JP4029991B2 - Method for manufacturing magneto-optical recording medium - Google Patents

Method for manufacturing magneto-optical recording medium Download PDF

Info

Publication number
JP4029991B2
JP4029991B2 JP07371495A JP7371495A JP4029991B2 JP 4029991 B2 JP4029991 B2 JP 4029991B2 JP 07371495 A JP07371495 A JP 07371495A JP 7371495 A JP7371495 A JP 7371495A JP 4029991 B2 JP4029991 B2 JP 4029991B2
Authority
JP
Japan
Prior art keywords
film
magneto
recording medium
optical recording
alloy film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07371495A
Other languages
Japanese (ja)
Other versions
JPH08273227A (en
Inventor
潔 野口
太郎 大池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07371495A priority Critical patent/JP4029991B2/en
Publication of JPH08273227A publication Critical patent/JPH08273227A/en
Application granted granted Critical
Publication of JP4029991B2 publication Critical patent/JP4029991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
本発明は、PtCo合金膜を記録膜とする光磁気記録媒体の製造方法に関するものである。なお、本願明細書においては、PtCo合金タ−ゲット等をスパッタして成膜して得た均一な合金膜等は「PtCo合金膜」といい、Pt及びCoを交互に積層し、Pt及びCoを互いに界面拡散させて形成した均一なPtCo合金膜を「Pt/Co合金膜」といい、Pt及びCoを交互に積層し、Pt及びCoの周期性ある不均一な膜を「Pt/Co多層膜」という。
【0002】
【従来技術】
従来、光磁気記録材料として、TbFeCoなどの希土類−遷移金属アモルファス合金薄膜が使用されている。光磁気記録の高密度化を実現する手段として光源に使用するレ−ザ−の短波長化が検討され、波長670nmの半導体レ−ザによる記録再生が実現されつつある。また、400〜500nm帯の半導体レ−ザの室温発振も確認されている。しかしながら、従来使用されているTbFeCo等は短波長域でのカ−回転角が0.2°以下と低いため、短波長域で大きなカ−回転角を有する材料が望まれている。
【0003】
短波長域で大きなカ−回転角を有する材料としてPt及び/またはPd層とCo層とを交互に積層した多層膜がこれに代わるものとして注目されている。しかしながら、カ−回転角が0.3〜0.4°と大きいものの、これらの多層膜を記録膜とした光磁気ディスクを実用化するための課題のひとつに、繰り返し書き換え特性が挙げられる。現在実用化されている希土類遷移金属合金膜を用いた光磁気ディスクは、106回以上の繰り返し書き換え回数を達している。しかし、Pt/Co多層膜は何度も書き換えをおこなうと照射するレ−ザ光の熱的影響で、多層膜のPt層とCo層界面の拡散により垂直磁気異方性が低下し、カ−ル−プの角形比が劣化する。そのため、書き換え回数は、せいぜい104回であると知られている(J.Magn.Magn.Mater.126、587(1993))。
【0004】
一方、真空蒸着法で作製したPtCo合金膜を記録膜をして用いることが報告されている(J.Magn.Soc.Jpn.、Vol.17、Supplment No.S1(1993)、p140)。PtCo合金膜はPt/Co多層膜と同等以上のカ−回転角を有し、しかも多層膜でないため、繰り返し書き換え回数特性においてはPt/Co多層膜より優れた特性を有する。しかしながら、真空蒸着法で膜形成をする場合の蒸着粒子エネルギ−は0.1〜0.3eVと低いため、成膜時の基板温度を200℃以上にしなければ光磁気記録媒体としての要求特性である、カ−ル−プの角形比(θkr/θks)が1.0でかつ保磁力(Hc)が1kOe以上の垂直磁化膜が得られない。そのため、耐熱性の低いポリカ−ボネ−ト等の高分子樹脂基板を用いることはできないという欠点がある。
【0005】
【発明が解決しようとする課題】
本発明は、カ−ル−プの角形比が1.0でかつ1kOe以上の高い保磁力を有するPtCo合金膜を記録層とする光磁気記録媒体を、成膜時に基板温度を加熱することなく製造する方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
このような目的は、下記の(1)〜(5)の本発明より達成される。
【0007】
(1)PtCo合金膜を記録膜とする光磁気記録媒体の製造方法において、15〜30eVの大きさの運動エネルギ−を有する成膜粒子でPtCo合金膜を形成することを特徴とする光磁気記録媒体の製造方法。
【0008】
(2)前記PtCo合金膜において、Pt含有量が50〜80at%であり、さらに全厚が5nmから100nmであることを特徴とする上記(1)記載の光磁気記録媒体の製造方法。
【0009】
(3)PtCo合金膜を記録膜とする光磁気記録媒体の製造方法において、15〜30eVの大きさの運動エネルギ−を有する成膜粒子で、層厚dPtが1Aから6AであるPt及び層厚dCoが0.3Aから2AであるCoを交互に積層することにより、Pt及びCoが互いに界面拡散して均一なPtCo合金膜を形成することを特徴とする光磁気記録媒体の製造方法。
【0010】
(4)前記PtCo合金膜において、Pt層とCo層の層厚比dPt/dCoが2から4であり、さらに全厚が5nmから100nmであることを特徴とする上記(3)記載の光磁気記録媒体の製造方法。
【0011】
(5)前記PtCo合金膜をイオンビ−ムスパッタ法で形成することを特徴とする上記(1)〜(4)のいずれかに記載の光磁気記録媒体の製造方法。
【0012】
【作用および効果】
本発明は、PtCo合金膜を記録膜とする光磁気記録媒体を製造する際、成膜時のPtおよびCoの成膜粒子の運動エネルギ−が15〜30eVの範囲で成膜する。成膜粒子のエネルギ−を15〜30eVにすることにより、成膜時に基板加熱することなく、カ−ル−プの角形比が1.0でかつ1kOe以上の高い保磁力を有するPtCo合金膜が得られる。その結果、ポリカ−ボネ−ト基板などの高分子樹脂基板上に高いC/Nとかつ106回以上の繰り返し書き換え特性を有するPtCo合金膜を記録層とする光磁気記録媒体を得ることが可能となる。
【0013】
従来、PtCo合金膜は大きな垂直磁気異方性と、短波長で大きなカ−回転角と得られるため次世代光磁気記録膜の材料として研究されている。しかしながら、真空蒸着法や通常のスパッタ法では蒸着あるいはスパッタ粒子のエネルギ−が低いため成膜時の基板温度を200℃以上に加熱しなければ良好な垂直磁化膜とならず、光磁気記録膜として必要な高保磁力かつ角形比が1のカ−ル−プは得られない。そのため、ポリカ−ボネ−ト等の耐熱温度が150℃以下の高分子樹脂基板を用いることができなかったが、本発明により基板加熱することなく、高保磁力で角形比1のカ−ル−プが得られるようになるため、耐熱性の低い高分子樹脂基板を使用することが可能になる。
【0014】
【具体的構成】
以下、本発明の具体的構成について詳細に説明する。
【0015】
本発明に係る光磁気記録媒体の製造方法においては、成膜時の粒子の運動エネルギ−を15〜30eVに設定して、PtCo合金膜を基板上に成膜する。具体的には15eV未満となると結晶性が悪くなるため、垂直磁気異方性が低下し、カ−ル−プの角形比が悪くなる、また、30eVより大きくなると結晶粒径が大きくなるため保磁力が低下する。運動エネルギ−はカロリ−メ−タ法で測定することができる。基板近傍に銅薄板と熱電対で構成されているカロリ−メ−タを配置し、温度上昇と飛来粒子の個数、膜の凝縮エネルギ−から算出することができる。
【0016】
本発明においては、スパッタ法や蒸着法などの方法が用いられる。スパッタ法の場合は所定の組成のPtCo合金タ−ゲットをスパッタ、もしくはPtおよびCoタ−ゲットを同時スパッタして成膜することができる。蒸着法の場合はPtとCoを同時蒸着すればよい。膜組成はPt含有量が50〜80at%になるようにするのが好ましい。Pt含有量が50at%未満であると垂直磁化膜が得られない。また、80at%より多いとカ−回転角が低くなるため光磁気記録膜として用いたとき大きな再生出力が得られなくなるためである。タ−ゲット組成、スパッタガス種、成膜時の投入パワ−や成膜速度をコントロ−ルすることにより得ることができる。
【0017】
なお、PtCo膜には、PtとCo以外の他の元素たとえば、Fe、Sc、Ti、V,Cr、Mn、Ni、Cu、Zn等の3d遷移元素;Pd、Y、Zr、Nb、Mo、Ru、Rh、Ag等の4d遷移元素;Au、Hf、Ta、W、Re、Os、Ir等の5d遷移元素;Gd、Tb、Dy、Ho、Er、Yb、Lu、La、Ce、Pr、Nd、Sm、Eu等の希土類元素;B、Al、Ga、In等のIIIB族元素;C、Si、Ge等のIVB族元素;N、P、Bi等のVB族元素等を含ませることもできる。
【0018】
このような他の元素がPtCo膜に添加される場合、他の元素の含有量は30at%以下であり、好ましくは20at%以下である。30at%より多くなるとカ−回転角が大きく低下するためである。このような他の元素をスパッタ法で添加するには他の元素とPtCoの合金タ−ゲット、あるいは他の元素とPtタ−ゲットまたはCoタ−ゲットとの複合タ−ゲットを用いればよい。また、電子ビ−ム式蒸着法あるいは抵抗加熱式蒸着法で添加するには他の元素とPtおよび/またはCoの合金母材を用いて形成する、あるいは他の元素、Pt、Co母材を各々別々のるつぼや加熱ボ−トで蒸発させればよい。
【0019】
本発明においては、Pt層とCo層を交互に積層しても形成することができる。15〜30eVの高エネルギ−粒子で交互積層をおこなうと、Pt層とCo層の界面において拡散が生じるため合金膜を得ることができるからである。従来、超高真空蒸着法や通常のスパッタ法でPt/Co多層膜を作製することはおこなわれているが、真空蒸着法における蒸着粒子の運動エネルギ−は1eV以下、スパッタ法におけるスパッタ粒子の運動エネルギ−は数eV程度と低いため、界面拡散により合金膜を形成することはできない。本発明において、Pt層厚は1Aから6A、Co層厚は0.3AからAの範囲に設定する。なお、ここで層厚とは、積層量を表現するために、成膜レートと成膜時間の積から求めた仮想の膜厚であり、実体上の膜厚ではない。Pt層厚が6Aを越えると界面拡散により均一な合金膜を得られなくなるため好ましくなく、1A未満であると再現性良く層厚制御することが難しくなるためである。また、Co層厚がAを越えると界面拡散により均一な合金膜を得られなくなり、0.3A未満であると再現性良く層厚制御することが難しくなるためである。さらに、Pt層とCo層の層厚比dPt/dCoは2から4にすることが好ましい。dPt/dCoが2未満であるとθkr/θksが低下するためであり、4より大きいとθkの大きさが低くなるためである。本発明における記録膜の全厚は5nmから100nmの範囲に設定する。5nm未満であるとθkが低下するため好ましくない。また、100nmを越えるとθkr/θksが低下するため好ましくない。成膜レ−トは0.5A/s以下が好ましい。0.5A/sを越えると層厚の制御がむずかしくなり、再現性が得られなくなるからである。
【0020】
なお、PtとCoの交互積層により形成する場合においても、上記に示した3d遷移元素、4d遷移元素、5d遷移元素、希土類元素、IIIB族元素、IVB族元素、VB族元素等を同様に含ませることもできる。
【0021】
本発明に係る光磁気記録媒体の製造方法には、成膜粒子の運動エネルギ−を高くするという点から、イオンビ−ムスパッタ法、イオンビ−ム蒸着法、イオンプレ−ティング法、クラスタ−イオンビ−ム法などの方法を用いることができる。
【0022】
特に、Ar、Kr、Xe等の不活性ガスイオンビ−ムにより、スパッタリングする粒子エネルギ−や成膜速度など成膜パラメ−タのほとんどを独立に、また厳密に制御できる点から、イオンビ−ムスパッタ法が好ましい。
【0023】
イオンビ−ムスパッタ法で成膜する場合、スパッタリングガスとしては、Ar、Kr、Xe等の不活性ガスを使用することができる。スパッタ粒子のエネルギ−は、イオン電流、すなわち成膜レ−トには依存せず、イオンエネルギ−の増加とともに直線的に増加し、イオン種により変化する。イオンビ−ムの加速電圧を200〜1500Vに変化させた場合のCoまたはPtのスパッタ粒子エネルギ−は、Arイオンを使用したとき20〜40eV、Krイオンのとき15〜30eV、Xeイオンのときは10〜20eVであり、イオン種とイオンエネルギ−を制御することにより、10〜40eVに制御できる。
【0024】
上記のようにして得られるPtCo合金膜は、成膜時に基板加熱しなくてもカ−ル−プの角形比が1でかつ高い保磁力が得られるため、耐熱性の低いポリカ−ボネ−ト等の高分子樹脂基板上に成膜しても優れた膜特性が得られる。その結果、これらの膜を光磁気記録媒体の記録層として用いることにより高い再生出力と106回以上の繰り返し書き換え特性が得られる。
【0025】
【実施例】
以下、本発明の具体的実施例を示し、本発明をさらに詳細に説明する。
【0026】
イオンビ−ムスパッタ法により、コ−ニング7059(商品名)ガラス基板上に、基板を回転させながら、様々な成膜条件でPtCo合金膜およびPt/Co合金膜を形成し、測定サンプルとした。このとき、所定の成膜条件における成膜レ−トをあらかじめもとめ、スパッタ時間を制御することにより、所望の膜厚のサンプルを得た。
【0027】
スパッタ粒子の運動エネルギ−はカロリ−メ−タ法でもとめた。カロリ−メ−タは熱量測定をおこなう銅薄板と熱電対から構成され、基板ホルダ−位置に設置してもとめた。カロリ−メ−タで測定した初期の温度上昇から単位時間当たりの全熱量を算出し、その全熱量をカロリ−メ−タに達するスパッタ粒子の個数で除した値から、膜の凝縮熱を引いた値をスパッタ粒子の運動エネルギ−とした。
【0028】
各サンプルについて、以下に示す測定をおこなった。
【0029】
膜組成
蛍光X線分析により測定した。
【0030】
保磁力、カ−回転角
日本分光(株)カ−効果測定装置(K−250)を用いて波長400nmにおけるカ−ル−プを測定し、それから保磁力Hc、カ−回転角θkを求めた。印加磁場は5kOeとし、膜面側から光を入射した。
【0031】
平均結晶粒径
CuKα線を用いた中角X線回折により、面心立方構造の(111)面ピ−クの半値幅から求めた。
【0032】
結晶配向
CuKα線を用いた中角X線回折により、面心立方構造の(111)ピ−ク強度を求めた。
【0033】
多層膜人工周期性
CuKα線を用いた小角X線回折により、超格子ピ−ク位置から求めた。
【0034】
(実施例1)
タ−ゲットとして直径7インチのPt−25at%Co合金タ−ゲットを用いた。スパッタはArガスでおこなった。到達圧力は4×10-7Torr、成膜中の圧力は1.4×10-4Torrとした。イオンビ−ムの加速電圧300V、ビ−ム電流を30mAとし、このときのスパッタ粒子の運動エネルギ−は20eVであった。膜厚は約150Aとしし、スパッタ時の基板は水冷しておこなった。得られた膜組成を蛍光X線で分析した結果、タ−ゲット組成と大きなずれはなくPt−25at%Coであった。
図1に作製した膜の波長400nmにおけるカ−ル−プを示す。Hc=1.2kOe、θk=0.36deg、θkr/θks=1.0が得られ、良好な垂直磁化膜が得られた。
【0035】
(実施例2)
実施例1と同様の方法で、ビ−ム加速電圧800V、ビ−ム電流100mAとしてPtCo合金膜を作製した。膜厚は約150Aとし、このときのスパッタ粒子の運動エネルギ−は30eVであった。得られたPtCo合金膜の膜組成はPt−25at%Coであった。膜特性はHc=1.3kOe、θk=0.36deg、θkr/θks=1.0であり、良好な垂直磁化膜が得られた。
【0036】
(実施例3,4)
実施例1と同様の方法で、表1に記載の条件でKrスパッタガスでPtCo合金膜の成膜をおこなった。
【0037】
結果を表1に示す。いずれもHc=1.2〜1.5kOe、θk=0.36deg、θkr/θks=1.0の良好な垂直磁化膜が得られた。このときの膜組成はすべてPt−25at%Coであった。
【0038】
(実施例5)
実施例1と同様の方法で、表1に記載の条件でXeスパッタガスでPtCo合金膜の成膜をおこなった。
【0039】
結果を表1に示す。膜組成はPt−25at%Coであり、Hc=1.8kOe、θk=0.36deg、θkr/θks=1.0の良好な垂直磁化膜が得られた。
【0040】
【表1】

Figure 0004029991
【0041】
(実施例6)直径7インチのPtタ−ゲットとCoタ−ゲットを用い、ArスパッタガスでPt/Co合金膜を形成した。到達圧力は4×10-7Torr、成膜中の圧力は1.4×10-4Torrとした。イオンビ−ムの加速電圧300V、ビ−ム電流を30mAとし、Pt層厚1.2AとCo層厚0.4Aを交互に100周期積層した。このときのPtおよびCoのスパッタ粒子の運動エネルギ−は各々20eVと18eVであり、基板は水冷しておこなった。図2に得られた膜の低角X線回折の結果を示す。人工周期は観察されず、各層が拡散し、合金膜となっていることがわかる。図3に作製した膜の波長400nmにおけるカ−ル−プを示す。Hc=1.2kOe、θk=0.35deg、θkr/θks=1.0が得られた。
【0042】
【表2】
Figure 0004029991
【0043】
(実施例7〜11)実施例6と同様の方法で、表2に記載のスパッタガス、ビ−ム電圧、ビ−ム電流などの条件でPt/Co合金膜を形成した。
【0044】
結果を表2に示す。得られた膜の低角X線回折を調べた結果、人工周期は観察されず、合金膜となっていることが確認された。いずれも、Hc=1.0〜1.8kOe、θk=約0.35deg、θkr/θks=1.0の良好な垂直磁化膜が得られた。
【0045】
(比較例1)
実施例1と同様の方法で、表1に記載のスパッタ条件でPtCo合金膜を形成した。図4に作製した膜の波長400nmにおけるカ−ル−プを示す。θk=0.36deg、θkr/θks=1.0が得られるが、Hc=0.6kOeと保磁力が低くなる。中角X線回折ピ−クの半値幅から結晶粒径をもとめた結果、400 Aと大きかった。スパッタ粒子の運動エネルギ−が40eVと大きいために結晶粒径が大きくなり、その結果、Hcが低下した。
【0046】
(比較例2)
実施例1と同様の方法で、表1に記載のスパッタ条件でPtCo合金膜を形成した。図5に作製した膜の波長400nmにおけるカ−ル−プを示す。Hc=1.0kOe、θk=0.36degが得られるが、カ−ル−プ角形比が悪くなり、θkr/θks=0.7しか得られない。図6に実施例5と比較例2の膜の中角X線回折パタ−ンの比較を示す。いずれも面心立方構造の(111)結晶配向を示すが、比較例2のほうがピ−ク強度が低くなっている。スパッタ粒子の運動エネルギ−が10eVと低いと膜の結晶性が悪くなり垂直磁気異方性が低下したため、カ−ル−プの角形比が低下したことがわかる。
【0047】
なお、比較例1〜2で得られた膜組成はいずれもPt−25at%Coであり、実施例1〜5の膜組成と差はなかった。
(比較例3,4)実施例6と同様の方法で、表2に記載のスパッタ条件でPt/Co合金膜を形成した。低角X線回折の結果から、人工周期性は観察されず、合金膜となっていることが確認できた。得られた膜特性の結果を表2に示す。比較例1および比較例2の合金膜と同様に、スパッタ粒子の運動エネルギ−が40eVと高い場合はHcが低下し、10eVと低い場合は垂直磁気異方性やカ−ル−プの角形比が低下することがわかる。
【0048】
(比較例5)実施例8と同じスパッタ条件でPt層厚9AとCo層厚4Aを交互に100周期積層し、Pt/Co多層膜を形成した。図7に得られた膜の低角X線回折パタ−ンを示す。Pt層厚が6AまたはCo層厚が2Aを越えると、人工周期性を示す、超格子ピ−クが観察され、膜が合金膜となっていないことがわかる。得られた膜特性の結果を表2に示す。Hcは良好な特性を示すが、カ−ル−プ角形比及びθkが低下するため、特性上望ましくないことがわかる。
【0049】
(実施例12)実施例1〜11および比較例1〜5と同じ成膜条件でPtCo合金膜およびPt/Co合金膜を記録層とした光磁気ディスクを作製した。作製した光磁気ディスクの断面構造を図8に示す。
【0050】
上記光磁気ディスクは、多元イオンビ−ムスパッタ装置を用いて、以下の様に作製した。
【0051】
イオンビ−ムスパッタ装置内に、表面に光ヘッド案内溝やアドレスなどを示すピットなどをあらかじめ有するポリカ−ボネ−ト基板1をセットし、基板を回転させながら連続して膜を形成した。
【0052】
まず、Siタ−ゲットをArイオンビ−ムでスパッタし、同時に別のイオンガンで窒素イオンビ−ムアシストをすることにより第一誘電体膜2として窒化シリコンを形成した。スパッタ条件は、メインイオンガンのビ−ム電圧は1200V、ビ−ム電流は135mA、Arガス流量は10SCCMとし、アシストイオンガンのビ−ム電圧は350V、ビ−ム電流は10mA、窒素ガス流量は20SCCMとし、このときのスパッタ圧力は3.6×10-4Torrであった。窒化シリコンの膜厚は80nmとした。
【0053】
次に記録膜を形成した。記録膜の成膜は、実施例1〜11および比較例1〜5と同じ成膜条件で行った。
【0054】
次に第二誘電体膜として窒化シリコンを形成した。このときのスパッタ条件は第一誘電体膜の窒化シリコン膜と同じ条件でおこない、膜厚は100nmとした。
【0055】
さらに金属反射膜として、スパッタガスとしてArガスを、タ−ゲットにはAlタ−ゲットを使用し、スパッタガス圧1.4×10-4Torr、ビ−ム電圧1200V、ビ−ム電流135mAにてスパッタし、Al反射膜を50nm形成した。最後に、保護膜とし紫外線硬化樹脂膜を約1μm形成し、光磁気ディスクとした。
【0056】
このようにして作製したディスクに繰り返し記録再生消去をおこなって、記録再生特性と繰り返し書き換え特性を調べた。波長780nmのレ−ザ光を用い、記録周波数2.5MHz、線速5m/sで、最適記録パワ−7.2mWで記録し、再生レーザ出力1mWでC/Nを調べた。次に、記録した信号を外部磁界400Oe、消去レ−ザ光7.4mWで完全に消去した。これを多数回繰り返したときのC/Nの変化を調べた。また、従来例として、成膜粒子の運動エネルギーが低い超高真空蒸着法で作製したPt/Co多層膜を記録層に用いたディスクも作製し、同様の実験を行って繰り返し書き換え特性の比較をした。従来例におけるディスクは、記録膜以外は実施例12と同様にイオンビ−ムスパッタ装置で形成し、記録膜としてPt/Co多層膜を超高真空蒸着装置を用いて、成膜時圧力5×10-9Torr、成膜速度0.5A/sで成膜した。Pt、Coの各々の層厚はPt;1.0nm、Co;0.4nmとし、Pt、Co、Ptの順に交互に積層した。最終層はPt層で、全厚は15nmである。
【0057】
また、超高真空蒸着法で形成したPt/Co多層膜の膜特性を調べるため、ガラス基板にPt/Co多層膜のみ同じ条件で成膜した。膜特性を調べた結果、Hc=1.7kOe,θk=0.35deg,θkr/θks=1であった。また、低角X線回折で人工周期性を調べた結果、超格子ピークが観察され、設計層厚と同じ構造の多層膜が形成されていることを確認した。
【0058】
表1および表2に作製した光磁気ディスクのC/Nを示す。比較例1〜5の記録層を用いた光磁気ディスクは、記録層のHcまたはカーループ角型比が低いため、得られたC/Nは40dB以下と低かった。それに対し、本発明における実施例1〜11の記録層を用いた光磁気ディスクは、Hcが1kOe以上でかつカーループ角型比が1であるため、50dB以上の高いC/Nが得られた。
【0059】
図9に本発明の実施例1と従来例で作製して、ディスクの書き換えを繰り返したときのC/Nの変化(ΔC/N)を示す。従来ディスクにおける書き換え回数は約104回であるが、本発明における実施例1の記録膜を用いたディスクでは106回までC/Nの劣化はみられなかった。また、実施例2〜11と同条件で作製したディスクについても106回までC/Nの劣化はみられなかった。
【0060】
以上から明瞭なように、本発明によれば、基板温度を加熱することなくHcが1kOe以上でかつカ−ル−プの角形比が1であるPtCo合金垂直磁化膜が得られるため、ポリカ−ボネ−トなどの高分子基板上でも高いC/Nとかつ優れた書き換え繰り返し特性を有する高密度光磁気ディスクを提供することができる。
【図面の簡単な説明】
【図1】実施例1の記録膜のカ−ル−プ(λ=400nm)を示す図である。
【図2】実施例6の記録膜の低角X線回折パタ−ンを示す図である。
【図3】実施例6の記録膜のカ−ル−プ(λ=400nm)を示す図である。
【図4】比較例1の記録膜のカ−ル−プ(λ=400nm)を示す図である。
【図5】比較例2の記録膜のカ−ル−プ(λ=400nm)を示す図である。
【図6】比較例2と実施例5の記録膜の中角X線回折パタ−ンを示す図である。
【図7】比較例5の記録膜の低角X線回折パタ−ンを示す図である。
【図8】実施例12の光磁気ディスクの断面構造を示す模式図である。
【図9】実施例12と従来例の書き換え繰り返し特性を示す図である。
【符号の説明】
1 ディスク基板
2 第一誘電体膜
3 記録膜
4 第二誘電体膜
5 金属反射膜
6 保護膜[0001]
The present invention relates to a method for manufacturing a magneto-optical recording medium using a PtCo alloy film as a recording film. In the present specification, a uniform alloy film or the like obtained by sputtering a PtCo alloy target or the like is referred to as a “PtCo alloy film”, and Pt and Co are alternately stacked. A uniform PtCo alloy film formed by interfacial diffusion of Pt and Co is referred to as a “Pt / Co alloy film”, and Pt and Co are alternately stacked to form a Pt / Co periodic non-uniform film as a “Pt / Co multilayer. It is called “membrane”.
[0002]
[Prior art]
Conventionally, rare earth-transition metal amorphous alloy thin films such as TbFeCo have been used as magneto-optical recording materials. As means for realizing higher density of magneto-optical recording, a reduction in the wavelength of a laser used for a light source has been studied, and recording / reproduction with a semiconductor laser having a wavelength of 670 nm is being realized. In addition, room temperature oscillation of a semiconductor laser of 400 to 500 nm band has been confirmed. However, since TbFeCo and the like conventionally used have a low rotation angle of 0.2 ° or less in the short wavelength region, a material having a large rotation angle in the short wavelength region is desired.
[0003]
As a material having a large Kerr rotation angle in a short wavelength region, a multilayer film in which Pt and / or Pd layers and Co layers are alternately stacked is attracting attention as an alternative. However, although the Kerr rotation angle is as large as 0.3 to 0.4 °, one of the problems for putting a magneto-optical disk using such a multilayer film as a recording film to practical use is repeated rewriting characteristics. Magneto-optical disks using rare earth transition metal alloy films that are currently in practical use have reached the number of rewrites of 10 6 times or more. However, when the Pt / Co multilayer film is rewritten many times, the perpendicular magnetic anisotropy is reduced due to the thermal effect of the laser beam irradiated, and diffusion at the interface between the Pt layer and the Co layer of the multilayer film. The squareness ratio of the loop is deteriorated. Therefore, the rewrite frequency is known to be the most 10 4 times (J.Magn.Magn.Mater.126,587 (1993)).
[0004]
On the other hand, it has been reported that a PtCo alloy film produced by a vacuum vapor deposition method is used as a recording film (J. Magn. Soc. Jpn., Vol. 17, Supplement No. S1 (1993), p140). Since the PtCo alloy film has a Kerr rotation angle equal to or greater than that of the Pt / Co multilayer film and is not a multilayer film, the PtCo alloy film has characteristics superior to the Pt / Co multilayer film in the number of repeated rewrites. However, since the deposited particle energy when forming a film by vacuum deposition is as low as 0.1 to 0.3 eV, the required characteristics as a magneto-optical recording medium are required unless the substrate temperature during film formation is 200 ° C. or higher. A perpendicular magnetization film having a curl squareness ratio (θkr / θks) of 1.0 and a coercive force (Hc) of 1 kOe or more cannot be obtained. For this reason, there is a drawback that a polymer resin substrate such as polycarbonate having low heat resistance cannot be used.
[0005]
[Problems to be solved by the invention]
The present invention provides a magneto-optical recording medium having a PtCo alloy film having a curl squareness ratio of 1.0 and a high coercive force of 1 kOe or more as a recording layer without heating the substrate temperature during film formation. The object is to provide a method of manufacturing.
[0006]
[Means for Solving the Problems]
Such an object is achieved by the present inventions (1) to (5) below.
[0007]
(1) In a method of manufacturing a magneto-optical recording medium using a PtCo alloy film as a recording film, the PtCo alloy film is formed of film-forming particles having a kinetic energy of 15 to 30 eV. A method for manufacturing a medium.
[0008]
(2) The method for producing a magneto-optical recording medium according to (1), wherein the PtCo alloy film has a Pt content of 50 to 80 at% and a total thickness of 5 nm to 100 nm.
[0009]
(3) In a method for manufacturing a magneto-optical recording medium using a Pt / Co alloy film as a recording film, Pt having a kinetic energy of 15 to 30 eV and a layer thickness dPt of 1A to 6A Production of a magneto-optical recording medium characterized in that Pt and Co are interfacially diffused to form a uniform Pt / Co alloy film by alternately laminating Co having a layer thickness dCo of 0.3A to 2A Method.
[0010]
(4) In the Pt / Co alloy film, the layer thickness ratio dPt / dCo between the Pt layer and the Co layer is 2 to 4, and the total thickness is 5 nm to 100 nm. A method for manufacturing a magneto-optical recording medium.
[0011]
(5) The method for producing a magneto-optical recording medium according to any one of (1) to (4), wherein the PtCo alloy film is formed by an ion beam sputtering method.
[0012]
[Action and effect]
In the present invention, when manufacturing a magneto-optical recording medium using a PtCo alloy film as a recording film, the kinetic energy of the film forming particles of Pt and Co during film formation is in the range of 15 to 30 eV. By setting the energy of the deposited particles to 15 to 30 eV, a PtCo alloy film having a high coercive force with a squareness ratio of 1.0 and 1 kOe or more can be obtained without heating the substrate during film formation. can get. As a result, it is possible to obtain a magneto-optical recording medium having a PtCo alloy film having a high C / N and 10 6 times or more rewrite characteristics as a recording layer on a polymer resin substrate such as a polycarbonate substrate. It becomes.
[0013]
Conventionally, a PtCo alloy film has been studied as a material for the next generation magneto-optical recording film because it has a large perpendicular magnetic anisotropy and a large Kerr rotation angle at a short wavelength. However, since the energy of vapor deposition or sputtered particles is low in the vacuum vapor deposition method or the normal sputtering method, a good perpendicular magnetic film cannot be obtained unless the substrate temperature during film formation is heated to 200 ° C. or more. A curl having a required high coercive force and a squareness ratio of 1 cannot be obtained. For this reason, a polymer resin substrate having a heat resistant temperature of 150 ° C. or less such as polycarbonate could not be used. However, according to the present invention, a curl having a squareness ratio of 1 with a high coercive force without heating the substrate. Therefore, it becomes possible to use a polymer resin substrate having low heat resistance.
[0014]
[Specific configuration]
Hereinafter, a specific configuration of the present invention will be described in detail.
[0015]
In the method for manufacturing a magneto-optical recording medium according to the present invention, the kinetic energy of particles during film formation is set to 15 to 30 eV, and a PtCo alloy film is formed on the substrate. Specifically, the crystallinity deteriorates when it is less than 15 eV, the perpendicular magnetic anisotropy decreases, the squareness ratio of the curve deteriorates, and when it exceeds 30 eV, the crystal grain size increases, so that the crystal grain size increases. Magnetic force decreases. Kinetic energy can be measured by the calorimeter method. A calorimeter composed of a copper thin plate and a thermocouple is disposed in the vicinity of the substrate and can be calculated from the temperature rise, the number of flying particles, and the condensation energy of the film.
[0016]
In the present invention, methods such as sputtering and vapor deposition are used. In the case of the sputtering method, the film can be formed by sputtering a PtCo alloy target having a predetermined composition or by simultaneously sputtering Pt and Co targets. In the case of the vapor deposition method, Pt and Co may be vapor-deposited simultaneously. The film composition is preferably such that the Pt content is 50 to 80 at%. If the Pt content is less than 50 at%, a perpendicular magnetization film cannot be obtained. Further, if it exceeds 80 at%, the Kerr rotation angle becomes low, so that a large reproduction output cannot be obtained when used as a magneto-optical recording film. It can be obtained by controlling the target composition, sputtering gas type, input power during film formation, and film formation speed.
[0017]
The PtCo film has other elements other than Pt and Co, for example, 3d transition elements such as Fe, Sc, Ti, V, Cr, Mn, Ni, Cu, and Zn; Pd, Y, Zr, Nb, Mo, 4d transition elements such as Ru, Rh, Ag; 5d transition elements such as Au, Hf, Ta, W, Re, Os, Ir; Gd, Tb, Dy, Ho, Er, Yb, Lu, La, Ce, Pr, Rare earth elements such as Nd, Sm and Eu; IIIB group elements such as B, Al, Ga and In; IVB group elements such as C, Si and Ge; VB group elements such as N, P and Bi; it can.
[0018]
When such other elements are added to the PtCo film, the content of the other elements is 30 at% or less, preferably 20 at% or less. This is because if the amount exceeds 30 at%, the car rotation angle greatly decreases. In order to add such other elements by sputtering, an alloy target of other elements and PtCo or a composite target of other elements and Pt target or Co target may be used. Further, in order to add by an electron beam vapor deposition method or a resistance heating vapor deposition method, it is formed using an alloy base material of another element and Pt and / or Co, or another element, Pt, Co base material is formed. What is necessary is just to evaporate with a separate crucible and a heating boat, respectively.
[0019]
In the present invention, it can also be formed by alternately stacking Pt layers and Co layers. This is because when alternating lamination is performed with high energy particles of 15 to 30 eV, diffusion occurs at the interface between the Pt layer and the Co layer, so that an alloy film can be obtained. Conventionally, a Pt / Co multilayer film is produced by an ultra-high vacuum deposition method or a normal sputtering method, but the kinetic energy of the deposited particles in the vacuum deposition method is 1 eV or less, and the motion of the sputtered particles in the sputtering method. Since the energy is as low as several eV, an alloy film cannot be formed by interfacial diffusion. In the present invention, Pt layer thickness 6A from 1A, Co layer thickness is set in the range of 2 A from 0.3 A. Here, the layer thickness is an imaginary film thickness obtained from the product of the film formation rate and the film formation time in order to express the stacking amount, not the actual film thickness. If the Pt layer thickness exceeds 6A, a uniform alloy film cannot be obtained due to interfacial diffusion. This is not preferable, and if it is less than 1A, it is difficult to control the layer thickness with good reproducibility. Further, if the Co layer thickness exceeds 2 A, a uniform alloy film cannot be obtained by interfacial diffusion, and if it is less than 0.3 A, it becomes difficult to control the layer thickness with good reproducibility. Furthermore, the layer thickness ratio dPt / dCo between the Pt layer and the Co layer is preferably 2 to 4. This is because θkr / θks decreases when dPt / dCo is less than 2, and θk decreases when dPt / dCo is greater than 4. The total thickness of the recording film in the present invention is set in the range of 5 nm to 100 nm. If it is less than 5 nm, θk is lowered, which is not preferable. On the other hand, if it exceeds 100 nm, θkr / θks is not preferable. The film forming rate is preferably 0.5 A / s or less. This is because if it exceeds 0.5 A / s, the control of the layer thickness becomes difficult, and reproducibility cannot be obtained.
[0020]
Even in the case of forming by alternately stacking Pt and Co, the above-mentioned 3d transition element, 4d transition element, 5d transition element, rare earth element, group IIIB element, group IVB element, group VB element, etc. are also included. It can also be made.
[0021]
The method for producing a magneto-optical recording medium according to the present invention includes an ion beam sputtering method, an ion beam deposition method, an ion plating method, and a cluster ion beam method from the viewpoint of increasing the kinetic energy of film-forming particles. Such a method can be used.
[0022]
In particular, the ion beam sputtering method is used because most of the film formation parameters such as the particle energy to be sputtered and the film formation speed can be controlled independently and strictly by an inert gas ion beam such as Ar, Kr, or Xe. preferable.
[0023]
When the film is formed by ion beam sputtering, an inert gas such as Ar, Kr, or Xe can be used as the sputtering gas. The energy of the sputtered particles does not depend on the ion current, that is, the film forming rate, increases linearly as the ion energy increases, and changes depending on the ion species. The Co or Pt sputtered particle energy when the ion beam acceleration voltage is changed to 200 to 1500 V is 20 to 40 eV when Ar ions are used, 15 to 30 eV when Kr ions are used, and 10 when Xe ions are used. It can be controlled to 10 to 40 eV by controlling ion species and ion energy.
[0024]
The PtCo alloy film obtained as described above has a squareness ratio of 1 and a high coercive force even if the substrate is not heated at the time of film formation. Even when a film is formed on a polymer resin substrate such as the above, excellent film characteristics can be obtained. As a result, by using these films as the recording layer of the magneto-optical recording medium, a high reproduction output and a rewrite characteristic of 10 6 times or more can be obtained.
[0025]
【Example】
Hereinafter, specific examples of the present invention will be shown to describe the present invention in more detail.
[0026]
A PtCo alloy film and a Pt / Co alloy film were formed on a Corning 7059 (trade name) glass substrate by ion beam sputtering under various film formation conditions while rotating the substrate, and used as measurement samples. At this time, a sample having a desired film thickness was obtained by obtaining a film formation rate under predetermined film formation conditions in advance and controlling the sputtering time.
[0027]
The kinetic energy of the sputtered particles was also determined by the calorimeter method. The calorimeter was composed of a thin copper plate and a thermocouple for calorimetric measurement, and was installed at the substrate holder position. Calculate the total heat per unit time from the initial temperature rise measured by the calorimeter, and subtract the heat of condensation of the film from the value obtained by dividing the total heat by the number of sputtered particles that reach the calorimeter. The value obtained was used as the kinetic energy of the sputtered particles.
[0028]
The following measurements were performed on each sample.
[0029]
The film composition was measured by fluorescent X-ray analysis.
[0030]
Coercive force, car rotation angle The curl at a wavelength of 400 nm was measured using a JASCO Corp. car effect measuring device (K-250), and then the coercive force Hc and the car rotation angle θk were determined. . The applied magnetic field was 5 kOe, and light was incident from the film surface side.
[0031]
It calculated | required from the half value width of the (111) plane peak of the face-centered cubic structure by the medium angle X-ray diffraction using the average crystal grain size CuKα ray.
[0032]
The (111) peak strength of the face-centered cubic structure was determined by medium angle X-ray diffraction using crystal oriented CuKα rays.
[0033]
It was determined from the superlattice peak position by small-angle X-ray diffraction using a multilayer artificial periodic CuKα ray.
[0034]
Example 1
A 7-inch diameter Pt-25 at% Co alloy target was used as the target. Sputtering was performed with Ar gas. The ultimate pressure was 4 × 10 −7 Torr, and the pressure during film formation was 1.4 × 10 −4 Torr. The acceleration voltage of the ion beam was 300 V, the beam current was 30 mA, and the kinetic energy of the sputtered particles at this time was 20 eV. The film thickness was about 150 A, and the substrate during sputtering was water-cooled. As a result of analyzing the obtained film composition by fluorescent X-ray, it was Pt-25 at% Co with no significant deviation from the target composition.
FIG. 1 shows the curl of the produced film at a wavelength of 400 nm. Hc = 1.2 kOe, θk = 0.36 deg, θkr / θks = 1.0 were obtained, and a good perpendicular magnetic film was obtained.
[0035]
(Example 2)
In the same manner as in Example 1, a PtCo alloy film was produced with a beam acceleration voltage of 800 V and a beam current of 100 mA. The film thickness was about 150 A, and the kinetic energy of the sputtered particles at this time was 30 eV. The film composition of the obtained PtCo alloy film was Pt-25 at% Co. The film characteristics were Hc = 1.3 kOe, θk = 0.36 deg, θkr / θks = 1.0, and a good perpendicular magnetization film was obtained.
[0036]
(Examples 3 and 4)
In the same manner as in Example 1, a PtCo alloy film was formed with Kr sputtering gas under the conditions shown in Table 1.
[0037]
The results are shown in Table 1. In all cases, good perpendicular magnetic films with Hc = 1.2 to 1.5 kOe, θk = 0.36 deg, and θkr / θks = 1.0 were obtained. The film composition at this time was all Pt-25 at% Co.
[0038]
(Example 5)
In the same manner as in Example 1, a PtCo alloy film was formed with Xe sputtering gas under the conditions described in Table 1.
[0039]
The results are shown in Table 1. A good perpendicular magnetic film having a film composition of Pt-25 at% Co, Hc = 1.8 kOe, θk = 0.36 deg, and θkr / θks = 1.0 was obtained.
[0040]
[Table 1]
Figure 0004029991
[0041]
(Example 6) A Pt / Co alloy film was formed by Ar sputtering gas using a Pt target and a Co target having a diameter of 7 inches. The ultimate pressure was 4 × 10 −7 Torr, and the pressure during film formation was 1.4 × 10 −4 Torr. The ion beam acceleration voltage was 300 V, the beam current was 30 mA, and Pt layer thickness 1.2 A and Co layer thickness 0.4 A were alternately stacked for 100 periods. The kinetic energy of the sputtered particles of Pt and Co at this time was 20 eV and 18 eV, respectively, and the substrate was cooled with water. FIG. 2 shows the results of low-angle X-ray diffraction of the obtained film. It can be seen that the artificial period is not observed and each layer diffuses to form an alloy film. FIG. 3 shows the curl of the produced film at a wavelength of 400 nm. Hc = 1.2 kOe, θk = 0.35 deg, θkr / θks = 1.0 were obtained.
[0042]
[Table 2]
Figure 0004029991
[0043]
(Examples 7 to 11) Pt / Co alloy films were formed in the same manner as in Example 6 under conditions such as sputtering gas, beam voltage, and beam current shown in Table 2.
[0044]
The results are shown in Table 2. As a result of examining low-angle X-ray diffraction of the obtained film, it was confirmed that an artificial period was not observed and an alloy film was formed. In any case, a good perpendicular magnetic film with Hc = 1.0 to 1.8 kOe, θk = about 0.35 deg, and θkr / θks = 1.0 was obtained.
[0045]
(Comparative Example 1)
A PtCo alloy film was formed under the sputtering conditions shown in Table 1 in the same manner as in Example 1. FIG. 4 shows the curl of the produced film at a wavelength of 400 nm. θk = 0.36 deg and θkr / θks = 1.0 are obtained, but the coercive force is low as Hc = 0.6 kOe. As a result of obtaining the crystal grain size from the half width of the medium angle X-ray diffraction peak, it was as large as 400 A. Since the kinetic energy of sputtered particles was as large as 40 eV, the crystal grain size increased, and as a result, Hc decreased.
[0046]
(Comparative Example 2)
A PtCo alloy film was formed under the sputtering conditions shown in Table 1 in the same manner as in Example 1. FIG. 5 shows the curl of the produced film at a wavelength of 400 nm. Although Hc = 1.0 kOe and θk = 0.36 deg are obtained, the curl squareness ratio is deteriorated, and only θkr / θks = 0.7 is obtained. FIG. 6 shows a comparison of medium angle X-ray diffraction patterns of the films of Example 5 and Comparative Example 2. Both show the (111) crystal orientation of the face-centered cubic structure, but the peak strength of Comparative Example 2 is lower. It can be seen that when the kinetic energy of the sputtered particles is as low as 10 eV, the crystallinity of the film is deteriorated and the perpendicular magnetic anisotropy is lowered, so that the squareness ratio of the curve is lowered.
[0047]
The film compositions obtained in Comparative Examples 1 and 2 were all Pt-25 at% Co, and there was no difference from the film compositions of Examples 1 to 5.
(Comparative Examples 3 and 4) A Pt / Co alloy film was formed under the sputtering conditions shown in Table 2 in the same manner as in Example 6. From the results of low-angle X-ray diffraction, no artificial periodicity was observed, and it was confirmed that the film was an alloy film. Table 2 shows the results of the obtained film characteristics. Similarly to the alloy films of Comparative Example 1 and Comparative Example 2, when the kinetic energy of the sputtered particles is as high as 40 eV, Hc decreases. When the kinetic energy of the sputtered particles is as low as 10 eV, the perpendicular magnetic anisotropy and the square ratio of the curve It turns out that falls.
[0048]
(Comparative Example 5) Under the same sputtering conditions as in Example 8, Pt layer thickness 9A and Co layer thickness 4A were alternately laminated for 100 periods to form a Pt / Co multilayer film . FIG. 7 shows a low angle X-ray diffraction pattern of the obtained film. When the Pt layer thickness exceeds 6 A or the Co layer thickness exceeds 2 A, a superlattice peak exhibiting artificial periodicity is observed, indicating that the film is not an alloy film. Table 2 shows the results of the obtained film characteristics. Although Hc shows good characteristics, it can be seen that the curl squareness ratio and θk are lowered, which is undesirable in terms of characteristics.
[0049]
Example 12 Magneto-optical disks having a PtCo alloy film and a Pt / Co alloy film as recording layers were prepared under the same film forming conditions as in Examples 1 to 11 and Comparative Examples 1 to 5. A cross-sectional structure of the produced magneto-optical disk is shown in FIG.
[0050]
The magneto-optical disk was produced as follows using a multi-element ion beam sputtering apparatus.
[0051]
In the ion beam sputtering apparatus, a polycarbonate substrate 1 having optical head guide grooves and pits indicating addresses on the surface was set in advance, and a film was continuously formed while rotating the substrate.
[0052]
First, silicon nitride was formed as the first dielectric film 2 by sputtering an Si target with an Ar ion beam and simultaneously performing nitrogen ion beam assist with another ion gun. The sputtering conditions are: main ion gun beam voltage 1200V, beam current 135mA, Ar gas flow rate 10SCCM, assist ion gun beam voltage 350V, beam current 10mA, nitrogen gas flow rate 20SCCM. The sputtering pressure at this time was 3.6 × 10 −4 Torr. The film thickness of silicon nitride was 80 nm.
[0053]
Next, a recording film was formed. The recording film was formed under the same film forming conditions as in Examples 1 to 11 and Comparative Examples 1 to 5.
[0054]
Next, silicon nitride was formed as a second dielectric film. The sputtering conditions at this time were the same as the silicon nitride film of the first dielectric film, and the film thickness was 100 nm.
[0055]
Further, Ar gas is used as the sputtering gas as the metal reflection film, Al target is used as the target, the sputtering gas pressure is 1.4 × 10 −4 Torr, the beam voltage is 1200 V, and the beam current is 135 mA. Then, an Al reflective film was formed to 50 nm. Finally, an ultraviolet curable resin film having a thickness of about 1 μm was formed as a protective film to obtain a magneto-optical disk.
[0056]
Recording and reproducing / erasing was repeatedly performed on the disc thus manufactured, and recording / reproducing characteristics and repeated rewriting characteristics were examined. Using a laser beam having a wavelength of 780 nm, recording was performed at an optimum recording power of 7.2 mW at a recording frequency of 2.5 MHz, a linear velocity of 5 m / s, and C / N was examined at a reproduction laser output of 1 mW. Next, the recorded signal was completely erased with an external magnetic field of 400 Oe and an erasing laser beam of 7.4 mW. The change of C / N when this was repeated many times was investigated. In addition, as a conventional example, a disk using a Pt / Co multilayer film produced by an ultra-high vacuum deposition method in which the kinetic energy of film-forming particles is low as a recording layer is also produced, and a similar experiment is performed to compare repeated rewriting characteristics. did. The disk in the conventional example was formed by an ion beam sputtering apparatus as in Example 12 except for the recording film, and a Pt / Co multilayer film was used as the recording film using an ultrahigh vacuum deposition apparatus, and the film formation pressure was 5 × 10 −. The film was formed at 9 Torr and a film formation rate of 0.5 A / s. The layer thicknesses of Pt and Co were Pt; 1.0 nm, Co; 0.4 nm, and the layers were alternately stacked in the order of Pt, Co, and Pt. The final layer is a Pt layer with a total thickness of 15 nm.
[0057]
Further, in order to examine the film characteristics of the Pt / Co multilayer film formed by the ultra-high vacuum deposition method, only the Pt / Co multilayer film was formed on the glass substrate under the same conditions. As a result of investigating the film characteristics, Hc = 1.7 kOe, θk = 0.35 deg, θkr / θks = 1. Further, as a result of examining the artificial periodicity by low-angle X-ray diffraction, a superlattice peak was observed, and it was confirmed that a multilayer film having the same structure as the design layer thickness was formed.
[0058]
Tables 1 and 2 show the C / N of the magneto-optical disks produced. In the magneto-optical disks using the recording layers of Comparative Examples 1 to 5, since the Hc or Kerr loop squareness ratio of the recording layers was low, the obtained C / N was as low as 40 dB or less. On the other hand, the magneto-optical disk using the recording layers of Examples 1 to 11 according to the present invention has a high C / N of 50 dB or more because Hc is 1 kOe or more and the Kerr loop squareness ratio is 1.
[0059]
FIG. 9 shows the change in C / N (ΔC / N) when the disk was rewritten repeatedly in Example 1 of the present invention and the conventional example. The number of times of rewriting in the conventional disk is about 10 4 times, but in the disk using the recording film of Example 1 in the present invention, the C / N deterioration was not observed up to 10 6 times. In addition, C / N degradation was not observed up to 10 6 times for the disks produced under the same conditions as in Examples 2 to 11.
[0060]
As is clear from the above, according to the present invention, a PtCo alloy perpendicular magnetization film having Hc of 1 kOe or more and a curl squareness ratio of 1 can be obtained without heating the substrate temperature. It is possible to provide a high-density magneto-optical disk having a high C / N and excellent rewriting repeatability even on a polymer substrate such as a bonnet.
[Brief description of the drawings]
FIG. 1 is a diagram showing a curl (λ = 400 nm) of a recording film of Example 1. FIG.
2 is a diagram showing a low angle X-ray diffraction pattern of a recording film of Example 6. FIG.
3 is a diagram showing a curl (λ = 400 nm) of a recording film of Example 6. FIG.
4 is a graph showing a curl (λ = 400 nm) of a recording film of Comparative Example 1. FIG.
5 is a diagram showing a curl (λ = 400 nm) of a recording film of Comparative Example 2. FIG.
6 is a diagram showing medium angle X-ray diffraction patterns of recording films of Comparative Example 2 and Example 5. FIG.
7 is a view showing a low angle X-ray diffraction pattern of a recording film of Comparative Example 5. FIG.
8 is a schematic diagram showing a cross-sectional structure of a magneto-optical disk of Example 12. FIG.
FIG. 9 is a diagram showing rewrite repetition characteristics of Example 12 and a conventional example.
[Explanation of symbols]
1 Disc substrate 2 First dielectric film 3 Recording film 4 Second dielectric film 5 Metal reflective film 6 Protective film

Claims (5)

PtCo合金膜を記録膜とする光磁気記録媒体の製造方法において、15〜30eVの大きさの運動エネルギ−を有する成膜粒子でPtCo合金膜を形成することを特徴とする光磁気記録媒体の製造方法。  In a method of manufacturing a magneto-optical recording medium using a PtCo alloy film as a recording film, the PtCo alloy film is formed of film-forming particles having a kinetic energy of 15 to 30 eV. Method. 前記PtCo合金膜において、Pt含有量が50〜80at%であり、さらに全厚が5nmから100nmであることを特徴とする請求項1記載の光磁気記録媒体の製造方法。2. The method of manufacturing a magneto-optical recording medium according to claim 1, wherein the PtCo alloy film has a Pt content of 50 to 80 at% and a total thickness of 5 to 100 nm. PtCo合金膜を記録膜とする光磁気記録媒体の製造方法において、15〜30eVの大きさの運動エネルギ−を有する成膜粒子で、層厚dPtが1Aから6AであるPt及び層厚dCoが0.3Aから2AであるCoを交互に積層することにより、Pt及びCoが互いに界面拡散して均一なPtCo合金膜を形成することを特徴とする光磁気記録媒体の製造方法。In a method of manufacturing a magneto-optical recording medium using a Pt / Co alloy film as a recording film, Pt having a kinetic energy of 15 to 30 eV and a layer thickness dPt of 1A to 6A and a layer thickness dCo A method of manufacturing a magneto-optical recording medium, wherein Pt and Co are interfacially diffused to form a uniform Pt / Co alloy film by alternately laminating Co having a thickness of 0.3A to 2A. 前記PtCo合金膜において、Pt層とCo層の層厚比dPt/dCoが2から4であり、さらに全厚が5nmから100nmであることを特徴とする請求項3記載の光磁気記録媒体の製造方法。4. The magneto-optical recording medium according to claim 3, wherein in the Pt / Co alloy film, the layer thickness ratio dPt / dCo between the Pt layer and the Co layer is 2 to 4, and the total thickness is 5 nm to 100 nm. Manufacturing method. 前記PtCo合金膜をイオンビ−ムスパッタ法で形成することを特徴とする請求項1〜4のいずれかに記載の光磁気記録媒体の製造方法。  5. The method of manufacturing a magneto-optical recording medium according to claim 1, wherein the PtCo alloy film is formed by an ion beam sputtering method.
JP07371495A 1995-03-30 1995-03-30 Method for manufacturing magneto-optical recording medium Expired - Fee Related JP4029991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07371495A JP4029991B2 (en) 1995-03-30 1995-03-30 Method for manufacturing magneto-optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07371495A JP4029991B2 (en) 1995-03-30 1995-03-30 Method for manufacturing magneto-optical recording medium

Publications (2)

Publication Number Publication Date
JPH08273227A JPH08273227A (en) 1996-10-18
JP4029991B2 true JP4029991B2 (en) 2008-01-09

Family

ID=13526174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07371495A Expired - Fee Related JP4029991B2 (en) 1995-03-30 1995-03-30 Method for manufacturing magneto-optical recording medium

Country Status (1)

Country Link
JP (1) JP4029991B2 (en)

Also Published As

Publication number Publication date
JPH08273227A (en) 1996-10-18

Similar Documents

Publication Publication Date Title
JP3042878B2 (en) Method for sputtering multilayer body for magneto-optical recording
JP2561130B2 (en) Magneto-optical recording medium
JP4029991B2 (en) Method for manufacturing magneto-optical recording medium
JPH056820A (en) Magneto-optical recording medium
US4876159A (en) Magnetrooptical recording media and method of preparing them
JP2526615B2 (en) Magneto-optical recording medium
JP3566779B2 (en) Magneto-optical recording medium
JPH02265052A (en) Production of optical recording medium
JPH0757312A (en) Magneto-optical thin film and magneto-optical recording medium
KR100194132B1 (en) Magneto-optical Layers and Magneto-optical Recording Media
US6096446A (en) Magnetooptical recording medium and method of producing the same
JPH0619859B2 (en) Magneto-optical recording medium
CA2069056C (en) Magneto-optical storage device and manufacturing method thereof
JPH05182262A (en) Magneto-optical recording medium
WO1996008008A1 (en) Magnetooptic thin film, magnetooptic recording medium and production method thereof
JPH0660452A (en) Magneto-optical recording medium
JPH08213236A (en) Magnetic multilayered film, manufacture thereof and photomagnetic recording medium
JPH04111302A (en) Artificial lattice film
JP2876062B2 (en) Magnetic film
JP2829321B2 (en) Magneto-optical recording medium
JPH05234053A (en) Perpendicularly magnetizable film
JPH05174438A (en) Optical recording medium
JPS63285739A (en) Production of thin film for magneto-optical recording and reproduction
JPH056589A (en) Production of magneto-optical recording medium
JPS6177316A (en) Manufacture of thin film material for reproducing magneto-optical record

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees