zu erreichen. Die kalzinierte Mischung wird erneut gemahlen und mit einer Bindemittelzusammensetzung suspendiert. Daran schließt sich die Formgebung an. Die Pulversuspension kann zu Folien gegossen werden oder für Schaltungen in Dickschichttechnik auf ein Substrat siebgedruckt werden. Die Suspension kann auch zu Granulat verarbeitet werden, aus dem dann beliebige Formkörper gepreßt werden können. Anschließend erfolgt zunächst der Binderausbrand und dann die abschließende Sinterung, bei dem die Spinellphase gebildet wird. In einem weiteren Verfahrensschritt werden die Kontakte aufgebracht.The thermistor is manufactured according to the usual ceramic manufacturing methods, depending on the desired tolerances and the field of application numerous variants are possible. The starting compounds can be from Oxides, hydroxides, carbonates, oxalates and the like. use. These are according to weighed the desired composition, wet milled, dried and granulated. Then you can the oxide mixture at 900 ° C to 1000 ° C. calcine to achieve pre-compaction and chemical homogenization. The calcined mixture is ground again and with a binder composition suspended. This is followed by the design. The powder suspension can be cast into foils or for circuits using thick film technology Substrate to be screen printed. The suspension can also be processed into granules are, from which any shape can then be pressed. Subsequently first the binder burnout and then the final sintering takes place the spinel phase is formed. In a further process step, the Contacts applied.

Es bilden sich einphasige Oxid-Spinelle, die die Elemente Mangan, Nickel und Indium enthalten. Dies wird durch röntgenographische Untersuchungen bestätigt.Single-phase oxide spinels are formed, which contain the elements manganese, nickel and Contain indium. This is confirmed by X-ray examinations.

AusführungsbeispielEmbodiment

Es werden Halbleiterkeramiken mit Oxidspinellen hergestellt, die Zusammensetzung Mn2,33-xInxNi0,67O4 mit x= 1/12, 1/6,1/3 und 2/3 haben . Die entsprechenden Ausgangsoxide werden im stöchiometrischen Mischungsverhältnis gemischt und 16 Stunden mit Zirkon-Mahlkugeln gemahlen. Das vorgemischte Pulver wird mit einer konventionellen Bindemittelzubereitung granuliert. Aus dem Granulat werden Tabletten mit einem Durchmesser von 6mm und einer Dicke von 1mm gepreßt. Diese Tabletten werden sechs Stunden bei 1250°C an der Luft gesintert. Röntgenbeugungsaufnahmen zeigen, daß die so erhaltene Halbleiterkeramik ein einphasiges Material mit Spinell - Struktur ist. Die relative Dichte der Mischkristalloxide ist größer als 97 % der theoretischen Dichte.Semiconductor ceramics with oxide spinels are produced, which have the composition Mn 2.33-x In x Ni 0.67 O 4 with x = 1/12, 1 / 6.1 / 3 and 2/3. The corresponding starting oxides are mixed in a stoichiometric mixing ratio and ground with zircon grinding balls for 16 hours. The premixed powder is granulated with a conventional binder preparation. Tablets with a diameter of 6 mm and a thickness of 1 mm are pressed from the granules. These tablets are sintered in the air for six hours at 1250 ° C. X-ray diffraction images show that the semiconductor ceramic obtained in this way is a single-phase material with a spinel structure. The relative density of the mixed crystal oxides is greater than 97% of the theoretical density.

TestergebnisseTest results

Fig. 1 zeigt, daß wichtigsten Thermistorparameter, d.h. der spezifische Widerstand (R25) und der B-Wert mit wachsendem Indium-Gehalt zunehmen.Fig. 1 shows that the main thermistor parameters, ie the specific resistance (R 25 ) and the B value increase with increasing indium content.

Die Alterungsversuche wurden bei 150°C über 1800 h durchgeführt. Dabei wurden in Abständen die Thermistorparameter R25 und die thermische Konstante B gemessen. Die Versuche ergaben, daß die Alterung nach 150 h praktisch abgeschlossen ist. Die Versuche ergaben weiterhin, daß die relative Änderung des Widerstandes R/R0 mit der Zeit in der Nähe der Phasengrenze zwischen kubischer und tetragonaler Phasengrenze ein Minimum hat.The aging tests were carried out at 150 ° C for 1800 h. The thermistor parameters R 25 and the thermal constant B were measured at intervals. The tests showed that the aging is practically complete after 150 h. The experiments further showed that the relative change in the resistance R / R 0 with time near the phase boundary between the cubic and tetragonal phase boundary has a minimum.

Claims (4)

  1. A thermistor comprising a semiconductor ceramic with an indium-containing manganese-nickel-oxide spinel.
  2. A thermistor as claimed in Claim 1, characterized in that the composition of the oxide spinel corresponds to
    Mn2.33-xInxNi0.67O4, wherein 0.05 ≤ x ≤ 0.75.
  3. A thermistor as claimed in Claim 1, characterized in that the composition of the oxide spinel corresponds to
    Mn2.33-xInxNi0.67O4, wherein 0.5 ≤ x ≤ 0.66.
  4. A thermistor as claimed in Claim 1, characterized in that the composition of the oxide spinel corresponds to Mn2.33-xInxNi0.67O4, wherein x = 0.58 ± 0.02.
EP97201533A 1996-06-01 1997-05-22 Oxide ceramic thermistor containing indium Expired - Lifetime EP0810612B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19622112A DE19622112A1 (en) 1996-06-01 1996-06-01 Oxide ceramic thermistor containing indium
DE19622112 1996-06-01

Publications (2)

Publication Number Publication Date
EP0810612A1 EP0810612A1 (en) 1997-12-03
EP0810612B1 true EP0810612B1 (en) 1999-09-01

Family

ID=7795932

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97201533A Expired - Lifetime EP0810612B1 (en) 1996-06-01 1997-05-22 Oxide ceramic thermistor containing indium

Country Status (5)

Country Link
US (1) US5976421A (en)
EP (1) EP0810612B1 (en)
JP (1) JPH1092609A (en)
DE (2) DE19622112A1 (en)
TW (1) TW406061B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003532284A (en) * 2000-04-25 2003-10-28 エプコス アクチエンゲゼルシャフト ELECTRICAL STRUCTURE ELEMENT, PROCESS FOR PRODUCING THE SAME AND USING THE STRUCTURE ELEMENT
JP3711857B2 (en) * 2000-10-11 2005-11-02 株式会社村田製作所 Semiconductor porcelain composition having negative resistance temperature characteristic and negative characteristic thermistor
JP4601300B2 (en) * 2004-01-28 2010-12-22 京セラ株式会社 Semiconductive ceramic and image forming apparatus using the same
DE102008009817A1 (en) * 2008-02-19 2009-08-27 Epcos Ag Composite material for temperature measurement, temperature sensor comprising the composite material and method for producing the composite material and the temperature sensor
JP6975333B2 (en) 2018-07-13 2021-12-01 株式会社日立製作所 Permanent magnet synchronous machine control device, electric vehicle and permanent magnet synchronous machine magnetic pole polarity discrimination method
EP3901115A1 (en) 2020-04-24 2021-10-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO A printable ntc ink composition and method of manufacturing thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54111700A (en) * 1978-02-22 1979-09-01 Hitachi Ltd Thermistor composition
US5246628A (en) * 1990-08-16 1993-09-21 Korea Institute Of Science & Technology Metal oxide group thermistor material
DE4213629C1 (en) * 1992-04-24 1994-02-17 Siemens Matsushita Components Sintered ceramic for stable thermistors - comprises nickel manganese oxide spinel substd. with iron and zinc
JPH07505857A (en) * 1992-04-24 1995-06-29 シーメンス マツシタ コンポーネンツ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング ウント コンパニ コマンデイート ゲゼルシヤフト Sintered ceramics for highly stable thermistors and their manufacturing method
EP0641144A1 (en) * 1993-08-09 1995-03-01 Matsushita Electric Industrial Co., Ltd. Metal oxide film resistor and method for producing the same
DE4420657A1 (en) * 1994-06-14 1995-12-21 Siemens Matsushita Components Sintered ceramics for highly stable thermistors and processes for their manufacture
US5830268A (en) * 1995-06-07 1998-11-03 Thermometrics, Inc. Methods of growing nickel-manganese oxide single crystals

Also Published As

Publication number Publication date
TW406061B (en) 2000-09-21
EP0810612A1 (en) 1997-12-03
DE59700382D1 (en) 1999-10-07
DE19622112A1 (en) 1997-12-04
JPH1092609A (en) 1998-04-10
US5976421A (en) 1999-11-02

Similar Documents

Publication Publication Date Title
CA1189770A (en) Semiconductive barium titanate
US3996168A (en) Ceramic electrical resistor
EP0961299B1 (en) Method of producing semiconductor ceramic having positive temperature coefficient
DE3019098C2 (en) Ceramic PTC thermistor material and process for its manufacture
DE69432116T2 (en) Ceramic composition and thermistor containing this ceramic composition
EP0652189B1 (en) Piezoelectric ceramics
US3044968A (en) Positive temperature coefficient thermistor materials
EP0810612B1 (en) Oxide ceramic thermistor containing indium
EP0810611B1 (en) High temperature thermistor containing rare earth metals
US2981699A (en) Positive temperature coefficient thermistor materials
DE19740262C1 (en) Sintered ceramic consisting of single perovskite phase
JP2913518B2 (en) Metal oxide thermistor material
US3804765A (en) Adjusting ferroelectric ceramic characteristics during formation thereof
EP1564197B1 (en) Sintered compact for thermistor element, process for producing the same, thermistor element and temperature sensor
DE19834423B4 (en) Use of a sintered ceramic for highly stable NTC inrush current limiters and low-resistance NTC thermistors
EP3780022A1 (en) Thermistor sintered body and temperature sensor element
JPS6143841B2 (en)
DE808851C (en) Electrical resistance
DE2637227C3 (en) NTC thermistors for high temperatures
US5296169A (en) Method of producing varistor
JP3598177B2 (en) Voltage non-linear resistor porcelain
JPH0552642B2 (en)
JPH0128481B2 (en)
DE2627192C2 (en) Method of making a non-linear ceramic resistor material
JPH0383846A (en) Production of varistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980603

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19981209

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 59700382

Country of ref document: DE

Date of ref document: 19991007

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991014

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Opponent name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010523

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010531

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20010717

Year of fee payment: 5

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021203

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST