JP2903073B2 - Method for producing ethylene - Google Patents

Method for producing ethylene

Info

Publication number
JP2903073B2
JP2903073B2 JP7190185A JP19018595A JP2903073B2 JP 2903073 B2 JP2903073 B2 JP 2903073B2 JP 7190185 A JP7190185 A JP 7190185A JP 19018595 A JP19018595 A JP 19018595A JP 2903073 B2 JP2903073 B2 JP 2903073B2
Authority
JP
Japan
Prior art keywords
catalyst
ethane
ethylene
reaction
producing ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7190185A
Other languages
Japanese (ja)
Other versions
JPH0938490A (en
Inventor
哲彦 小林
正毅 春田
佳子 中原
尚功 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP7190185A priority Critical patent/JP2903073B2/en
Publication of JPH0938490A publication Critical patent/JPH0938490A/en
Application granted granted Critical
Publication of JP2903073B2 publication Critical patent/JP2903073B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、エタンと酸素とを
反応させてエチレンを製造する方法に関する。
[0001] The present invention relates to a method for producing ethylene by reacting ethane with oxygen.

【0002】[0002]

【従来の技術】エチレンは、有機化学製品の約4割の原
料となる基幹化学原料である。飽和炭化水素であるエタ
ンを化学原料として利用するためには、まずエチレンに
転換する必要がある。この場合、エタンを酸素と反応さ
せて直接エチレンを製造することができれば、簡便で望
ましい。しかしながら、エタンと酸素との反応において
は、通常燃焼反応が優先して起こり、CO2(炭酸ガ
ス)およびCO(一酸化炭素)が形成される。
2. Description of the Related Art Ethylene is a basic chemical raw material which is a raw material for about 40% of organic chemical products. In order to use ethane, which is a saturated hydrocarbon, as a chemical raw material, it must first be converted to ethylene. In this case, if ethylene can be directly produced by reacting ethane with oxygen, it is convenient and desirable. However, in the reaction between ethane and oxygen, a combustion reaction usually takes precedence, and CO 2 (carbon dioxide) and CO (carbon monoxide) are formed.

【0003】これまでにも、Vを含む複合酸化物が、エ
タンからエチレンを直接製造する触媒として報告されて
いる(小安、PETROTECH、1994)。しかしながら、この
方法では、反応ガス中のエタン濃度を10%以上とし、
エタン転化率を1%以上にすれば、エチレンの選択率が
60%以下となってしまうため、実用化には適していな
い。
[0003] Heretofore, complex oxides containing V have been reported as catalysts for directly producing ethylene from ethane (Koyasu, PETROTECH, 1994). However, in this method, the ethane concentration in the reaction gas is set to 10% or more,
If the ethane conversion is 1% or more, the selectivity of ethylene becomes 60% or less, which is not suitable for practical use.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明は、反
応ガス中のエタン濃度を10%以上とし且つエタン転化
率を1%以上としても、エチレンの選択率が60%を上
回る新たなエチレンの製造技術を提供することを主な目
的とする。
Accordingly, the present invention provides a new ethylene having a selectivity of ethylene exceeding 60% even when the ethane concentration in the reaction gas is 10% or more and the ethane conversion is 1% or more. Its main purpose is to provide manufacturing technology.

【0005】[0005]

【課題を解決するための手段】本発明者は、上記のよう
な課題を解決するために研究を進めた結果、(イ)Sn
がエタンの酸化反応において、低温域(300〜400℃)か
ら反応活性を示すこと、(ロ)しかしながら、Snを用
いたエタンの酸化反応では、二酸化炭素が主生成物とな
ること、(ハ)これに対し、Wを用いたエタンの酸化反
応では、エチレンが主生成物となること、(ニ)低温域
で反応活性を示すSnとエチレン選択性の高いWとを組
み合わせた触媒が、エタンの酸化反応において比較的穏
和な条件下でも高い活性を示し、エチレンの選択性も高
く、且つ高い活性を長時間維持することなどを見出し
た。
Means for Solving the Problems The present inventor has conducted research to solve the above problems, and as a result, (a) Sn
Shows the activity in the oxidation reaction of ethane from a low temperature range (300 to 400 ° C.); (b) However, in the oxidation reaction of ethane using Sn, carbon dioxide becomes a main product; (c) On the other hand, in the oxidation reaction of ethane using W, ethylene is a main product, and (d) a catalyst combining Sn exhibiting a reaction activity in a low temperature range and W having high ethylene selectivity is a catalyst for ethane. It has been found that high activity is exhibited even under relatively mild conditions in the oxidation reaction, ethylene selectivity is high, and high activity is maintained for a long time.

【0006】本発明は、上記のような新たな知見に基づ
いて完成されたものであり、下記のエチレン製造用触媒
及びエチレン製造方法を提供するものである; 1.SnとWとを含む酸化物を触媒活性成分とすること
を特徴とする、エタンの酸化によるエチレン製造用触
媒。
The present invention has been completed on the basis of the above-mentioned new findings, and provides the following catalyst for ethylene production and a method for producing ethylene; A catalyst for producing ethylene by oxidation of ethane, characterized by using an oxide containing Sn and W as a catalytically active component.

【0007】2.触媒活性成分が、SnとWとをSn:
W=1〜99:99〜1(原子比)の割合で含む上記項
1に記載のエタンの酸化によるエチレン製造用触媒。
[0007] 2. The catalytically active component converts Sn and W to Sn:
Item 3. The catalyst for producing ethylene by oxidation of ethane according to Item 1, wherein W is 1 to 99:99 to 1 (atomic ratio).

【0008】3.SnとWとを含む酸化物を触媒活性成
分とする触媒存在下にエタンと酸素とを反応させること
を特徴とするエチレンの製造方法。
[0008] 3. Catalytically activates oxides containing Sn and W
1. A process for producing ethylene, comprising reacting ethane with oxygen in the presence of a catalyst to make up ethylene oxide.

【0009】4.アルミナ、シリカ、チタニア、マグネ
シア、ジルコニアおよびゼオライトの少なくとも1種か
らなる担体にSnとWとを含む酸化物からなる触媒活性
成分を担持させて使用する上記項3に記載のエチレンの
製造方法。
4. Item 4. The process for producing ethylene according to Item 3, wherein a catalytically active component comprising an oxide containing Sn and W is carried on a carrier comprising at least one of alumina, silica, titania, magnesia, zirconia and zeolite.

【0010】本発明におけるエチレンの生成反応は次式
で示される。
The reaction for producing ethylene in the present invention is represented by the following formula.

【0011】C26+1/2O2→C24+H2O SnおよびWは、それぞれ各種の触媒における助触媒と
して用いられた例はあるが、両者が触媒活性成分として
併用された例は知られていないし、併用した場合にどの
ような効果が達成されるかも、全く予想し得ないところ
である。
C 2 H 6 + 1 / 2O 2 → C 2 H 4 + H 2 O Sn and W have been used as cocatalysts in various kinds of catalysts, respectively. Is not known, and what effect is achieved when used together is completely unpredictable.

【0012】[0012]

【発明の実施の形態】I.触媒の調製方法 本発明で用いるSn−W触媒は、例えば、WO3粉末に
エチルヘキサンスズ、硫酸スズ、塩化スズ、酢酸スズな
どのスズ源となる材料の溶液を含浸させ、乾燥した後、
焼成することにより、調製することができる。或いは、
逆にSnO2粉末にタングステン酸アンモニウム、燐タ
ングステン酸などのタングステン源となる材料の溶液を
含浸させ、乾燥した後、焼成して調製してもよい。
DETAILED DESCRIPTION OF THE INVENTION I. Catalyst preparation method Sn-W catalyst used in the present invention, for example, impregnated with a solution of a tin source material such as ethyl hexane tin, tin sulfate, tin chloride, tin acetate in WO 3 powder, and dried,
It can be prepared by firing. Or,
Conversely, SnO 2 powder may be impregnated with a solution of a tungsten source material such as ammonium tungstate or phosphotungstic acid, dried, and then fired.

【0013】さらにまた、本発明においては、Sn−W
触媒をアルミナ、シリカ、チタニア、マグネシア、ジル
コニアおよびゼオライトの少なくとも1種からなる担体
に担持させた状態で使用することもできる。この場合に
は、触媒担体にスズを含む溶液を含浸させ、乾燥した後
焼成し、次いでタングステンを含む溶液を含浸させ、乾
燥した後焼成することにより、調製することが出来る。
或いは、触媒担体にタングステンを含む溶液を含浸さ
せ、乾燥した後焼成し、次いでスズを含む溶液を含浸さ
せ、乾燥した後焼成して、調製してもよい。本発明によ
る触媒中のSn:Wの原子比は、通常Sn:W=1:9
9〜99:1である。
Further, in the present invention, Sn-W
The catalyst may be used in the state of being supported on a carrier comprising at least one of alumina, silica, titania, magnesia, zirconia and zeolite. In this case, it can be prepared by impregnating the catalyst support with a solution containing tin, drying and firing, then impregnating with a solution containing tungsten, drying and firing.
Alternatively, the catalyst support may be impregnated with a solution containing tungsten, dried and fired, then impregnated with a solution containing tin, dried and fired, and then prepared. The atomic ratio of Sn: W in the catalyst according to the invention is usually Sn: W = 1: 9
9 to 99: 1.

【0014】II.反応操作 本発明においては、エタンと酸素とを気相で触媒に接触
させることにより、エチレンを製造することができる。
反応方式については、特に限定はなく、例えば、触媒を
充填した反応装置に原料ガス(エタンおよび酸素)を導
入して、エチレンを製造する固定床流通方式でもよい。
反応は、窒素、He、Arなどの不活性ガスの存在下に
行うことが好ましい。反応原料を希釈することにより、
反応温度の抑制、万一の場合の爆発防止などの効果が達
成される。特に、局所的な反応温度の上昇を抑制するこ
とにより、副反応の増加によるエチレン選択率の低下が
防止され、また触媒の急速な劣化も抑制される。不活性
ガスとしては、コストなどの点で、窒素がより好まし
い。
II. Reaction Operation In the present invention, ethylene can be produced by bringing ethane and oxygen into contact with the catalyst in the gas phase.
The reaction system is not particularly limited, and may be, for example, a fixed bed circulation system in which raw material gases (ethane and oxygen) are introduced into a reactor filled with a catalyst to produce ethylene.
The reaction is preferably performed in the presence of an inert gas such as nitrogen, He, and Ar. By diluting the reaction raw materials,
Effects such as suppression of the reaction temperature and prevention of explosion in the event of an emergency are achieved. In particular, by suppressing a local rise in reaction temperature, a decrease in ethylene selectivity due to an increase in side reactions is prevented, and rapid deterioration of the catalyst is also suppressed. As the inert gas, nitrogen is more preferable in terms of cost and the like.

【0015】また、反応条件についても特に限定はない
が、一般に、反応温度200℃〜800℃程度、より好ましく
は350℃〜700℃程度、特に好ましくは400℃〜600℃程度
とし、反応圧力は常圧付近とするのがよい。また、固定
床流通方式でエチレンを製造する場合の原料ガスの流通
速度は、特に限定されないが、反応装置への触媒の充填
密度を考慮した空間速度(SV)で1000〜100000ml/g・ca
t/hr程度、より好ましくは5000〜50000ml/g・cat/hr程
度とするのがよい。なお、一般に空間速度を高くしすぎ
ると、エタンの転化率が低下する傾向があるので、留意
する必要がある。
The reaction conditions are not particularly limited, but generally the reaction temperature is about 200 ° C. to 800 ° C., more preferably about 350 ° C. to 700 ° C., particularly preferably about 400 ° C. to 600 ° C., and the reaction pressure is The pressure should be near normal pressure. In addition, the flow rate of the raw material gas in the case of producing ethylene by the fixed bed flow method is not particularly limited, but the space velocity (SV) considering the packing density of the catalyst in the reactor is 1000 to 100,000 ml / g · ca.
It is preferably about t / hr, more preferably about 5,000 to 50,000 ml / g · cat / hr. It should be noted that in general, if the space velocity is too high, the conversion of ethane tends to decrease.

【0016】原料として使用するエタンと酸素との使用
割合は、特に限定されないが、両者の合計を100容量部
として、通常エタン:酸素=50〜95:50〜5程度、より
好ましくは70〜85:30〜15程度、特に好ましくは80:20
程度とするのがよい。不活性ガスを使用する場合には、
エタンと酸素の合計容量と同容量程度を添加することが
好ましい。
The proportions of ethane and oxygen used as raw materials are not particularly limited, but ethane: oxygen = about 50 to 95:50 to 5, usually 70 to 85, preferably 100 to 50 parts by volume. : About 30 to 15, particularly preferably 80:20
It is good to be about. When using inert gas,
It is preferable to add about the same volume as the total volume of ethane and oxygen.

【0017】本発明において、エタンからエチレンを製
造する触媒は、SnとWとを活性成分とする酸化物であ
る。Snは、エタンの酸化反応において、低温域(300
〜400℃程度)から反応活性を発揮するが、二酸化炭素
が主生成物となるのに対し、Wはエタンの酸化反応にお
いて600℃以上の高温域でしか活性を発揮しないが、エ
チレンが主生成物となる。しかるに、この様な低温域で
活性のあるSnとエチレン選択性の高いWとを組み合わ
せる場合には、両成分が互いに他の成分の特性を阻害す
ることなく、それぞれの特性を高度に発揮して、エタン
の酸化反応に際し、比較的穏和な条件下でも高い活性を
示し、エチレンの選択性をも高める。また、長時間反応
を行った場合にも、触媒表面上に炭素の析出がなく、構
造が安定しているため、高い触媒活性を長時間にわたり
維持し続ける。
In the present invention, the catalyst for producing ethylene from ethane is an oxide containing Sn and W as active components. Sn is present in a low temperature range (300
~ 400 ° C), while carbon dioxide is the main product, whereas W is active only in the high temperature range of 600 ° C or higher in the oxidation reaction of ethane, but ethylene is the main product. Things. However, when combining Sn having such a low activity in the low temperature region and W having a high ethylene selectivity, both components exhibit their properties to a high degree without obstructing the properties of the other components. In addition, it shows high activity in the oxidation reaction of ethane even under relatively mild conditions, and also enhances the selectivity of ethylene. Even when the reaction is carried out for a long time, no catalyst is deposited on the surface of the catalyst and the structure is stable, so that a high catalytic activity is maintained for a long time.

【0018】[0018]

【発明の効果】本発明による触媒の存在下にエタンの酸
化を行う場合には、比較的穏和な条件下で且つ高速反応
条件下でも高い転化率を示し、且つ長時間高い触媒活性
を維持できるので、本発明によれば、エタンから効率よ
くエチレンを製造することができる。
According to the present invention, when ethane is oxidized in the presence of the catalyst according to the present invention, a high conversion is exhibited under relatively mild conditions and under high-speed reaction conditions, and a high catalytic activity can be maintained for a long time. since, according to the present invention, as possible out to produce efficiently ethylene from ethane.

【0019】[0019]

【実施例】実施例1 本発明によるSn−W系酸化物触媒(Sn:W=4.6:95.
4)を調製した。すなわち、WO3粉末110.6グラムに0.5
mol/l酢酸スズ水溶液46mlを含浸させ、エバポレーター
で乾燥した後、700℃で3時間焼成して、Sn−W系酸化
物触媒を調製した。
EXAMPLE 1 An Sn—W-based oxide catalyst according to the present invention (Sn: W = 4.6: 95.
4) was prepared. That is, 0.5 to 110.6 grams of WO 3 powder
After impregnated with 46 ml of an aqueous mol / l tin acetate solution, dried with an evaporator, and calcined at 700 ° C. for 3 hours to prepare a Sn—W-based oxide catalyst.

【0020】一方、触媒のSn/Wの原子比を考慮しつ
つ、同様の手法により、SnO2粉末にタングステン酸
アンモニウム水溶液を含浸させ、乾燥し、焼成して、W
−Sn系化物触媒を調製した。
On the other hand, the SnO 2 powder is impregnated with an aqueous solution of ammonium tungstate, dried and calcined by the same method, while taking into consideration the Sn / W atomic ratio of the catalyst.
The -Sn based oxides catalysts were prepared.

【0021】調製した触媒0.2グラムを内径8mmの石英ガ
ラス製反応管に充填し、流通反応装置にセットした。原
料ガス(C26:O2:N2=40:10:50)を常圧下、SV
=15000ml/g・cat/hrで供給した場合のエタンの反応結果
を表1に示す。生成物の分析はオンラインガスクロマト
グラフにより行った。酸化物触媒組成の()内の数値
は、酸化物中のSnおよびWの原子%を示す。
0.2 g of the prepared catalyst was filled in a quartz glass reaction tube having an inner diameter of 8 mm, and set in a flow reactor. The raw material gas (C 2 H 6 : O 2 : N 2 = 40: 10: 50) was subjected to SV
Table 1 shows the results of the reaction of ethane when supplied at 15000 ml / g · cat / hr. The product was analyzed by online gas chromatography. The numerical value in parentheses of the oxide catalyst composition indicates the atomic% of Sn and W in the oxide.

【0022】実施例2 反応時のSVを3000ml/g・cat/hrとする以外は実施例1と
同様にしてエタンの酸化によるエチレンの製造を行っ
た。結果を表1に併せて示す。
Example 2 Ethylene was produced by oxidation of ethane in the same manner as in Example 1 except that the SV during the reaction was 3000 ml / g · cat / hr. The results are shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】通常、炭化水素の酸化的脱水素反応におい
ては、反応温度が上昇すると、燃焼反応が優先して起こ
り、所望の生成物の選択率が低下する傾向が顕著とな
る。しかしながら、表1に示す実施例1についての結果
から明かな様に、本発明によれば、反応温度が高くなっ
て転化率が上昇しても、エチレン選択率は余り変化しな
いという特異な現象が認められる。
In general, in the oxidative dehydrogenation of hydrocarbons, when the reaction temperature is increased, the combustion reaction takes precedence, and the selectivity of the desired product tends to decrease. However, as is apparent from the results of Example 1 shown in Table 1, according to the present invention, even when the reaction temperature is increased and the conversion is increased, a unique phenomenon that the ethylene selectivity does not change much is observed. Is recognized.

【0025】また、同一組成の触媒(W:Sn=22:
78)を使用する実施例1と実施例2の結果を対比すれ
ば、触媒との接触時間が長くても、エチレン選択率には
あまり影響がないことが明かである。
Further, a catalyst having the same composition (W: Sn = 22:
Comparing the results of Example 1 and Example 2 using (78), it is clear that longer contact time with the catalyst does not significantly affect ethylene selectivity.

【0026】実施例 本発明によるSn−W系触媒をシリカに担持した場合の
活性を表2に示す。
Example 3 Table 2 shows the activity when the Sn-W catalyst according to the present invention is supported on silica.

【0027】これらの触媒は、触媒のSn/Wの原子比
を考慮しつつ、SiO2粉末に所定量比の酢酸スズ水溶
液とタングステン酸アンモニウム水溶液とを含浸させ、
エバポレーターで乾燥した後、700℃で3時間焼成して調
製した。次いでSV=6000ml/g・cat/hrとする以外は実施
例1と同じ条件下にエタンの酸化反応を行った。結果を
表2に示す。酸化物触媒組成の()内の数値は、酸化物
中のSn、WおよびSiの原子%を示す。
These catalysts are prepared by impregnating SiO 2 powder with a predetermined amount ratio of an aqueous solution of tin acetate and an aqueous solution of ammonium tungstate in consideration of the atomic ratio Sn / W of the catalyst,
After drying with an evaporator, it was prepared by baking at 700 ° C. for 3 hours. Next, an ethane oxidation reaction was carried out under the same conditions as in Example 1 except that SV was set to 6000 ml / g · cat / hr. Table 2 shows the results. The numerical value in parentheses of the oxide catalyst composition indicates the atomic percentage of Sn, W and Si in the oxide.

【0028】[0028]

【表2】 [Table 2]

【0029】表2に示す結果からも、実施例1と同様
に、反応温度が高くなって転化率が上昇しても、エチレ
ン選択率は余り変化しないという特異な現象が認められ
る。
From the results shown in Table 2, as in Example 1, there is a peculiar phenomenon that the ethylene selectivity does not change much even when the reaction temperature increases and the conversion increases.

【0030】実施例 実施例1と同様にして調製したSn−W系酸化物触媒
(Sn:W=22:78)の耐久性を調べるために、原料ガ
ス(C26:O2:N2=40:10:50)を常圧下、温度55
0℃、SV=15000ml/g・cat/hrで酸化反応に供し、所定時
間経過後の転化率およびエチレン選択率を測定した。そ
の結果を表3に示す。
Example 4 In order to examine the durability of the Sn—W-based oxide catalyst (Sn: W = 22: 78) prepared in the same manner as in Example 1, the raw material gas (C 2 H 6 : O 2 : N 2 = 40: 10: 50) under normal pressure, temperature 55
The sample was subjected to an oxidation reaction at 0 ° C. and SV = 15000 ml / g · cat / hr, and the conversion and the ethylene selectivity after a predetermined time were measured. Table 3 shows the results.

【0031】[0031]

【表3】 [Table 3]

【0032】表3に示す結果から、本発明によるSn−
W系酸化物触媒が耐久性に優れていることが明かであ
る。
From the results shown in Table 3, it can be seen that Sn-
It is clear that the W-based oxide catalyst has excellent durability.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中原 佳子 京都府相楽郡木津町木津川台9丁目2番 地 財団法人地球環境産業技術研究機構 内 (72)発明者 安藤 尚功 京都府相楽郡木津町木津川台9丁目2番 地 財団法人地球環境産業技術研究機構 内 審査官 海老原 えい子 (56)参考文献 特開 平4−257528(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01J 21/00 - 37/36 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiko Nakahara 9-2 Kizugawadai, Kizu-cho, Kizu-cho, Soraku-gun, Kyoto Inside the National Institute for Global Environmental Technology (72) Inventor Naoki Ando, Kizu-cho, Soraku-gun, Kyoto 9-2 Kizugawadai Eiko Ebihara, Examiner, National Institute of Advanced Industrial Science and Technology (56) References JP-A-4-257528 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB Name) B01J 21/00-37/36

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】SnとWとを含む酸化物を触媒活性成分と
することを特徴とする、エタンの酸化によるエチレン製
造用触媒。
1. A catalyst for the production of ethylene by oxidation of ethane, comprising an oxide containing Sn and W as a catalytically active component.
【請求項2】触媒活性成分が、SnとWとをSn:W=
1〜99:99〜1(原子比)の割合で含む請求項1に
記載のエタンの酸化によるエチレン製造用触媒。
2. The catalyst active component comprises Sn and W, wherein Sn: W =
The catalyst for producing ethylene by oxidation of ethane according to claim 1, which is contained in a ratio of 1 to 99:99 to 1 (atomic ratio).
【請求項3】SnとWとを含む酸化物を触媒活性成分と
する触媒存在下にエタンと酸素とを反応させることを特
徴とするエチレンの製造方法。
3. An oxide containing Sn and W as a catalytically active component.
A process for producing ethylene, comprising reacting ethane with oxygen in the presence of a catalyst .
【請求項4】アルミナ、シリカ、チタニア、マグネシ
ア、ジルコニアおよびゼオライトの少なくとも1種から
なる担体にSnとWとを含む酸化物からなる触媒活性成
分を担持させて使用する請求項3に記載のエチレンの製
造方法。
4. The ethylene according to claim 3, wherein a catalytically active component comprising an oxide containing Sn and W is carried on a carrier comprising at least one of alumina, silica, titania, magnesia, zirconia and zeolite. Manufacturing method.
JP7190185A 1995-07-26 1995-07-26 Method for producing ethylene Expired - Lifetime JP2903073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7190185A JP2903073B2 (en) 1995-07-26 1995-07-26 Method for producing ethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7190185A JP2903073B2 (en) 1995-07-26 1995-07-26 Method for producing ethylene

Publications (2)

Publication Number Publication Date
JPH0938490A JPH0938490A (en) 1997-02-10
JP2903073B2 true JP2903073B2 (en) 1999-06-07

Family

ID=16253873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7190185A Expired - Lifetime JP2903073B2 (en) 1995-07-26 1995-07-26 Method for producing ethylene

Country Status (1)

Country Link
JP (1) JP2903073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109833903A (en) * 2017-11-29 2019-06-04 中国科学院大连化学物理研究所 A kind of low-carbon alkanes anaerobic dehydrogenation alkene catalyst and its preparation and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9022127D0 (en) * 1990-10-11 1990-11-21 Bp Chem Int Ltd Process

Also Published As

Publication number Publication date
JPH0938490A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
US5922925A (en) Catalyst, and processes for dehydrogenating dehydrogenatable hydrocarbons
JP3992112B2 (en) Process for the selective production of acetic acid and a catalyst suitable for this purpose
CA2411000C (en) Process for the production of vinyl acetate
US8168562B2 (en) Preparation of palladium-gold catalysts
JP2001519771A (en) Process for producing olefins, especially propylene, by dehydrogenation
JPS6155416B2 (en)
JPH0618790B2 (en) Method for oxidative conversion of methane
US5283055A (en) Process using novel catalysts for the selective reduction of nitrogen oxides
JP4116293B2 (en) Method for selectively producing acetic acid by catalytic oxidation of ethane and / or ethylene
CA1095076A (en) Process for the catalytic gas phase oxidation of toluene with a gas containing molecular oxygen
JP2903073B2 (en) Method for producing ethylene
JP2988849B2 (en) Acrylic acid production catalyst and method for producing acrylic acid using the catalyst
KR100978775B1 (en) Mixed metal oxide catalyst and process for production of acetic acid
JP2899634B2 (en) Method for producing ethylene
JP3094180B2 (en) Process for producing isobutylene by oxidative dehydrogenation of isobutane
JP3794235B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JP4025502B2 (en) Catalyst for producing aldehyde from lower hydrocarbon and method for producing aldehyde using carbon dioxide as oxidizing agent
JP3757624B2 (en) Hydrogen selective oxidation catalyst, hydrogen selective oxidation method, and hydrocarbon dehydrogenation method
JPH10120675A (en) Production of 2-para-dioxanones
JPS5910332B2 (en) Method for producing methacrolein and methacrylic acid
JP2883454B2 (en) Method for producing unsaturated carboxylic acid
JPH0242034A (en) Production of methacrylic acid and/or methacrolein
JPS6183134A (en) Production of unsaturated hydrocarbon
JPH085819B2 (en) Method for producing oxygen-containing compound mainly containing acetaldehyde
JPS6210485B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term