JPS6210485B2 - - Google Patents

Info

Publication number
JPS6210485B2
JPS6210485B2 JP60010965A JP1096585A JPS6210485B2 JP S6210485 B2 JPS6210485 B2 JP S6210485B2 JP 60010965 A JP60010965 A JP 60010965A JP 1096585 A JP1096585 A JP 1096585A JP S6210485 B2 JPS6210485 B2 JP S6210485B2
Authority
JP
Japan
Prior art keywords
catalyst
rhodium
carrier
oxygen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60010965A
Other languages
Japanese (ja)
Other versions
JPS61171445A (en
Inventor
Masahiko Murata
Keiji Ishii
Takushi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60010965A priority Critical patent/JPS61171445A/en
Publication of JPS61171445A publication Critical patent/JPS61171445A/en
Publication of JPS6210485B2 publication Critical patent/JPS6210485B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は、合成ガスから、酢酸など含酸素化
合物を製造する方法に関するものである。特にロ
ジウムを担持させる担体の前処理により、酢酸を
含むC2含酸素化合物(炭素数2個の含酸素有機
化合物)を得るロジウム触媒の活性を高める方法
に関するものである。 (従来の技術) 一酸化炭素と水素とから、炭素数2個のものを
主とする含酸素化合物、特に酢酸、アセトアルデ
ヒド、エタノールを成分とする含酸素化合物を製
造する方法は公知である。この反応には、実質上
金属ロジウムよりなる不均一系触媒が用いられ
(特公昭54−41568)、助触媒の使用等により触媒
の活性を増大せしめる改良方法も種々知られてい
る。 担体の処理による改良法としては、触媒金属成
分含有液含浸前の真空排気法(例えば特開昭51−
80806、52−14706)、シユウ酸洗浄法(例えば特
開昭56−8333、56−8334)が知られている。 しかしC2含酸素化合物のうち、特に酢酸を得
る触媒活性に着目してみると、収率、選択率の面
で十分満足できる結果は未だ得られていない。 (発明が解決しようとしている問題点) 本発明はこの様な先行技術をふまえて、合成ガ
スからC2含酸素化合物を製造する方法におい
て、更に高められた量の酢酸を含む生成物を得る
改良法を提供することを目的とする。 (問題点を解決するための手段) 本発明者は、アルカリ金属塩を加えて焼成した
後、酸水溶液洗浄を行なう前処理をした担体を用
いた場合、無処理の担体を用いた場合と比較して
C2含酸素化合物を得るロジウム触媒の活性が著
しく高められることを見出し、これに基づいて本
発明を完成した。 すなわち本発明はロジウムを含む触媒の存在
下、一酸化炭素と水素とを反応させて酢酸、アセ
トアルデヒド、エタノールを成分とする含酸素化
合物を製造する方法において、アルカリ金属塩担
持、焼成、および酸水溶液洗浄を組合わせた前処
理により、40〜100Åの範囲にある細孔半径の最
頻値を事実上変えないで、細孔半径100Åより大
きな細孔を減少させた多孔質無機固体物質担体上
に担持したロジウム触媒を用いることを特徴とす
る含酸素有機化合物の製法である。 本発明おいて目的物とする含酸素化合物とは、
脂肪酸、アルデヒド、アルコールおよびそのエス
テル等を意味し、代表的なものは、炭素数2のも
の、即ち、酢酸、アセトアルデヒド、エタノー
ル、およびそれらのエステル、特に酢酸を主成分
とする炭素数2の含酸素化合物である。 本発明を実施する際、触媒調製の前に、特定の
前処理を行なうべき担体物質としては、比表面積
1〜1000m2/gを有する多孔質無機固体物質が好
ましく、シリカ、アルミナ、シリカアルミナ、酸
化チタン、酸化ジルコニウム、酸化トリウム、酸
化マグネシウム、活性炭、ゼオライト等があるが
特にシリカ系担体が好ましい。これらの担体は粉
末状、ペレツト状等、形状に限定されずに用いら
れる。 これらの担体物質を以下に例示する方法により
前処理する。 即ち、未処理担体物質の重量に対して0.01%〜
0.2%、好ましくは0.03%〜0.1%のアルカリ金属
塩、即ちリチウム、ナトリウム、カリウム、ルビ
ジウム、セシウムのハロゲン化物、ハロゲン酸
塩、硫酸塩、硝酸塩、炭酸塩等の無機酸塩、水酸
化物、酢酸塩、ギ酸塩、シユウ酸塩等の有機酸塩
を含む水溶液を含浸し、一夜間風乾する。この様
にして、アルカリ金属塩を担持させた担体物質を
200℃〜1500℃、好ましくは400℃〜800℃で焼成
する。焼成処理の雰囲気は空気でもヘリウム等の
不活性ガスであつてもよい。この様なアルカリ金
属塩存在下の焼成処理により、未処理担体物質中
に存在する細孔半径100Å以上の大きな細孔が減
少し、細孔分布の均一性が増す。この際、40〜
100Åの範囲にある細孔分布の最頻値は、事実上
変化しない(第1図)。 焼成後、2%〜10%のシユウ酸、酢酸等の有機
酸および硝酸、硫酸、塩酸等の無機酸の酸水溶液
中で加熱しアルカリ金属塩を除去し、更に多量の
蒸溜水で煮沸、デカンテーシヨンを繰返すことに
よつて担体中に残存する酸を除く、 前処理した担体上にロジウムを担持させてロジ
ウム触媒をつくる方法については、公知の担持貴
金属触媒に関する技術を利用できる。 即ち触媒調製上使用されるロジウム化合物とし
ては、例えば塩化ロジウム、臭化ロジウム、ヨウ
化ロジウム、硝酸ロジウム、硫酸ロジウム等の無
機酸塩、酢酸ロジウム、ギ酸ロジウム、シユウ酸
ロジウム等の有機酸塩、塩化ロジウム、あるいは
アンミン錯塩、クラスター、ロジウムカルボニ
ル、およびロジウムカルボニルアセチルアセトナ
ート等の通常の貴金属触媒調製に用いられる化合
物がいずれも使用できるが、取扱いの容易さから
塩化ロジウムが特に推奨される。 助触媒として使用する他のも、任意の形で用い
得るが、特に水など適当な溶媒に可溶性の化合物
として、ロジウム化合物の場合と同様に塩化物が
好ましく用いられる。 触媒の調製法として、貴金属触媒調製における
常法、例えば含浸法、浸漬法、イオン交換法、共
沈法、混練法等が用いられる。担体上への触媒成
分の担持方法は、すべての触媒成分を同時に担持
してもよく、また各成分ごとに逐次的に担体に担
持する方法、あるいは、各成分を必要に応じて還
元加熱処理等の処理を行ないながら、逐次的、段
階的に担持する方法などの各手段を用いることが
出来る。 含浸法を一例として更に説明すれば、熱分解性
無機ロジウム化合物および助触媒成分元素の化合
物を、前処理した担体の吸水率に応じた水量によ
り水溶液とし、その溶液中に担体を加え、撹拌混
合後、加熱乾燥して担持させる。 このようなロジウムと助触媒成分とを担持した
固体は、通常、更に加熱処理により、微細に分散
したロジウムおよび助触媒を担持した活性な触媒
になる。 加熱処理は通常は還元条件下で加熱することに
より行なわれ、この加熱処理により、ロジウム化
合物は活性なロジウム触媒になる。例えば助触媒
成分と共に担持された塩化ロジウムは、水素気流
中で加熱処理されて金属またはそれに近い低い原
子価状態に変わり、活性を呈する。 還元処理は水素または一酸化炭素と水素の混合
ガスの存在下に行なう事ができる。場合によつて
は窒素、ヘリウム、アルゴン等の不活性ガスで一
部希釈して行なつても良い。還元処理温度として
は、100℃〜600℃、好ましくは150℃〜500℃の温
度において行なう。この際触媒の各成分の活性状
態を最適なものに保つ目的で、低温より徐々にあ
るいは段階的に昇温しながら還元処理をおこなつ
ても良い。またメタノール、ヒドラジン、ホルマ
リン等の還元剤を用いて化学的に還元を行なうこ
ともできる。 各触媒成分の使用量については必ずしも厳密な
制限は無いが、担体の表面積(1〜1000m2/g)
を考慮して定める。通常、担持触媒中のロジウム
の含有量は0.01〜15重量%、好ましくは0.1〜10
重量%である。 上記のような触媒を用いて、合成ガス即ち一酸
化炭素と水素の混合ガスを酢酸に富んだC2含酸
素化合物に転化させる。 反応は通常気相で行なわれ、例えば触媒を充填
した固定床式反応器に一酸化炭素と水素を含む原
料ガスを導通させる。この場合には一酸化炭素と
水素以外に例えば二酸化炭素、窒素、アルゴン、
ヘリウム、メタン、水蒸気等の他の成分を含んで
いてもよい。また触媒反応器は固定床式に限ら
ず、移動床式や流動床式等他の形式であつてもよ
い。また、場合によつては触媒を適当な溶媒中に
懸濁して原料ガスを導通して反応させる液相反応
でも実施することができる。 反応条件は、酢酸を主成分とする含酸素化合物
を高収率、高選択率で得ることを目的として種々
の反応条件因子を広い範囲で変えることが出来
る。固定床流通式反応装置に適用される代表的な
範囲を以下に示す。 反応圧力は0から300Kg/cm2G、好ましくは20
〜200Kg/cm2G以下の圧力で行なう。反応温度は
150〜450℃、好ましくは200〜350℃である。反応
温度が高い場合は、炭化水素の副生量が増大する
ため、原料装入速度を高めたり、場合によつて
は、担体等で触媒を希釈する等の手法を取ること
が出来る。 原料ガスの触媒容積当たりの仕込み速度、即ち
空間速度は、標準状態(0℃、1気圧)換算で
102から106/時、好ましくは103〜5×104/時の
範囲より、反応圧力、反応温度、原料ガス組成に
応じて最適となるよう適宜選ばれる。 原料ガス組成としては、主として、一酸化炭素
および水素を含有しているガスであつて、窒素、
アルゴン、ヘリウム、メタン、二酸化炭素などの
不活性ガスや水を含有していても良い。一酸化炭
素と水素のモル比は20:1から1:5、好ましく
は10:1から1:2である。 (発明の効果) 本発明により、以下の例で具体的に示されるよ
うに、酢酸の空時収率の高い反応結果が得られ
る。 この様に前処理した担体を用いて調製したロジ
ウム触媒は、触媒成分の表面濃度が高く、高活性
を呈すると考えられる。 以下具体例により本発明を説明する。 触媒調製 例 1(未処理担体による比較例) 四塩化ジルコニウム(ZrCl4)0.2122gを蒸溜
水50mlに溶解し、次に三塩化ロジウム三水塩
1.9182gを溶かし、塩酸を加えて完全に溶解させ
る。更に過マンガン酸リチウム三水塩0.4369gを
溶解させ均一溶液とする。この触媒前駆体水溶液
を、シリカゲル(富士デビソン化学社製GR−
71111)30gに含浸し、一夜間風乾した。送風乾
燥機で110℃、4時間乾燥させた後、石英ガラス
製還元管に充填し、水蒸気流中(20N/時)
350℃、2時間保持し水素還元した。得られた触
媒は第1表のNo.1である。第1表の触媒(No.1
〜4)の金属組成(重量%)はロジウム2.5、マ
ンガン0.445、リチウム0.056、ジルコニウム0.277
である。
(Industrial Application Field) The present invention relates to a method for producing oxygen-containing compounds such as acetic acid from synthesis gas. In particular, the present invention relates to a method of increasing the activity of a rhodium catalyst for producing a C2 oxygen-containing compound (an oxygen-containing organic compound having 2 carbon atoms) containing acetic acid by pre-treating a carrier on which rhodium is supported. (Prior Art) A method for producing an oxygen-containing compound mainly containing two carbon atoms, particularly an oxygen-containing compound containing acetic acid, acetaldehyde, and ethanol, from carbon monoxide and hydrogen is known. In this reaction, a heterogeneous catalyst consisting essentially of metallic rhodium is used (Japanese Patent Publication No. 41568/1983), and various improved methods are known for increasing the activity of the catalyst, such as by using a co-catalyst. As an improved method by treating the carrier, a vacuum evacuation method (for example, Japanese Patent Application Laid-Open No. 1983-1972) before impregnation with a catalyst metal component-containing liquid is
80806, 52-14706) and an oxalic acid cleaning method (for example, JP-A-56-8333, 56-8334). However, when focusing on the catalytic activity for producing acetic acid among C2 oxygen-containing compounds, sufficiently satisfactory results have not yet been obtained in terms of yield and selectivity. (Problems to be Solved by the Invention) In view of the above prior art, the present invention provides an improved method for obtaining a product containing an even higher amount of acetic acid in a method for producing C2 oxygenated compounds from synthesis gas. The purpose is to provide (Means for Solving the Problems) The present inventor has compared the case of using a pre-treated carrier in which an alkali metal salt is added and calcined and then washed with an acid aqueous solution compared to the case of using an untreated carrier. do
The present invention was completed based on the discovery that the activity of a rhodium catalyst for producing C2 oxygen-containing compounds is significantly enhanced. That is, the present invention relates to a method for producing an oxygen-containing compound containing acetic acid, acetaldehyde, and ethanol by reacting carbon monoxide and hydrogen in the presence of a catalyst containing rhodium, which comprises supporting an alkali metal salt, calcination, and an aqueous acid solution. A pretreatment combined with washing reduced pores with a pore radius greater than 100 Å while leaving the mode of the pore radius in the range 40-100 Å virtually unchanged. This is a method for producing an oxygen-containing organic compound characterized by using a supported rhodium catalyst. The oxygen-containing compound targeted in the present invention is:
It refers to fatty acids, aldehydes, alcohols, esters thereof, etc., and typical examples include those with two carbon atoms, such as acetic acid, acetaldehyde, ethanol, and their esters, especially those containing two carbon atoms whose main component is acetic acid. It is an oxygen compound. When carrying out the present invention, the carrier material to be subjected to specific pretreatment before catalyst preparation is preferably a porous inorganic solid material having a specific surface area of 1 to 1000 m 2 /g, such as silica, alumina, silica alumina, Examples include titanium oxide, zirconium oxide, thorium oxide, magnesium oxide, activated carbon, and zeolite, but silica-based carriers are particularly preferred. These carriers can be used in any shape, such as powder or pellet. These carrier materials are pretreated by the method exemplified below. i.e. from 0.01% to the weight of the untreated carrier material.
0.2%, preferably 0.03% to 0.1% of alkali metal salts, i.e. inorganic acid salts such as halides, halogenates, sulfates, nitrates, carbonates, hydroxides of lithium, sodium, potassium, rubidium, cesium; Impregnate with an aqueous solution containing organic acid salts such as acetate, formate, oxalate, etc. and air dry overnight. In this way, the carrier material carrying the alkali metal salt is
Calcinate at 200°C to 1500°C, preferably 400°C to 800°C. The atmosphere for the firing process may be air or an inert gas such as helium. Such a calcination treatment in the presence of an alkali metal salt reduces large pores with a radius of 100 Å or more present in the untreated carrier material and increases the uniformity of the pore distribution. At this time, 40~
The mode of the pore distribution in the 100 Å range remains virtually unchanged (Figure 1). After firing, alkali metal salts are removed by heating in an aqueous acid solution of 2% to 10% organic acids such as oxalic acid and acetic acid and inorganic acids such as nitric acid, sulfuric acid, and hydrochloric acid, and then boiled with a large amount of distilled water and decane. As for the method of producing a rhodium catalyst by supporting rhodium on a pretreated support by removing the acid remaining in the support by repeating the washing process, known techniques related to supported noble metal catalysts can be used. That is, rhodium compounds used for catalyst preparation include, for example, inorganic acid salts such as rhodium chloride, rhodium bromide, rhodium iodide, rhodium nitrate, and rhodium sulfate; organic acid salts such as rhodium acetate, rhodium formate, and rhodium oxalate; Rhodium chloride, or compounds commonly used in the preparation of precious metal catalysts such as ammine complex salts, clusters, rhodium carbonyl, and rhodium carbonyl acetylacetonate can be used, but rhodium chloride is particularly recommended because of its ease of handling. Other cocatalysts may be used in any form, but chlorides are particularly preferably used as compounds soluble in a suitable solvent such as water, as in the case of rhodium compounds. As a method for preparing the catalyst, conventional methods for preparing noble metal catalysts, such as an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc., are used. As for the method of supporting the catalyst components on the carrier, all the catalyst components may be supported simultaneously, each component may be supported on the carrier sequentially, or each component may be subjected to reduction heat treatment, etc. as necessary. It is possible to use various means such as a method of sequentially or stepwise loading while carrying out the processing. To further explain the impregnation method as an example, a thermally decomposable inorganic rhodium compound and a compound of a cocatalyst component element are made into an aqueous solution in an amount of water according to the water absorption rate of the pretreated carrier, the carrier is added to the solution, and the mixture is stirred. After that, it is heated and dried to support it. Such a solid supporting rhodium and a cocatalyst component is usually further heat-treated to become an active catalyst supporting finely dispersed rhodium and a cocatalyst. The heat treatment is usually carried out by heating under reducing conditions, and the heat treatment converts the rhodium compound into an active rhodium catalyst. For example, rhodium chloride supported together with a co-catalyst component is heated in a hydrogen stream to change into a metal or a low valence state close to that of metal, and becomes active. The reduction treatment can be carried out in the presence of hydrogen or a mixed gas of carbon monoxide and hydrogen. Depending on the case, it may be partially diluted with an inert gas such as nitrogen, helium, or argon. The reduction treatment temperature is 100°C to 600°C, preferably 150°C to 500°C. At this time, in order to maintain the optimum activation state of each component of the catalyst, the reduction treatment may be carried out while raising the temperature gradually or stepwise from a low temperature. Further, the reduction can also be carried out chemically using a reducing agent such as methanol, hydrazine or formalin. There are no strict restrictions on the amount of each catalyst component used, but the surface area of the carrier (1 to 1000 m 2 /g)
Determined by taking into consideration. Usually, the content of rhodium in the supported catalyst is between 0.01 and 15% by weight, preferably between 0.1 and 10% by weight.
Weight%. Catalysts such as those described above are used to convert synthesis gas, a mixture of carbon monoxide and hydrogen, into acetic acid-rich C2 oxygenates. The reaction is usually carried out in the gas phase, for example, a raw material gas containing carbon monoxide and hydrogen is passed through a fixed bed reactor packed with a catalyst. In this case, in addition to carbon monoxide and hydrogen, carbon dioxide, nitrogen, argon, etc.
It may also contain other components such as helium, methane, and water vapor. Further, the catalytic reactor is not limited to a fixed bed type, but may be of other types such as a moving bed type or a fluidized bed type. In some cases, a liquid phase reaction may also be carried out, in which the catalyst is suspended in a suitable solvent and a raw material gas is introduced therethrough. Regarding the reaction conditions, various reaction condition factors can be varied over a wide range for the purpose of obtaining an oxygen-containing compound containing acetic acid as a main component in high yield and high selectivity. Typical ranges applicable to fixed bed flow reactors are shown below. The reaction pressure is 0 to 300Kg/cm 2 G, preferably 20
It is carried out at a pressure of ~200Kg/cm 2 G or less. The reaction temperature is
The temperature is 150-450°C, preferably 200-350°C. When the reaction temperature is high, the amount of hydrocarbon by-products increases, so it is possible to take measures such as increasing the raw material charging rate or diluting the catalyst with a carrier or the like in some cases. The charging rate of raw material gas per catalyst volume, that is, the space velocity, is calculated under standard conditions (0°C, 1 atm).
The rate is appropriately selected from the range of 10 2 to 10 6 /hour, preferably 10 3 to 5×10 4 /hour, depending on the reaction pressure, reaction temperature, and raw material gas composition. The raw material gas composition is mainly a gas containing carbon monoxide and hydrogen, nitrogen,
It may contain an inert gas such as argon, helium, methane, carbon dioxide, or water. The molar ratio of carbon monoxide to hydrogen is from 20:1 to 1:5, preferably from 10:1 to 1:2. (Effects of the Invention) According to the present invention, a reaction result with a high space-time yield of acetic acid can be obtained, as specifically shown in the following examples. It is thought that the rhodium catalyst prepared using the carrier pretreated in this manner has a high surface concentration of catalyst components and exhibits high activity. The present invention will be explained below using specific examples. Catalyst Preparation Example 1 (Comparative Example with Untreated Support) 0.2122 g of zirconium tetrachloride (ZrCl 4 ) was dissolved in 50 ml of distilled water, and then rhodium trichloride trihydrate was added.
Dissolve 1.9182g and add hydrochloric acid to completely dissolve. Furthermore, 0.4369 g of lithium permanganate trihydrate was dissolved to form a homogeneous solution. This catalyst precursor aqueous solution was mixed with silica gel (GR-
71111) and air-dried overnight. After drying in a blow dryer at 110℃ for 4 hours, it was filled into a quartz glass reduction tube and placed in a stream of steam (20N/hour).
It was held at 350°C for 2 hours to perform hydrogen reduction. The obtained catalyst is No. 1 in Table 1. Catalyst in Table 1 (No.1
~4) Metal composition (wt%) is rhodium 2.5, manganese 0.445, lithium 0.056, zirconium 0.277
It is.

【表】【table】

【表】 例 2 例1で用いた担体物質(シリカゲルGR−
71111)を、以下に示す順で前処理した。即ち、
未処理担体物質を、それに対して0.056%のリチ
ウムを含む塩化リチウム水溶液に含浸し、一夜間
風乾した。送風焼成炉で400℃、2時間焼成した
後、5%のシユウ酸水溶液中で5時間加熱還流
し、その後多量の蒸溜水で煮沸し、デカンテーシ
ヨンを繰返して洗浄した。送風乾燥機で110℃、
4時間乾燥させ前処理担体を得る。 例1と同様の方法で調製した触媒前駆体水溶液
を上記前処理担体30gに含浸し、一夜間風乾し
た。これを例1の場合と同様に乾燥および還元処
理し、第1表のNo.2の触媒を得た。 例 3 塩化リチウム担持焼成温度が600℃である他は
例2と同様にして担体物質(シリカゲルGR−
71111)を処理し、前処理担体を得た。以下例2
と同様の方法で触媒を調製し、第1表のNo.3の
触媒を得た。 この前処理担体につき、細孔分布を測定した結
果を、未処理の担体物質の細孔分布と比較して第
1図に示す。未処理の担体物質の場合は、細孔半
径の最頻値±10%(77±8%)の細孔が細孔容積
に占める割合は、46%にすぎないが、塩化リチウ
ム担持、焼成、酸洗浄の結果細孔半径100Å以上
の細孔が減少し、最頻値±10%の細孔が細孔容積
に占める割合は、64%に増加した。 例 4 塩化リチウム担持焼成温度が800℃である他は
例2と同様にして担体物質(シリカゲルGR−
71111)を処理し、以下例2と同様の方法で触媒
を調製し、第1表のNo.4の触媒を得た。 例 5(未処理担体による比較例) 塩化カリウム0.0136g、塩化リチウム0.0206
g、塩化テルビウム二水塩0.0274g、四塩化イリ
ジウム一水塩0.1026g、三塩化ロジウム三水塩
1.919gを順次、蒸溜水25mlに完全に溶解させ
る。 この触媒前駆体水溶液を、シリカゲル(富士デ
ビソン化学社製GR−71111)15gに含浸し、一夜
間風乾した。送風乾燥機で40℃、20時間乾燥させ
た後、石英ガラス製還元管に充填し、水素気流中
(20Nl/時)600℃、2時間保持し水素還元し
た。得られた触媒は第2表のNo.5である。第2
表の触媒(No.5〜8)の金属組成(重量%)は
ロジウム5、カリウム0.048、リチウム0.023、テ
ルビウム0.096、イリジウム0.374である。 例 6 例5と同様に調製した触媒前駆体水溶液を例3
で用いた前処理担体15gに含浸し、一夜間風乾し
た。送風乾燥機で40℃、20時間乾燥させた後、石
英ガラス製還元管に充填し、水素気流中
(20Nl/時)450℃、2時間保持し水素還元し
た。得られた触媒は第2表のNo.6である。 例 7(未処理担体による比較例) 例5と同様に調製した触媒前駆体水溶液を、シ
リカゲル(富士デビソン化学社製GR−70513)15
gに含浸し、一夜間風乾した。以下例5と同様に
乾燥、水素還元した。得られた触媒は第2表の
No.7である。 例 8 例7で用いた未処理担体物質(シリカゲルGR
−70513)を例2と同様の方法で前処理した。但
し、塩化リチウム担持焼成温度は600℃である。
以下、例5の触媒前駆体水溶液を前処理担体15g
に含浸し、一夜間風乾した。以下、例6と同様に
乾燥、水素還元した。得られた触媒は、第2表の
No.8である。 活性評価法および結果 例1、例2では触媒3mlと担体7mlを、例3で
は、触媒2mlと担体8mlを、例4では、触媒4ml
と担体6mlを、それぞれ均一にステンレススチー
ル製U字型反応管に充填し、原料ガス(CO/H2
=2/1)を100Nl/時の速度で送入し、反応圧
力80Kg/cm2Gにおいて反応温度300℃で反応を行
なつた。 例5〜8では触媒10mlをステンレススチール製
U字型反応管に充填し、原料ガス(CO/H2
9/1)を100Nl/時の速度で送入し、反応圧力
80Kg/cm2Gにおいて反応温度300℃で反応を行な
つた。 加圧冷却により捕集した液体生成物および反応
ガスをガスクロ分析して得た、反応結果を第1表
および第2表に示した。ここで選択率(%)は、
消費された一酸化炭素のモル数に対する特別の生
成物に変換された一酸化炭素のモル数の百分率で
ある。
[Table] Example 2 Support material used in Example 1 (silica gel GR-
71111) were pretreated in the order shown below. That is,
The untreated support material was impregnated with an aqueous lithium chloride solution containing 0.056% lithium and air dried overnight. After firing at 400°C for 2 hours in a blast firing furnace, the mixture was heated under reflux in a 5% oxalic acid aqueous solution for 5 hours, then boiled with a large amount of distilled water, and washed by repeated decantation. 110℃ in a blow dryer.
Dry for 4 hours to obtain a pretreated carrier. 30 g of the above pretreated carrier was impregnated with an aqueous catalyst precursor solution prepared in the same manner as in Example 1, and air-dried overnight. This was dried and reduced in the same manner as in Example 1 to obtain catalyst No. 2 in Table 1. Example 3 A carrier material (silica gel GR-
71111) to obtain a pretreated carrier. Example 2 below
A catalyst was prepared in the same manner as above to obtain catalyst No. 3 in Table 1. The results of measuring the pore distribution of this pretreated carrier are shown in FIG. 1 in comparison with the pore distribution of an untreated carrier material. In the case of untreated support materials, pores with a mode of pore radius of ±10% (77±8%) account for only 46% of the pore volume; As a result of acid washing, the number of pores with a radius of 100 Å or more decreased, and the proportion of pores with a mode ±10% of the pore volume increased to 64%. Example 4 A carrier material (silica gel GR-
71111) and prepared a catalyst in the same manner as in Example 2 below to obtain catalyst No. 4 in Table 1. Example 5 (Comparative example using untreated carrier) Potassium chloride 0.0136g, lithium chloride 0.0206
g, terbium chloride dihydrate 0.0274g, iridium tetrachloride monohydrate 0.1026g, rhodium trichloride trihydrate
Completely dissolve 1.919 g in 25 ml of distilled water. This catalyst precursor aqueous solution was impregnated into 15 g of silica gel (GR-71111 manufactured by Fuji Davison Chemical Co., Ltd.) and air-dried overnight. After drying in a blow dryer at 40°C for 20 hours, it was filled into a quartz glass reduction tube and held at 600°C in a hydrogen stream (20 Nl/hour) for 2 hours to perform hydrogen reduction. The obtained catalyst is No. 5 in Table 2. Second
The metal composition (wt%) of the catalysts (Nos. 5 to 8) in the table is 5 rhodium, 0.048 potassium, 0.023 lithium, 0.096 terbium, and 0.374 iridium. Example 6 Aqueous catalyst precursor solution prepared in the same manner as Example 5 was added to Example 3
It was impregnated with 15 g of the pretreated carrier used in , and air-dried overnight. After drying in a blow dryer at 40°C for 20 hours, the mixture was filled into a quartz glass reduction tube and held at 450°C in a hydrogen stream (20 Nl/hour) for 2 hours to perform hydrogen reduction. The obtained catalyst is No. 6 in Table 2. Example 7 (Comparative example using untreated carrier) A catalyst precursor aqueous solution prepared in the same manner as in Example 5 was mixed with silica gel (GR-70513 manufactured by Fuji Davison Chemical Co., Ltd.) 15
g and air-dried overnight. Thereafter, drying and hydrogen reduction were carried out in the same manner as in Example 5. The obtained catalyst is shown in Table 2.
It is No.7. Example 8 Untreated carrier material used in Example 7 (silica gel GR
-70513) was pretreated in the same manner as in Example 2. However, the firing temperature for supporting lithium chloride is 600°C.
Below, 15g of the catalyst precursor aqueous solution of Example 5 was added to the pretreated carrier.
and air-dried overnight. Thereafter, drying and hydrogen reduction were performed in the same manner as in Example 6. The obtained catalyst is shown in Table 2.
It is No.8. Activity evaluation method and results In Examples 1 and 2, 3 ml of catalyst and 7 ml of carrier were used. In Example 3, 2 ml of catalyst and 8 ml of carrier were used. In Example 4, 4 ml of catalyst was used.
and 6 ml of carrier were uniformly filled into a stainless steel U-shaped reaction tube, and the raw material gas (CO/H 2
= 2/1) at a rate of 100 Nl/hour, the reaction was carried out at a reaction pressure of 80 Kg/cm 2 G and a reaction temperature of 300°C. In Examples 5 to 8, 10 ml of the catalyst was packed into a stainless steel U-shaped reaction tube, and the raw material gas (CO/H 2 =
9/1) at a rate of 100Nl/hour, and the reaction pressure
The reaction was carried out at 80 Kg/cm 2 G and at a reaction temperature of 300°C. The reaction results obtained by gas chromatography analysis of the liquid product and reaction gas collected by pressure cooling are shown in Tables 1 and 2. Here, the selection rate (%) is
It is the percentage of moles of carbon monoxide converted to specific products relative to moles of carbon monoxide consumed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は細孔半径を横軸、微分細孔容積を縦軸
として細孔分布を表わした図であり、実線は前処
理担体、破線は未処理の担体物質についての分布
を示す。
FIG. 1 is a diagram showing the pore distribution with the pore radius on the horizontal axis and the differential pore volume on the vertical axis, where the solid line shows the distribution for the pretreated carrier and the broken line shows the distribution for the untreated carrier material.

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウムを含む触媒の存在下、一酸化炭素と
水素とを反応させて酢酸、アセトアルデヒド、エ
タノールを成分とする含酸素化合物を製造する方
法において、アルカリ金属塩担持、焼成、および
酸水溶液洗浄を組合わせた前処理により、40〜
100Åの範囲にある細孔半径の最頻値を事実上変
えないで、細孔半径100Åより大きな細孔を減少
させた多孔質無機固体物質担体の上に担持したロ
ジウム触媒を用いることを特徴とする含酸素有機
化合物の製法。
1 A method for producing an oxygen-containing compound containing acetic acid, acetaldehyde, and ethanol by reacting carbon monoxide and hydrogen in the presence of a rhodium-containing catalyst, which includes supporting an alkali metal salt, calcination, and washing with an aqueous acid solution. Depending on the combined pretreatment, 40~
It is characterized by using a rhodium catalyst supported on a porous inorganic solid material carrier in which pores with a pore radius larger than 100 Å are reduced while the mode of the pore radius in the range of 100 Å is virtually unchanged. A method for producing oxygen-containing organic compounds.
JP60010965A 1985-01-25 1985-01-25 Production of oxygen-containing compound Granted JPS61171445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60010965A JPS61171445A (en) 1985-01-25 1985-01-25 Production of oxygen-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60010965A JPS61171445A (en) 1985-01-25 1985-01-25 Production of oxygen-containing compound

Publications (2)

Publication Number Publication Date
JPS61171445A JPS61171445A (en) 1986-08-02
JPS6210485B2 true JPS6210485B2 (en) 1987-03-06

Family

ID=11764883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60010965A Granted JPS61171445A (en) 1985-01-25 1985-01-25 Production of oxygen-containing compound

Country Status (1)

Country Link
JP (1) JPS61171445A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2519976B2 (en) * 1988-05-20 1996-07-31 ダイセル化学工業株式会社 Method for producing oxygen-containing compound

Also Published As

Publication number Publication date
JPS61171445A (en) 1986-08-02

Similar Documents

Publication Publication Date Title
JP4750283B2 (en) Catalyst for the production of vinyl acetate by vapor phase oxidation of ethylene and acetic acid, its production and its use
EP0949965B1 (en) Improved process for the production of supported palladium-gold catalysts
US4242235A (en) Supports for silver catalysts utilized in the production of ethylene oxide
EP0839793B1 (en) Prcess for the production of vinyl acetate and process for the preparation of a catalyst
US8168562B2 (en) Preparation of palladium-gold catalysts
JPH0513704B2 (en)
JPS6210485B2 (en)
JPS59190934A (en) Production of oxygen-containing hydrocarbon compound
JPS6183134A (en) Production of unsaturated hydrocarbon
JPH03245844A (en) Catalyst for fluidized bed and its preparation
JPS5978130A (en) Preparation of hydrocarbon compound containing oxygen
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound
JPS6064937A (en) Production of oxygen-containing hydrocarbon compound
JPS60161933A (en) Preparation of oxygen-containing hydrocarbon compound
JPS63227531A (en) Production of oxygen-containing compound
JPH0237329B2 (en)
JPH01294644A (en) Production of oxygen-containing compound comprising acetaldehyde as main component
JP2903073B2 (en) Method for producing ethylene
JPH049580B2 (en)
JPH049578B2 (en)
JPS621928B2 (en)
JP2001179099A (en) Vinyl acetate synthesizing catalyst
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6114130B2 (en)
JPS6064938A (en) Production of oxygen-containing hydrocarbon compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term