JP2904951B2 - Method for manufacturing magneto-optical storage element - Google Patents

Method for manufacturing magneto-optical storage element

Info

Publication number
JP2904951B2
JP2904951B2 JP11886691A JP11886691A JP2904951B2 JP 2904951 B2 JP2904951 B2 JP 2904951B2 JP 11886691 A JP11886691 A JP 11886691A JP 11886691 A JP11886691 A JP 11886691A JP 2904951 B2 JP2904951 B2 JP 2904951B2
Authority
JP
Japan
Prior art keywords
multilayer film
gas
film
target
magneto
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11886691A
Other languages
Japanese (ja)
Other versions
JPH04345939A (en
Inventor
淳策 中嶋
明 高橋
善照 村上
賢司 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Consejo Superior de Investigaciones Cientificas CSIC
Original Assignee
Consejo Superior de Investigaciones Cientificas CSIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior de Investigaciones Cientificas CSIC filed Critical Consejo Superior de Investigaciones Cientificas CSIC
Priority to JP11886691A priority Critical patent/JP2904951B2/en
Priority to CA 2069056 priority patent/CA2069056C/en
Priority to US07/888,548 priority patent/US5305300A/en
Priority to DE1992617718 priority patent/DE69217718T2/en
Priority to EP19920304682 priority patent/EP0515222B1/en
Publication of JPH04345939A publication Critical patent/JPH04345939A/en
Application granted granted Critical
Publication of JP2904951B2 publication Critical patent/JP2904951B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光等の光によ
り情報の記録・消去および再生を行う磁気光学記憶素子
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a magneto-optical memory element for recording, erasing and reproducing information with light such as a laser beam.

【0002】[0002]

【従来の技術】Pt層とCo層とを交互に繰り返し積層
したPt/Co多層膜は、垂直磁気異方性を有している
だけでなく、短波長の光に対して、希土類−遷移金属合
金よりも大きなカー回転角を有している。このため、P
t/Co多層膜を用いた磁気光学記憶素子は高密度の光
磁気記録を可能とする光磁気記録媒体として注目されて
いる。
2. Description of the Related Art A Pt / Co multilayer film in which a Pt layer and a Co layer are alternately and repeatedly laminated has not only a perpendicular magnetic anisotropy but also a rare-earth-transition metal against short-wavelength light. It has a larger car rotation angle than the alloy. Therefore, P
A magneto-optical storage element using a t / Co multilayer film has been attracting attention as a magneto-optical recording medium capable of high-density magneto-optical recording.

【0003】記録された情報を安定に保持するために
は、Pt/Co多層膜は高い保磁力を有していることが
望まれる。
In order to stably hold recorded information, it is desired that the Pt / Co multilayer film has a high coercive force.

【0004】1989年発行の日本応用磁気学会学術講
演概要集の第55頁には、Pt/Co多層膜をスパッタ
ー法により成膜する時、スパッターガスとしてのArガ
スの圧力を高くすれば、高保磁力を有するPt/Co多
層膜が得られることが報告されている。
On page 55 of the Abstracts of the Japanese Society of Applied Magnetics, published in 1989, it can be seen that, when a Pt / Co multilayer film is formed by sputtering, if the pressure of Ar gas as a sputtering gas is increased, the It is reported that a Pt / Co multilayer film having a magnetic force can be obtained.

【0005】また、同概要集の第56頁には、Pt/C
o多層膜をPtやPd等のfcc(面心立方)格子を有
する金属膜上にスパッター法により成膜すると、高保磁
力を有するPt/Co多層膜が得られることが報告され
ている。
On page 56 of the summary, Pt / C
It has been reported that when a multilayer film is formed on a metal film having an fcc (face-centered cubic) lattice such as Pt or Pd by a sputtering method, a Pt / Co multilayer film having a high coercive force can be obtained.

【0006】[0006]

【発明が解決しようとする課題】ところが、高いArガ
ス圧力下でPt/Co多層膜を成膜すると、Pt/Co
多層膜は多くの空孔を含むことになる。また、fcc格
子を有する金属膜上にPt/Co多層膜を成膜する場
合、金属膜を厚くすれば、保磁力は大きくなるが、Pt
/Co多層膜の結晶粒径も大きくなる。
However, when a Pt / Co multilayer film is formed under a high Ar gas pressure, Pt / Co
The multilayer will contain many vacancies. When a Pt / Co multilayer film is formed on a metal film having an fcc lattice, the thicker the metal film, the larger the coercive force.
The crystal grain size of the / Co multilayer film also increases.

【0007】Pt/Co多層膜における空孔の増加およ
び結晶粒径の増大は、情報再生時の雑音の原因となると
いう問題点を有している。
[0007] An increase in vacancies and an increase in crystal grain size in the Pt / Co multilayer film has a problem that it causes noise during information reproduction.

【0008】[0008]

【課題を解決するための手段】本発明の磁気光学記憶素
子の製造方法は、AlターゲットをN2 ガスとArガス
の混合ガスの下でスパッターすることにより基板上に非
晶質のAlN膜を形成した後、PtターゲットとCoタ
ーゲットとをArガスの下で交互にスパッターすること
により前記非晶質のAlN膜上にPt層とCo層を交互
に積層したPt/Co多層膜を形成する磁気光学記憶素
子の製造方法であって、上記非晶質のAlN膜の形成
時、高保磁力のPt/Co多層膜が得られるように、上
記N2 ガスの流量設定を行うことを特徴としている。
According to a method of manufacturing a magneto-optical memory device of the present invention, an Al target is sputtered under a mixed gas of N 2 gas and Ar gas to form an amorphous AlN film on a substrate. After the formation, a Pt target and a Co target are alternately sputtered under Ar gas to form a Pt / Co multilayer film in which a Pt layer and a Co layer are alternately stacked on the amorphous AlN film. A method of manufacturing an optical memory element, wherein the flow rate of the N 2 gas is set so that a high coercive force Pt / Co multilayer film is obtained when the amorphous AlN film is formed.

【0009】[0009]

【作用】上記の構成によれば、AlターゲットをN2
スとArガスの混合ガスの下でスパッターすることによ
り基板上に非晶質のAlN膜を形成した後、Ptターゲ
ットとCoターゲットとをArガスの下で交互にスパッ
ターすることにより前記非晶質のAlN膜上にPt層と
Co層を交互に積層したPt/Co多層膜を形成する磁
気光学記憶素子の製造方法であって、上記非晶質のAl
N膜の形成時、高保磁力のPt/Co多層膜が得られる
ように、上記N2 ガスの流量設定を行うので、高いAr
ガス圧力下でPt/Co多層膜を成膜しなくても、高保
磁力のPt/Co多層膜を有する磁気光学記憶素子を製
造できる。このため、空孔が少ない高保磁力のPt/C
o多層膜が得られる。また、非晶質のAlN膜上にPt
/Co多層膜を形成するので、Pt/Co多層膜の結晶
粒は成長しにくい。このため、結晶粒径の小さいPt/
Co多層膜が得られる。以上により、情報再生時、雑音
が少ない磁気光学記憶素子を製造できる。
According to the above arrangement, an Al target is sputtered under a mixed gas of N 2 gas and Ar gas to form an amorphous AlN film on the substrate, and then the Pt target and the Co target are separated. A method for manufacturing a magneto-optical memory element, comprising forming a Pt / Co multilayer film in which a Pt layer and a Co layer are alternately laminated on the amorphous AlN film by alternately sputtering under an Ar gas. Amorphous Al
When forming the N film, the flow rate of the N 2 gas is set so as to obtain a Pt / Co multilayer film having a high coercive force.
A magneto-optical storage element having a high coercive force Pt / Co multilayer film can be manufactured without forming a Pt / Co multilayer film under gas pressure. Therefore, a high coercive force Pt / C with few holes
o A multilayer film is obtained. In addition, Pt is formed on the amorphous AlN film.
Since the / Co multilayer film is formed, the crystal grains of the Pt / Co multilayer film are unlikely to grow. Therefore, Pt /
A Co multilayer film is obtained. As described above, it is possible to manufacture a magneto-optical storage element with less noise during information reproduction.

【0010】[0010]

【実施例】本発明の一実施例について図1ないし図5に
基づいて説明すれば、以下の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below with reference to FIGS.

【0011】本実施例で製造する磁気光学記憶素子は、
図3に示すように、ガラスあるいはポリカーボネイト等
の樹脂からなる基板1と、基板1上に形成された非晶質
のAlN膜2(以下、a−AlN膜2と略す)と、a−
AlN膜2上に形成されたPt/Co多層膜7とから主
に構成されている。Pt/Co多層膜7はPt層3とC
o層4とを交互に繰り返し積層した構成になっており、
Pt/Co多層膜7の最上層および最下層にはPt層3
が配されている。
The magneto-optical storage element manufactured in this embodiment is
As shown in FIG. 3, a substrate 1 made of a resin such as glass or polycarbonate, an amorphous AlN film 2 formed on the substrate 1 (hereinafter abbreviated as an a-AlN film 2), and an a-
It is mainly composed of a Pt / Co multilayer film 7 formed on the AlN film 2. The Pt / Co multilayer film 7 is composed of the Pt layer 3 and C
o layer 4 is alternately and repeatedly laminated.
The Pt layer 3 is formed on the uppermost layer and the lowermost layer of the Pt / Co multilayer film 7.
Is arranged.

【0012】基板1上にa−AlN膜2を形成するスパ
ッター装置の概略の構成を図4に示す。
FIG. 4 shows a schematic configuration of a sputtering apparatus for forming an a-AlN film 2 on a substrate 1.

【0013】スパッター装置は、真空チャンバー5と、
基板1を保持すると共にアノードとして働く基板ホルダ
ー6と、Alターゲット8を装着するカソード9と、カ
ソード9に接続されたRF(高周波)電源10とから主
に構成されている。
The sputtering apparatus comprises a vacuum chamber 5,
It mainly includes a substrate holder 6 that holds the substrate 1 and serves as an anode, a cathode 9 on which an Al target 8 is mounted, and an RF (high frequency) power supply 10 connected to the cathode 9.

【0014】以下、このスパッター装置を用いて、a−
AlN膜2を基板1上に形成する手順を説明する。
Hereinafter, using this sputtering apparatus, a-
A procedure for forming the AlN film 2 on the substrate 1 will be described.

【0015】まず、洗浄された基板1を基板ホルダー6
にセットし、Alターゲット8をカソード9にセットす
る。次に、真空チャンバー5内を充分排気する。その
後、真空チャンバー5に所定流量のN2 ガスとArガス
を導入し、RF電源10を投入する。これにより、基板
ホルダー6とカソード9の間にプラズマが発生し、反応
性スパッターを行われる。すなわち、加速されたAr+
イオンによってカソード9上のAlターゲット8が叩か
れ、Al原子が飛び出して来る。このAl原子とN2
スとが反応して基板1上にa−AlN膜2が成膜され
る。
First, the cleaned substrate 1 is placed on a substrate holder 6.
And the Al target 8 is set on the cathode 9. Next, the inside of the vacuum chamber 5 is sufficiently evacuated. Thereafter, a predetermined flow rate of N 2 gas and Ar gas is introduced into the vacuum chamber 5, and the RF power supply 10 is turned on. Thereby, plasma is generated between the substrate holder 6 and the cathode 9, and reactive sputtering is performed. That is, the accelerated Ar +
The Al target 8 on the cathode 9 is hit by the ions, and Al atoms jump out. The Al atoms react with the N 2 gas to form an a-AlN film 2 on the substrate 1.

【0016】次に、Pt/Co多層膜7(図3)を形成
する2元スパッター装置の概略の構成を図5に示す。
Next, FIG. 5 shows a schematic configuration of a binary sputtering apparatus for forming the Pt / Co multilayer film 7 (FIG. 3).

【0017】2元スパッター装置は、真空チャンバー1
1と、基板1上にa−AlN膜2を成膜した中間製造段
階の中間基板13を保持すると共にアノードとして働く
基板ホルダー12と、Ptターゲット16aとCoター
ゲット16bとをそれぞれ装着するカソード17a・1
7bと、カソード17a・17bにそれぞれ接続された
RF電源18a・18bと、Ptターゲット16aとC
oターゲット16bの基板ホルダー12側にそれぞれ設
けられたシャッター14a・14bから主に構成されて
いる。
The binary sputtering apparatus comprises a vacuum chamber 1
1, a substrate holder 12 that holds an intermediate substrate 13 in an intermediate manufacturing stage in which an a-AlN film 2 is formed on the substrate 1 and serves as an anode, and cathodes 17a, on which a Pt target 16a and a Co target 16b are mounted, respectively. 1
7b, RF power supplies 18a and 18b connected to the cathodes 17a and 17b, respectively, a Pt target 16a and C
o It mainly comprises shutters 14a and 14b provided on the substrate holder 12 side of the target 16b.

【0018】シャッター14a・14bの一端はそれぞ
れ回転軸15a・15bに取り付けられている。回転軸
15a・15bを回転させることにより、シャッター1
4a・14bはそれぞれ開閉する。シャッター14a・
14bが閉じているとき、すなわち、シャッター14a
・14bがPtターゲット16aとCoターゲット16
bの前面に位置しているとき、Ptターゲット16aと
Coターゲット16bからそれぞれ飛び出したPt原子
とCo原子の行く手はシャッター14a・14bによっ
て妨げられ、基板ホルダー12上の中間基板13に到達
することができなくなる。
One ends of the shutters 14a and 14b are attached to rotating shafts 15a and 15b, respectively. By rotating the rotation shafts 15a and 15b, the shutter 1
4a and 14b open and close, respectively. Shutter 14a
14b is closed, that is, the shutter 14a
14b is a Pt target 16a and a Co target 16
When the Pt target and the Co target 16b are located in front of the Pt target 16a and the Co target 16b, the shutters 14a and 14b prevent the Pt and Co atoms from reaching the intermediate substrate 13 on the substrate holder 12, respectively. become unable.

【0019】以下、この2元スパッター装置を用いて、
Pt/Co多層膜7を中間基板13のa−AlN膜2上
に形成する手順を説明する。
Hereinafter, using this binary sputtering apparatus,
A procedure for forming the Pt / Co multilayer film 7 on the a-AlN film 2 of the intermediate substrate 13 will be described.

【0020】まず、基板1が基板ホルダー12側になる
ように中間基板13を基板ホルダー12にセットし、P
tターゲット16aとCoターゲット16bとをそれぞ
れカソード17a・17bにセットする。次に、真空チ
ャンバー11内を充分排気する。その後、真空チャンバ
ー11に所定流量のArガスを導入し、シャッター14
a・14bを両方とも閉じた状態で、RF電源18a・
18bを共に投入する。これにより、プラズマが発生
し、加速されたAr+ イオンによってPtターゲット1
6aとCoターゲット16bが叩かれ、Pt原子とCo
原子がそれぞれPtターゲット16aとCoターゲット
16bから飛び出して来る。この状態で、シャッター1
4a・14bを交互に開閉すると、Pt原子とCo原子
は交互に基板ホルダー12上の中間基板13に到達し、
Pt層3(図3)とCo層4とが交互に繰り返し積層し
たPt/Co多層膜7が形成される。
First, the intermediate substrate 13 is set on the substrate holder 12 so that the substrate 1 is on the substrate holder 12 side.
The t target 16a and the Co target 16b are set on the cathodes 17a and 17b, respectively. Next, the inside of the vacuum chamber 11 is sufficiently evacuated. Thereafter, a predetermined flow rate of Ar gas is introduced into the vacuum chamber
a and 14b both closed, the RF power supply 18a.
18b are put together. As a result, plasma is generated and the Pt target 1 is accelerated by the accelerated Ar + ions.
6a and the Co target 16b are hit, and Pt atoms and Co
Atoms come out of the Pt target 16a and the Co target 16b, respectively. In this state, shutter 1
When 4a and 14b are alternately opened and closed, Pt atoms and Co atoms alternately reach the intermediate substrate 13 on the substrate holder 12, and
A Pt / Co multilayer film 7 in which a Pt layer 3 (FIG. 3) and a Co layer 4 are alternately and repeatedly laminated is formed.

【0021】上記のスパッター装置と2元スパッター装
置を用いて磁気光学記憶素子を製造し、得られたPt/
Co多層膜7の保磁力とa−AlN膜2の成膜条件との
関係を調べた。
A magneto-optical storage element was manufactured using the above-described sputtering apparatus and binary sputtering apparatus, and the obtained Pt /
The relationship between the coercive force of the Co multilayer film 7 and the conditions for forming the a-AlN film 2 was examined.

【0022】磁気光学記憶素子の基板1の材料として
は、ガラスが用いられた。a−AlN膜2の膜厚は50
0Åに設定された。Pt/Co多層膜7におけるPt層
3とCo層4の膜厚はそれぞれ9.9Åと3.0Åに設
定された。Pt層3とCo層4は交互に合計で12層積
層され、最上層としてさらに1層のPt層3が積層され
た。
Glass was used as the material of the substrate 1 of the magneto-optical storage element. The thickness of the a-AlN film 2 is 50
Set to 0 °. The thicknesses of the Pt layer 3 and the Co layer 4 in the Pt / Co multilayer film 7 were set to 9.9 ° and 3.0 °, respectively. Pt layers 3 and Co layers 4 were alternately laminated in a total of 12 layers, and one more Pt layer 3 was laminated as the uppermost layer.

【0023】a−AlN膜2の成膜時、N2 ガス流量は
2〜15SCCMの範囲内のいずれかに設定された。A
rガス流量は4SCCMに設定された。a−AlN膜2
の堆積速度は40Å/minであった。
At the time of forming the a-AlN film 2, the flow rate of N 2 gas was set to any value within the range of 2 to 15 SCCM. A
The r gas flow rate was set at 4 SCCM. a-AlN film 2
Was 40 ° / min.

【0024】一方、Pt/Co多層膜7の成膜時、Ar
ガス流量は6SCCMに設定された。Pt層3の堆積速
度は0.8Å/secであり、Co層4の堆積速度は
0.1Å/secであった。
On the other hand, when forming the Pt / Co multilayer film 7, Ar
The gas flow rate was set at 6 SCCM. The deposition rate of the Pt layer 3 was 0.8 ° / sec, and the deposition rate of the Co layer 4 was 0.1 ° / sec.

【0025】観測されたPt/Co多層膜7の保磁力
は、図1のグラフに示すように、a−AlN膜2の成膜
時のN2 ガス流量に大きく依存し、かつ、N2 ガス流量
を適当な値(本実施例では、約8SCCM)に設定する
と、保磁力は最大になることが分かった。
The coercive force of the observed Pt / Co multilayer film 7, as shown in the graph of FIG. 1, highly dependent on the N 2 gas flow rate during the deposition of a-AlN film 2, and, N 2 gas It was found that when the flow rate was set to an appropriate value (about 8 SCCM in this embodiment), the coercive force became maximum.

【0026】ここで、図の縦軸は、a−AlN膜2上に
Pt/Co多層膜7を形成した場合に得られた保磁力を
c とし、ガラスの基板1上に直接Pt/Co多層膜7
を形成した場合に得られた保磁力をHc0としたときのH
c とHc0との比、すなわち、Hc /Hc0を示しており、
横軸はN2 ガス流量を示している。なお、ガス流量の単
位はSCCM(標準cm3 /min)である。また、H
c0は、本実施例では、98Oeであった。
[0026] Here, the vertical axis in the figure, a-AlN film 2 on to the coercive force obtained in the case of forming a Pt / Co multilayer film 7 and H c, directly Pt / Co on a substrate 1 of glass Multilayer film 7
H when the coercive force obtained in the case of forming a was H c0
and the ratio of c to H c0 , that is, H c / H c0 ,
The horizontal axis indicates the N 2 gas flow rate. The unit of the gas flow rate is SCCM (standard cm 3 / min). Also, H
c0 was 98 Oe in this example.

【0027】次に、上記の磁気光学記憶素子のPt/C
o多層膜7の構造をX線回折により調べた。
Next, the Pt / C of the above magneto-optical storage element
o The structure of the multilayer film 7 was examined by X-ray diffraction.

【0028】その結果、Pt/Co多層膜7は多結晶体
であり、fcc(面心立方)格子からなっていることが
分かった。また、fcc格子の(111)面は基板1に
平行に配向していることが分かった。
As a result, it was found that the Pt / Co multilayer film 7 was a polycrystal and was formed of an fcc (face-centered cubic) lattice. It was also found that the (111) plane of the fcc lattice was oriented parallel to the substrate 1.

【0029】また、Pt/Co多層膜7の(111)面
による回折光の強度は、図2のグラフに示すように、上
述の保磁力と同様に、a−AlN膜2の成膜時のN2
ス流量に大きく依存し、かつ、N2 ガス流量を適当な値
に設定すると、その強度は最大になること、すなわち、
結晶性が最も良くなることが分かった。
As shown in the graph of FIG. 2, the intensity of the diffracted light by the (111) plane of the Pt / Co multilayer film 7 is similar to the coercive force described above when the a-AlN film 2 is formed. highly dependent on the flow rate of N 2 gas, and setting the N 2 gas flow rate to a suitable value, that the intensity becomes maximum, i.e.,
The crystallinity was found to be the best.

【0030】ここで、図の縦軸は、Pt/Co多層膜7
の(111)面による回折光の強度を示しており、横軸
はN2 ガス流量を示している。なお、強度の単位はCP
S(カウント/sec)である。因みに、ガラスの基板
1上に直接Pt/Co多層膜7を形成した場合の強度は
1000CPSであった。
Here, the vertical axis in the figure is the Pt / Co multilayer film 7.
The intensity of the diffracted light by the (111) plane is shown, and the horizontal axis shows the N 2 gas flow rate. The unit of strength is CP
S (count / sec). Incidentally, the strength when the Pt / Co multilayer film 7 was formed directly on the glass substrate 1 was 1000 CPS.

【0031】上記の結果(図1および図2)を比較する
と、(111)面による回折光の強度を最大するN2
ス流量は保磁力を最大にするN2ガス流量にほぼ一致す
ることから、Pt/Co多層膜7の結晶性が良くなる
と、保磁力が大きくなると考えられる。
Comparing the above results (FIGS. 1 and 2), the N 2 gas flow rate that maximizes the intensity of the diffracted light by the (111) plane substantially matches the N 2 gas flow rate that maximizes the coercive force. It is considered that when the crystallinity of the Pt / Co multilayer film 7 is improved, the coercive force is increased.

【0032】以上のように、a−AlN膜2の成膜時に
適当なN2 ガス流量を設定することにより、Pt/Co
多層膜7の保磁力を大きくすることができる。したがっ
て、Pt/Co多層膜7の保磁力を大きくするために、
Pt/Co多層膜7の成膜時にArガス圧力を高くする
必要がなくなる。これにより、低いArガス圧力でPt
/Co多層膜7を成膜できるので、空孔が少ないPt/
Co多層膜7を製造できる。また、a−AlN膜2の上
にPt/Co多層膜7を形成するので、fcc格子を有
する金属上にPt/Co多層膜7を成膜するときのよう
に結晶粒径は増大しない。このように、本実施例の磁気
光学記憶素子の製造方法によれば、空孔が少なく、結晶
粒径が小さいPt/Co多層膜7が得られるので、情報
再生時、雑音が少ない磁気光学記憶素子を製造できる。
As described above, by setting an appropriate N 2 gas flow rate at the time of forming the a-AlN film 2, Pt / Co
The coercive force of the multilayer film 7 can be increased. Therefore, in order to increase the coercive force of the Pt / Co multilayer film 7,
When forming the Pt / Co multilayer film 7, it is not necessary to increase the Ar gas pressure. As a result, Pt is produced at a low Ar gas pressure.
/ Co multilayer film 7 can be formed, so that Pt /
The Co multilayer film 7 can be manufactured. Further, since the Pt / Co multilayer film 7 is formed on the a-AlN film 2, the crystal grain size does not increase unlike the case where the Pt / Co multilayer film 7 is formed on a metal having an fcc lattice. As described above, according to the method of manufacturing the magneto-optical storage element of the present embodiment, the Pt / Co multilayer film 7 having a small number of holes and a small crystal grain size can be obtained. Devices can be manufactured.

【0033】[0033]

【発明の効果】本発明の磁気光学記憶素子の製造方法
は、以上のように、非晶質のAlN膜の形成時、高保磁
力のPt/Co多層膜が得られるように、N2ガスの流
量設定を行うので、高いArガス圧力下でPt/Co多
層膜を成膜しなくても、高保磁力のPt/Co多層膜を
有する磁気光学記憶素子を製造できる。このため、空孔
が少ない高保磁力のPt/Co多層膜が得られる。ま
た、非晶質のAlN膜上にPt/Co多層膜を形成する
ので、Pt/Co多層膜の結晶粒は成長しにくい。この
ため、結晶粒径の小さいPt/Co多層膜が得られる。
以上により、情報再生時、雑音が少ない磁気光学記憶素
子を製造できるという効果を奏する。
As described above, the method of manufacturing a magneto-optical memory element according to the present invention uses an N 2 gas such that a Pt / Co multilayer film having a high coercive force can be obtained when an amorphous AlN film is formed. Since the flow rate is set, a magneto-optical storage element having a high coercive force Pt / Co multilayer film can be manufactured without forming a Pt / Co multilayer film under a high Ar gas pressure. Therefore, a high coercive force Pt / Co multilayer film having few holes can be obtained. Further, since the Pt / Co multilayer film is formed on the amorphous AlN film, the crystal grains of the Pt / Co multilayer film are unlikely to grow. Therefore, a Pt / Co multilayer film having a small crystal grain size can be obtained.
As described above, there is an effect that a magneto-optical storage element with less noise can be manufactured during information reproduction.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Pt/Co多層膜の保磁力とa−AlN膜の成
膜時のN2 ガス流量との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a coercive force of a Pt / Co multilayer film and an N 2 gas flow rate at the time of forming an a-AlN film.

【図2】Pt/Co多層膜の(111)面による回折光
の強度とa−AlN膜の成膜時のN2 ガス流量との関係
を示すグラフである。
FIG. 2 is a graph showing the relationship between the intensity of diffracted light from the (111) plane of a Pt / Co multilayer film and the flow rate of N 2 gas when an a-AlN film is formed.

【図3】磁気光学記憶素子の概略の構成図である。FIG. 3 is a schematic configuration diagram of a magneto-optical storage element.

【図4】a−AlN膜を製造するスパッター装置の概略
図である。
FIG. 4 is a schematic view of a sputtering apparatus for producing an a-AlN film.

【図5】Pt/Co多層膜を製造する2元スパッター装
置の概略図である。
FIG. 5 is a schematic view of a binary sputtering apparatus for producing a Pt / Co multilayer film.

【符号の説明】[Explanation of symbols]

1 基板 2 非晶質のAlN膜(a−AlN膜) 3 Pt層 4 Co層 7 Pt/Co多層膜 13 中間基板 Reference Signs List 1 substrate 2 amorphous AlN film (a-AlN film) 3 Pt layer 4 Co layer 7 Pt / Co multilayer film 13 intermediate substrate

フロントページの続き (72)発明者 太田 賢司 大阪府大阪市阿倍野区長池町22番22号 シャープ株式会社内 (56)参考文献 特開 昭63−171448(JP,A) 特開 平1−251356(JP,A) 特開 平3−228239(JP,A) 特開 平4−258829(JP,A) (58)調査した分野(Int.Cl.6,DB名) G11B 11/10 506 G11B 11/10 521 G11B 11/10 541 Continuation of the front page (72) Inventor Kenji Ota 22-22 Nagaikecho, Abeno-ku, Osaka-shi, Osaka Inside Sharp Corporation (56) References JP-A-63-171448 (JP, A) JP-A-1-251356 (JP) , A) JP-A-3-228239 (JP, A) JP-A-4-258829 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) G11B 11/10 506 G11B 11/10 521 G11B 11/10 541

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】AlターゲットをN2 ガスとArガスの混
合ガスの下でスパッターすることにより基板上に非晶質
のAlN膜を形成した後、PtターゲットとCoターゲ
ットとをArガスの下で交互にスパッターすることによ
り前記非晶質のAlN膜上にPt層とCo層を交互に積
層したPt/Co多層膜を形成する磁気光学記憶素子の
製造方法であって、上記非晶質のAlN膜の形成時、高
保磁力のPt/Co多層膜が得られるように、上記N2
ガスの流量設定を行うことを特徴とする磁気光学記憶素
子の製造方法。
An amorphous AlN film is formed on a substrate by sputtering an Al target under a mixed gas of N 2 gas and Ar gas, and then a Pt target and a Co target are placed under an Ar gas. A method for manufacturing a magneto-optical memory element, wherein a Pt / Co multilayer film in which a Pt layer and a Co layer are alternately laminated on the amorphous AlN film by alternately sputtering is provided. At the time of film formation, the above-mentioned N 2 is used so that a high coercive force Pt / Co multilayer film is obtained.
A method for manufacturing a magneto-optical storage element, wherein a flow rate of a gas is set.
JP11886691A 1991-02-13 1991-05-23 Method for manufacturing magneto-optical storage element Expired - Lifetime JP2904951B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP11886691A JP2904951B2 (en) 1991-05-23 1991-05-23 Method for manufacturing magneto-optical storage element
CA 2069056 CA2069056C (en) 1991-05-23 1992-05-20 Magneto-optical storage device and manufacturing method thereof
US07/888,548 US5305300A (en) 1991-02-13 1992-05-22 Magneto optical storage device using a multi-layer film of Pt/Co laminated sections
DE1992617718 DE69217718T2 (en) 1991-05-23 1992-05-22 Magneto-optical storage device
EP19920304682 EP0515222B1 (en) 1991-05-23 1992-05-22 Magneto-optical storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11886691A JP2904951B2 (en) 1991-05-23 1991-05-23 Method for manufacturing magneto-optical storage element

Publications (2)

Publication Number Publication Date
JPH04345939A JPH04345939A (en) 1992-12-01
JP2904951B2 true JP2904951B2 (en) 1999-06-14

Family

ID=14747066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11886691A Expired - Lifetime JP2904951B2 (en) 1991-02-13 1991-05-23 Method for manufacturing magneto-optical storage element

Country Status (1)

Country Link
JP (1) JP2904951B2 (en)

Also Published As

Publication number Publication date
JPH04345939A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
US6730421B1 (en) Magnetic recording medium and its production method, and magnetic recorder
US20030157373A1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic recorder
US20040185307A1 (en) Perpendicular magnetic recording medium and method for manufacturing the same
JPH11328650A (en) Magnetic recording medium and its manufacture
JP2872226B2 (en) Perpendicular magnetization film and method of manufacturing the same
JPH07176027A (en) Magnetic recording medium and magnetic recording and reproducing device
US5851628A (en) Magnetic recording medium and method for manufacturing the same
JP2904951B2 (en) Method for manufacturing magneto-optical storage element
US5580671A (en) Perpendicular magnetic film and multi-layered film for perpendicular magnetic film
US20050100765A1 (en) Polycrystalline structure film and method of making the same
JP2810573B2 (en) Manufacturing method of magneto-optical element
JP3304382B2 (en) Magnetic recording medium and method of manufacturing the same
JP3520751B2 (en) Perpendicular magnetic recording medium, method of manufacturing the same, and storage device using the same
JPH0827927B2 (en) Magnetic recording media
JP3093389B2 (en) Method of manufacturing magneto-optical memory device
US5305300A (en) Magneto optical storage device using a multi-layer film of Pt/Co laminated sections
JPH05182262A (en) Magneto-optical recording medium
JP2001134929A (en) Magnetic recording medium and magnetic recording device
JPH05325163A (en) Magnetic recording medium
JP2846872B2 (en) Method for manufacturing magneto-optical storage element
JP4029991B2 (en) Method for manufacturing magneto-optical recording medium
JPH04311842A (en) Production of magneto-optical recording medium
JP2668994B2 (en) Manufacturing method of magnetic recording medium
JP2001229532A (en) Method of forming thin film, method of manufacturing magnetic recording medium, and magnetic recording device
JPH05234164A (en) Magneto-optical recording medium and its manufacture

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080326

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090326

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100326

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110326

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120326

Year of fee payment: 13