JP2001179099A - Vinyl acetate synthesizing catalyst - Google Patents

Vinyl acetate synthesizing catalyst

Info

Publication number
JP2001179099A
JP2001179099A JP36482899A JP36482899A JP2001179099A JP 2001179099 A JP2001179099 A JP 2001179099A JP 36482899 A JP36482899 A JP 36482899A JP 36482899 A JP36482899 A JP 36482899A JP 2001179099 A JP2001179099 A JP 2001179099A
Authority
JP
Japan
Prior art keywords
palladium
carrier
catalyst
vinyl acetate
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP36482899A
Other languages
Japanese (ja)
Other versions
JP4409021B2 (en
Inventor
Tatsuo Yamaguchi
辰男 山口
Toshihiko Ohashi
寿彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP36482899A priority Critical patent/JP4409021B2/en
Publication of JP2001179099A publication Critical patent/JP2001179099A/en
Application granted granted Critical
Publication of JP4409021B2 publication Critical patent/JP4409021B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a catalyst useful for manufacturing vinyl acetate, which deteriorates in such a small degree that it can be even in a fluidized bed type reactor, excellent in durability and high in activity. SOLUTION: A vinyl acetate synthesizing catalyst is obtained by supporting a palladium component and an alkali metal acetate on a carrier comprising a silicious composition containing aluminum and magnesium to form a layer wherein the palladium component is supported within a range of 0-below 80 μm in the center direction from the outer surface of the carrier and characterized by that the surface area of the palladium metal component calculated from the adsorption of carbon monoxide is 40-300 m2/Pdg.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、エチレンと酸素および
酢酸から酢酸ビニルを製造する際に用いる触媒に関する
ものである。
The present invention relates to a catalyst used for producing vinyl acetate from ethylene, oxygen and acetic acid.

【0002】[0002]

【従来の技術】エチレンと酸素および酢酸ガスから酢酸
ビニルを気相で製造する際に用いる触媒に関しては、従
来から多くの報告がある(特開平8−40997号、特
開平8−38900号、特開平8−38899号、特開
平3−24034号、特公昭50−35057号、特公
昭 47−14209号、特公昭46−17203号、
特公昭54−1283号、特公昭45−7538号)。
これらの公知の触媒はほとんどがパラジウムを主触媒と
し、アルカリ金属またはアルカリ土類金属ならびに白
金、金、銀、銅、鉄、マンガン、アルミニウ ム、チタ
ン、アンチモン、ビスマス、鉛、セリウム、バナジウ
ム、テルル、クロム、モリブデン、などの金属を助触媒
化合物として用い、これらの触媒成分を通常アルミナ、
シリカ、活性炭、酸化チタンなどの担体に担持させた三
元系触媒である。
2. Description of the Related Art There have been many reports on catalysts used for producing vinyl acetate in the gas phase from ethylene, oxygen and acetic acid gas (JP-A-8-40997, JP-A-8-38900, JP-A-8-38899, JP-A-3-24034, JP-B-50-35057, JP-B-47-14209, JP-B-46-17203,
JP-B-54-1283, JP-B-45-7538).
Most of these known catalysts are mainly based on palladium, alkali metals or alkaline earth metals and platinum, gold, silver, copper, iron, manganese, aluminum, titanium, antimony, bismuth, lead, cerium, vanadium, tellurium. , Chromium, molybdenum, and other metals as co-catalyst compounds, and these catalyst components are usually alumina,
A ternary catalyst supported on a carrier such as silica, activated carbon, and titanium oxide.

【0003】また、触媒の担持形態では、パラジウムお
よび助触媒が多かれ少なかれ担体全体に均一に分配され
ることが示されている。たとえば米国特許第3,27
5,680 号、第3,743,607号および第3,
950,400号、並びに英国特許第1,333,44
9号、さらに南アフリカ特許第687,990号参照。
しかしながらこれらの担体の内部に存在する触媒活性成
分は反応基質が担体内部に拡散しにくいため、反応への
寄与率が低いことが問題となっている。
[0003] It has also been shown that in the supported form of the catalyst, the palladium and the cocatalyst are more or less evenly distributed throughout the support. For example, US Pat.
5,680, 3,743,607 and 3,
950,400 and British Patent 1,333,44.
No. 9 and also South African Patent No. 687,990.
However, the catalytically active components present inside these carriers have a problem that their contribution to the reaction is low because the reaction substrate is unlikely to diffuse into the carriers.

【0004】この問題を解消するため、触媒活性成分を
担体の最外表面付近に集中させた触媒の開発が行われて
きた。たとえば英国特許第1,500,167号は、パ
ラジウムおよび金の少なくとも90%が担体の最外表面
から担体粒子半径の30%以下までの範囲に分布した触
媒であることを開示している。さらに英国特許第1,2
83,737号は、多孔質担体中への侵入程度をたとえ
ば炭酸ナトリウムもしくは水酸化ナトリウムのアルカリ
溶液での多孔質担体の予備処理により調節できることを
教示している。また、特開平6−47281号には、触
媒支持体粒子における厚さ1.0mmの最外層に分配さ
れたパラジウムおよび金とを特徴とするシェル含浸触媒
が示されている。その他にも、米国特許第4,048,
096号、米国特許第4,087,622号および第
5,185,308号に触媒の製造方法に関する技術の
開示がある。しかしながら、これらの文献は、主として
酢酸ビニルの製造に固定床の反応器を用いた場合の触媒
の製造に関するものである。
In order to solve this problem, a catalyst has been developed in which the catalytically active component is concentrated near the outermost surface of the carrier. For example, GB 1,500,167 discloses that the catalyst has at least 90% of the palladium and gold distributed from the outermost surface of the support to no more than 30% of the support particle radius. In addition, British Patent Nos. 1 and 2
No. 83,737 teaches that the degree of penetration into the porous support can be adjusted, for example, by pretreatment of the porous support with an alkaline solution of sodium carbonate or sodium hydroxide. JP-A-6-47281 discloses a shell-impregnated catalyst characterized by palladium and gold distributed in the outermost layer having a thickness of 1.0 mm in catalyst support particles. In addition, U.S. Pat.
No. 096 and U.S. Pat. Nos. 4,087,622 and 5,185,308 disclose techniques relating to a method for producing a catalyst. However, these documents relate mainly to the production of catalysts when a fixed-bed reactor is used for the production of vinyl acetate.

【0005】酢酸ビニルの製造を流動床法で行うことが
できれば経済的に有利である。流動床法の典型的な利点
は、流動床反応器の設計が多管式の固定床反応器よりも
簡単であり、固定床反応器では避けられないホットスポ
ットに基づく失活が生じないため触媒寿命の向上が期待
される。また、触媒の補充が連続的に行うことができる
ことから、触媒交換を実質的に排除できる。さらに、相
当高い酸素レベルでも、可燃性混合物の生成なしに反応
器中へ安全に供給することが可能であり高い生産速度が
可能である。これまでにも、米国特許第3,950,4
00号は、触媒が流動床反応器にも使用できることを開
示している。さらに英国特許第1,266,623号
は、各種のアルカリ、アルカリ土類または他の金属で促
進されたパラジウムからなる酢酸ビニル製造のための流
動床触媒を開示している。
It would be economically advantageous if the production of vinyl acetate could be carried out by a fluidized bed process. A typical advantage of the fluidized bed process is that the design of the fluidized bed reactor is simpler than a fixed-bed reactor with multiple tubes, and the fixed-bed reactor does not cause deactivation based on hot spots which cannot be avoided. Life expectancy is expected to improve. Further, since the replenishment of the catalyst can be performed continuously, the exchange of the catalyst can be substantially eliminated. In addition, even at relatively high oxygen levels, it is possible to safely feed into the reactor without the formation of a flammable mixture, and high production rates are possible. Until now, U.S. Pat.
No. 00 discloses that the catalyst can also be used in a fluidized bed reactor. Furthermore, GB 1,266,623 discloses a fluidized bed catalyst for the production of vinyl acetate consisting of palladium promoted with various alkali, alkaline earth or other metals.

【0006】しかしながら、流動床の反応器に用いる触
媒は、その粒子が壁面や粒子同士で接触することから機
械的な摩耗性強度など固定床では求められなかった触媒
物性が必要とされ、現在、活性が高く、且つ十分な触媒
物性を備えた触媒は存在しない。即ち、本発明の方法を
見出すまで、流動床型の反応器に用いることが可能で、
しかも経済的な酢酸ビニルを製造するためのパラジウム
触媒は存在していない。
However, catalysts used in fluidized bed reactors require catalytic properties, such as mechanical abrasion strength, which were not required in fixed beds, because the particles contact the walls and between the particles. There is no catalyst having high activity and sufficient catalytic properties. That is, until the process of the present invention is found, it can be used in a fluidized bed type reactor,
Moreover, there is no economical palladium catalyst for producing vinyl acetate.

【0007】[0007]

【発明が解決しようとする課題】本発明の主たる課題
は、流動床型の反応器でも使用可能なほど劣化が少なく
耐久性に優れ、しかも活性の高い、酢酸ビニルの製造に
有用な触媒の提供にある。
SUMMARY OF THE INVENTION The main object of the present invention is to provide a catalyst useful in the production of vinyl acetate, which has low deterioration and excellent durability and is highly active, so that it can be used in a fluidized bed reactor. It is in.

【0008】[0008]

【課題を解決するための手段】上記課題を鋭意検討した
結果本願発明者らは以下の発明を完成した。 1,パラジウム成分と、アルカリ金属酢酸塩を担体に担
持し、該担体の粒子径が200μm未満、嵩密度が0.
7〜1.5g/mlの範囲の粒子であり、担体がアルミ
およびマグネシウムを含有するシリカ系組成物であっ
て、アルミをAl23として5〜30重量%、マグネシ
ウムをMgOとして3〜30重量%、ケイ素をSiO2
として40〜92重量%の範囲で含み、かつ、アルミに
対するマグネシウムの原子比(マグネシウム/アルミ)
が1/2より大きく、該担体の外表面から中心方向に0
μmより大きく80μm未満の範囲にパラジウム成分が
担持された層を有し、一酸化炭素の吸着から求めたパラ
ジウム金属成分の表面積が40〜300m2/Pdgで
あることを特徴とする酢酸ビニル合成触媒。 2,当該パラジウム成分がパラジウム金属間化合物であ
ることを特徴とする1記載の酢酸ビニル合成触媒。 3,当該パラジウム金属間化合物がパラジウムとX(X
=鉛、ビスマス、タリウム、水銀、テルル)との金属間
化合物であることを特徴とする2記載の酢酸ビニル合成
触媒。 4,1〜3のいずれかに記載の酢酸ビニル合成触媒を用
いてエチレンと、酸素および酢酸から酢酸ビニルを製造
する方法に関する。
As a result of intensive studies on the above-mentioned problems, the present inventors have completed the following invention. 1, a palladium component and an alkali metal acetate are supported on a carrier, and the carrier has a particle size of less than 200 μm and a bulk density of 0.1 μm.
Particles in the range of 7 to 1.5 g / ml, wherein the carrier is a silica-based composition containing aluminum and magnesium, wherein aluminum is 5 to 30% by weight as Al 2 O 3 and magnesium is 3 to 30% by weight as MgO. Wt% silicon to SiO 2
And the atomic ratio of magnesium to aluminum (magnesium / aluminum)
Is greater than 1/2, and 0 from the outer surface of the carrier toward the center.
a vinyl acetate synthesis catalyst comprising a layer in which a palladium component is supported in a range of more than 80 μm and less than 80 μm, and a surface area of the palladium metal component obtained from adsorption of carbon monoxide is 40 to 300 m 2 / Pdg. . 2. The vinyl acetate synthesis catalyst according to 1, wherein the palladium component is a palladium intermetallic compound. 3. The palladium intermetallic compound is palladium and X (X
(3) an intermetallic compound with lead, bismuth, thallium, mercury, and tellurium). 4. A method for producing vinyl acetate from ethylene, oxygen and acetic acid using the vinyl acetate synthesis catalyst described in any one of 4, 1 to 3.

【0009】以下本発明を詳細に説明する。初めに本発
明に用いる担体について説明する。本発明の担体の粒子
寸法(粒径)は200μm未満である。好ましくは、1
50μm未満、さらに好ましくは100μm未満であ
る。また、粒径の下限の範囲は、粒子の強度、反応性か
らは制限は無いが、粒子が小さいと沈降性が悪く沈降分
離等の簡単で安価なプロセスを使えず、フィルター等の
設備が必要になるなど触媒の分離面からの制約があり好
ましくは10μm以上、さらに好ましくは20μm以上
である。このように気泡塔、流動床、撹拌漕などの反応
方式や触媒の分離方法によって最小粒子径の範囲は任意
に決定することができる。
Hereinafter, the present invention will be described in detail. First, the carrier used in the present invention will be described. The particle size (particle size) of the carrier of the present invention is less than 200 μm. Preferably, 1
It is less than 50 μm, more preferably less than 100 μm. In addition, the lower limit of the particle size is not limited by the strength and reactivity of the particles, but if the particles are small, sedimentation is poor and a simple and inexpensive process such as sedimentation cannot be used, and equipment such as a filter is required. It is preferably 10 μm or more, more preferably 20 μm or more due to restrictions on the separation surface of the catalyst. As described above, the range of the minimum particle diameter can be arbitrarily determined depending on the reaction system such as a bubble column, a fluidized bed, and a stirring tank, and the method for separating the catalyst.

【0010】尚、一般的にサイクロンと呼ばれる分離方
法の場合には平均粒子径が約60μmで20〜100μ
mの範囲の粒子が反応性及び分離の両者を満足すること
から選ばれる。本発明の担体の嵩密度は0.7〜1.5
ml/gの範囲のものが選ばれる。嵩密度は0.7ml
/g以下のものでは、強度が低く割れ、欠けの原因とな
るため好ましくない。一方嵩密度が高いことは強度の面
からは好ましいが1.5ml/g以上の粒子は一般的に
多孔性が低下し、パラジウムの担持性能および反応特性
が低下する傾向が見られることから好ましくない。より
好ましくは嵩密度0.8〜1.3ml/gの範囲の粒子
が強度、多孔性から選ばれる。
Incidentally, in the case of a separation method generally called a cyclone, the average particle diameter is about 60 μm and 20 to 100 μm.
The particles in the range of m are selected because they satisfy both reactivity and separation. The bulk density of the carrier of the present invention is 0.7 to 1.5.
Those in the range of ml / g are selected. 0.7ml bulk density
/ G or less is not preferred because the strength is low and causes cracking and chipping. On the other hand, it is preferable that the bulk density is high in terms of strength, but particles having a volume density of 1.5 ml / g or more generally have low porosity and are not preferable because the palladium carrying performance and the reaction characteristics tend to be low. . More preferably, particles having a bulk density of 0.8 to 1.3 ml / g are selected from strength and porosity.

【0011】本発明の担体に用いるアルミおよびマグネ
シウムを含有するシリカ系組成物(以下、シリカーアル
ミナーマグネシア担体と称する)は、アルミをAl23
として5〜30重量%、マグネシウムをMgOとして3
〜30重量%、ケイ素をSiO2として40〜92重量
%の範囲で含み、シリカ−アルミナ結合による電荷バラ
ンスを補償するためのマグネシウムカチオンの量は4価
のシリカと3価のアルミナとの結合であることを考慮す
ると、原子比でアルミの1/2のマグネシウムで可能で
あり、さらに塩基性を発現するためにはアルミに対する
マグネシウムの原子比(マグネシウム/アルミ)が1/
2より大きいことが好ましい。
The silica-based composition containing aluminum and magnesium used for the carrier of the present invention (hereinafter referred to as silica-alumina-magnesia carrier) is obtained by converting aluminum to Al 2 O 3
5 to 30% by weight as magnesium and MgO as MgO 3
30 wt%, wherein the silicon in the range of 40 to 92 wt% as SiO 2, silica - the amount of magnesium cations to compensate the charge balance by alumina bonding a bond of tetravalent silica and trivalent alumina In consideration of this, it is possible to use magnesium whose atomic ratio is 1/2 of aluminum, and in order to further develop basicity, the atomic ratio of magnesium to aluminum (magnesium / aluminum) is 1 /.
Preferably greater than 2.

【0012】シリカーアルミナーマグネシア担体は、シ
リカーアルミナ結合によって、比較的強度が高いとされ
るシリカゲルよりも高い摩耗強度の付与と、耐水性を付
与する。さらに塩基性マグネシウムはパラジウムをほぼ
量論反応によって担体に沈着させる機能を含むことか
ら、担体に含有される塩基性マグネシウム量を決定すれ
ばパラジウム量も決定することができる。先記した仕込
み割合において、アルミが5重量%以下ではシリカゲル
の改質効果が小さく、30重量%以上では効果がやや低
下する傾向にある。より好ましくは、アルミが5〜20
重量%である。
The silica-alumina-magnesia carrier gives a higher wear strength and water resistance than silica gel, which is considered to be relatively strong, due to the silica-alumina bond. Furthermore, since basic magnesium has a function of depositing palladium on a carrier substantially by a stoichiometric reaction, the amount of palladium can be determined by determining the amount of basic magnesium contained in the carrier. In the charging ratio described above, the effect of modifying silica gel is small when aluminum is 5% by weight or less, and the effect tends to be slightly reduced when aluminum is 30% by weight or more. More preferably, aluminum is 5-20.
% By weight.

【0013】また、マグネシウムの量はシリカーアルミ
ナ結合によって生じる電荷を中性にするための量、及び
塩基成分としての量を確保することが重要である。した
がって、アルミの量、パラジウム担持量等によって最適
な範囲は変化するが一般的に3重量%以下ではパラジウ
ム担持特性が低下し、30重量%以上では、強度の低下
傾向が見られるから好ましくない。次に本発明の担体に
担持されるパラジウム成分について説明する。
It is important to secure the amount of magnesium to make the charge generated by the silica-alumina bond neutral and to maintain the amount as the base component. Therefore, the optimum range varies depending on the amount of aluminum, the amount of palladium carried, and the like. However, when the amount is less than 3% by weight, the palladium carrying characteristics generally decrease. Next, the palladium component carried on the carrier of the present invention will be described.

【0014】本発明では、パラジウム成分は担体中で、
粒子外表面に存在しない層の厚みが厚い程、すなわち担
体内部にパラジウム成分が存在する程摩耗によるパラジ
ウムの剥離が少ないことが予測される。しかし、担体内
部にパラジウム成分が存在する程、逆に反応基質の細孔
内拡散の抵抗が大きくなり反応速度が低下する。すなわ
ち、パラジウム成分が担体内部に分布する位置は摩耗性
と反応速度から最適な分布位置が選定される。具体的に
は担体の外表面からパラジウム成分が存在しない範囲
は、担体の外表面から深さ方向に10μm以内、好まし
くは5μm以内、さらに好ましくは2μmである(以下
A層と称する)。そして、パラジウム成分の存在する範
囲(以下B層と称する)は先記A層を含めて担体の外表
面から80μm以内、好ましくは50μm以内、さらに
好ましくは30μm以内、より好ましくは20μm以内
である。
In the present invention, the palladium component is contained in a carrier,
It is expected that the larger the thickness of the layer not existing on the outer surface of the particles, that is, the more the palladium component exists inside the carrier, the less the palladium peeling due to abrasion. However, the more the palladium component is present inside the support, the greater the resistance of the reaction substrate to diffusion into the pores, and the lower the reaction rate. In other words, the position where the palladium component is distributed inside the carrier is selected from the optimum distribution position based on the abrasion and the reaction speed. Specifically, the range in which the palladium component does not exist from the outer surface of the carrier is 10 μm or less, preferably 5 μm, and more preferably 2 μm in the depth direction from the outer surface of the carrier (hereinafter, referred to as A layer). The range in which the palladium component is present (hereinafter referred to as the layer B) is within 80 μm, preferably within 50 μm, more preferably within 30 μm, and more preferably within 20 μm from the outer surface of the carrier including the layer A.

【0015】パラジウム成分は、一酸化炭素から求めた
担体中のパラジウム金属の比表面積が300m2/Pd
gより大きい値は反応面からは好ましいが、調製上の難
しさが増大すること、また凝集による粒子成長が早くな
りやく、40m2/Pdg以下では活性が低くなるため
に、40〜300m2/Pdgの範囲が選ばれる。また
本発明にはパラジウム成分に加えてアルカリ金属酢酸塩
を添加することを特徴としている。
The palladium component has a specific surface area of palladium metal in the carrier determined from carbon monoxide of 300 m 2 / Pd.
Although g greater than preferred from the reaction surface, that difficulties on preparation increases, also bake faster particle growth by agglomeration, since the activity decreases in the following 40m 2 / Pdg, 40~300m 2 / A range of Pdg is chosen. Further, the present invention is characterized in that an alkali metal acetate is added in addition to the palladium component.

【0016】本発明のアルカリ金属酢酸塩を構成するア
ルカリ金属の種類としては、ナトリウム、カリウム、ル
ビジウム、セシウムから選ぶことができる。好ましくは
カリウムが選ばれる。添加量はアルカリ金属の種類によ
って異なるが、酢酸カリウムを例に示すと触媒全重量に
対して、0.1〜10重量%、好ましくは1〜4重量%
で使用する。次に本発明のシリカーアルミナーマグネシ
ア担体の合成について具体例を用いて示す。
The kind of alkali metal constituting the alkali metal acetate of the present invention can be selected from sodium, potassium, rubidium and cesium. Preferably, potassium is selected. The amount of addition varies depending on the type of alkali metal. For example, potassium acetate is used in an amount of 0.1 to 10% by weight, preferably 1 to 4% by weight, based on the total weight of the catalyst.
Used in. Next, the synthesis of the silica-alumina-magnesia carrier of the present invention will be described using specific examples.

【0017】シリカ源としてシリカゾル溶液、アルコキ
シド類を用い、アルミ源としてアルミナゾル、硝酸アル
ミ、酢酸アルミを用い、マグネシウム源として硝酸マグ
ネシウム、酢酸マグネシウム等を用いて混合する。この
混合溶液を110〜280℃、好ましくは130〜24
0℃で噴霧乾燥し、次いで噴霧乾燥された粒子を好まし
くは500〜700℃、好ましくは600〜660℃の
温度で焼成して担体を形成させることにより製造され
る。この場合、焼成して得られる担体の嵩密度が0.7
〜1.5g/mlとなるようにスラリーの固形分濃度や
スラリー粘度を調整する。あるいは嵩密度の調整剤とし
て上記焼成条件でガス状に分解する無機化合物、有機
物、ポリマー等を添加することもできる。
A silica sol solution and alkoxides are used as a silica source, alumina sol, aluminum nitrate and aluminum acetate are used as an aluminum source, and magnesium nitrate and magnesium acetate are used as a magnesium source. This mixed solution is heated to 110 to 280 ° C, preferably 130 to 24 ° C.
It is prepared by spray drying at 0 ° C. and then calcining the spray dried particles at a temperature of preferably 500-700 ° C., preferably 600-660 ° C. to form a carrier. In this case, the bulk density of the carrier obtained by firing is 0.7
The solid content concentration and slurry viscosity of the slurry are adjusted so as to be 1.5 g / ml. Alternatively, an inorganic compound, an organic substance, a polymer, or the like that decomposes into a gas under the above-mentioned firing conditions can be added as a bulk density regulator.

【0018】また、担体の比表面積は窒素吸着法による
測定で、10〜700m2/gの物が使用されるが、好
適には20〜350m2/g、さらに好適には50〜3
00m2/gの物が使用される。比表面積が10m2/g
以下では、パラジウム成分を担持しにくく、または担持
しても剥離しやすいので好ましくない。また、得られる
触媒の反応活性も低い。触媒調製上からは、担体の比表
面積が大きいことは特に問題はない。しかしながら、比
表面積が大きい場合には機械的強度、および耐腐食性が
低下する傾向が見られる。このため、最も好ましくは比
表面積が50〜250m2/gの範囲から選ばれる。
The specific surface area of the carrier is 10 to 700 m 2 / g as measured by the nitrogen adsorption method, preferably 20 to 350 m 2 / g, more preferably 50 to 3 m 2 / g.
A material of 00 m 2 / g is used. Specific surface area is 10m 2 / g
In the following, it is not preferable because the palladium component is hardly supported or is easily peeled off even if it is supported. Further, the reaction activity of the obtained catalyst is low. From the viewpoint of catalyst preparation, there is no particular problem that the specific surface area of the support is large. However, when the specific surface area is large, the mechanical strength and the corrosion resistance tend to decrease. For this reason, the specific surface area is most preferably selected from the range of 50 to 250 m 2 / g.

【0019】次に、パラジウム成分の分布が制御された
触媒の製造について一般的な方法を以下に説明する。本
発明の方法は、予め塩基性マグネシウムを含有するシリ
カーアルミナーマグネシア担体の微粒子とパラジウム含
有溶液を反応させ、担体内部に固定する方法である。原
理に不明な点はあるが例えば塩化パラジウム含有溶液に
塩化アルミ溶液を共存させてシリカーアルミナーマグネ
シア担体と反応させると、パラジウム成分を担体の外表
面に担持させないことができる。そして加える塩化アル
ミの量を変化させることでパラジウム成分の存在しない
A層の厚みが制御できる。これはアルミがパラジウムよ
り担体中の塩基性マグネシウムと選択的に反応するため
と思われ、担体の外表面の塩基性マグネシウムから先に
アルミと反応して消費されるため担体の内部表面に残存
する塩基性マグネシウムとパラジウムとが反応して担体
内部にパラジウム成分が固定されたB層ができるものと
推定される。
Next, a general method for producing a catalyst in which the distribution of the palladium component is controlled will be described below. The method of the present invention is a method in which fine particles of a silica-alumina-magnesia carrier containing basic magnesium are reacted in advance with a palladium-containing solution, and immobilized inside the carrier. Although the principle is unknown, for example, when an aluminum chloride solution is allowed to coexist with a palladium chloride-containing solution and reacted with a silica-alumina-magnesia carrier, the palladium component can not be carried on the outer surface of the carrier. By changing the amount of aluminum chloride to be added, the thickness of the layer A where no palladium component is present can be controlled. This is thought to be because aluminum selectively reacts with basic magnesium in the carrier over palladium, and remains on the internal surface of the carrier because basic magnesium on the outer surface of the carrier reacts with aluminum first and is consumed. It is presumed that the basic magnesium and palladium react to form a layer B in which the palladium component is fixed inside the carrier.

【0020】したがって、本発明の方法を用いると、担
体の塩基性マグネシウムの量、担持するパラジウムの
量、添加するアルミの量によって、粒子内のパラジウム
成分の分布が制御できることがわかる。担体の塩基性マ
グネシウムと反応したパラジウムは水酸化物として担体
内部の細孔内部に沈積すると考えられる。水酸化パラジ
ウムは溶解度が極めて低いため塩基性マグネシウムとの
反応で位置が固定されると考えられる。最終的に、触媒
として作用するパラジウム金属に変換するには、還元剤
をもちいて還元操作によってパラジウム金属とする。
Therefore, it can be seen that the use of the method of the present invention can control the distribution of the palladium component in the particles by the amount of the basic magnesium of the carrier, the amount of the supported palladium, and the amount of the added aluminum. It is considered that the palladium reacted with the basic magnesium of the carrier is deposited as hydroxide in the pores inside the carrier. Since the solubility of palladium hydroxide is extremely low, it is considered that the position is fixed by the reaction with basic magnesium. Finally, in order to convert to palladium metal which acts as a catalyst, palladium metal is converted by a reduction operation using a reducing agent.

【0021】パラジウム溶液が担体中の塩基性マグネシ
ウムと接触して反応する温度は、担持するパラジウムの
量によっても異なるが、60℃以上の場合にパラジウム
成分の担体外表面から深さ方向への分布巾が狭くなる。
好ましくは80℃以上、さらに好ましくは90℃以上で
ある。100℃以上でも実施は可能であるが一般的に効
果は90℃とあまり差がない。操作に安全な温度である
100℃までの温度で実施される。また、本発明の触媒
における担体に対するパラジウムの重量割合は0.1〜
5.0重量%、好ましくは0.2〜4.0重量%、特に
好ましくは0.3〜2.0重量%である。
The temperature at which the palladium solution contacts and reacts with the basic magnesium in the carrier varies depending on the amount of palladium to be supported. Cloth width becomes narrow.
It is preferably at least 80 ° C, more preferably at least 90 ° C. Although it is possible to carry out the process even at 100 ° C. or higher, the effect is generally not so different from 90 ° C. It is carried out at temperatures up to 100 ° C., which is a safe temperature for operation. The weight ratio of palladium to the carrier in the catalyst of the present invention is 0.1 to 0.1.
It is 5.0% by weight, preferably 0.2 to 4.0% by weight, particularly preferably 0.3 to 2.0% by weight.

【0022】本発明のパラジウム成分の担持に用いられ
るパラジウム化合物は、水や有機溶媒などの溶媒に溶解
するパラジウム化合物であればよく、塩化パラジウム、
硝酸パラジウム、酢酸パラジウム、が挙げられるが溶解
度が高く工業的に利用しやすい塩化パラジウムが好まし
い。また、本発明においては、パラジウム成分がパラジ
ウムと他の金属とからなるパラジウム金属間化合物を形
成させる場合であっても構わない。パラジウム金属間化
合物は具体的にはパラジウム−X(X=鉛、ビスマス、
タリウム、水銀、テルル)であることが好ましい。
The palladium compound used for supporting the palladium component of the present invention may be any palladium compound that can be dissolved in a solvent such as water or an organic solvent.
Palladium nitrate and palladium acetate are mentioned, but palladium chloride having high solubility and easy to use industrially is preferable. In the present invention, the palladium component may form a palladium intermetallic compound composed of palladium and another metal. The palladium intermetallic compound is specifically palladium-X (X = lead, bismuth,
(Thallium, mercury, tellurium).

【0023】上記パラジウム金属間化合物の製造方法
は、例えばパラジウムと鉛とからなるパラジウム金属間
化合物(Pd−Pb)は、先記したように、担体にパラ
ジウム溶液を含浸担持させた後、還元する前に酢酸鉛や
硝酸鉛のような水溶液に含浸させて鉛を添加し、その後
還元することでPd−Pbの金属間化合物を形成させ
る。パラジウムと金属間化合物を形成する金属でも水溶
液として存在しにくいビスマスなどは有機溶剤を用いる
ことも可能である。調製に有用な溶剤は具体的には水お
よび以下のような揮発性有機溶剤をあげることができ
る。4個もしくはそれ以下の炭素を有するカルボン酸、
アルコー ル、エーテル、エステルおよび芳香族物質で
ある。
In the method for producing a palladium intermetallic compound, for example, a palladium intermetallic compound (Pd-Pb) composed of palladium and lead is reduced by impregnating a carrier with a palladium solution as described above. The lead is impregnated with an aqueous solution such as lead acetate or lead nitrate, and lead is added. Thereafter, the lead is reduced to form an intermetallic compound of Pd-Pb. An organic solvent can be used for bismuth or the like, which does not easily exist as an aqueous solution even with a metal forming an intermetallic compound with palladium. Solvents useful for the preparation include, specifically, water and the following volatile organic solvents. A carboxylic acid having 4 or less carbons,
Alcohols, ethers, esters and aromatics.

【0024】パラジウム金属間化合物の場合にXはパラ
ジウムと量論的な組み合わせによって規定される。例え
ば、Pd3Pb1、Pd3Tl1、Pd4Te1、Pd5
3、Pd5Bi2などを形成させる比率によって概ねの
値を決めることができる。触媒構造にとって、パラジウ
ム金属に比べ、触媒性能を変化させるばかりでなく、パ
ラジウム金属間化合物は酸化や還元によって結晶子の成
長がしにくいなど、反応条件で安定であり触媒寿命の面
からも好ましい。上記Xを添加するための概略のXの仕
込量としては、担体に対して0より大きく5.0重量%
以下、好ましくは0.1重量%以上4.0重量%以下、
特に好ましくは0.1重量%以上3.0重量%以下であ
る。
In the case of a palladium intermetallic compound, X is defined by a stoichiometric combination with palladium. For example, Pd 3 Pb 1 , Pd 3 Tl 1 , Pd 4 Te 1 , Pd 5 H
The approximate value can be determined by the ratio at which g 3 and Pd 5 Bi 2 are formed. In terms of the catalyst structure, the palladium intermetallic compound is stable under the reaction conditions, such as being difficult to grow crystallites due to oxidation and reduction, and is preferable from the viewpoint of catalyst life, in addition to changing the catalyst performance as compared with palladium metal. The approximate amount of X to be added to add X is greater than 0 and 5.0% by weight based on the carrier.
Or less, preferably 0.1% by weight or more and 4.0% by weight or less,
Particularly preferably, the content is 0.1% by weight or more and 3.0% by weight or less.

【0025】本発明は上記パラジウム成分に加えてアル
カリ金属酢酸塩の添加を特徴としている。以下にその添
加方法について説明する。アルカリ金属酢酸塩は、例え
ば酢酸カリウムを水または有機溶媒に所定量を溶解させ
パラジウム成分を担持した担体に含浸させ、溶媒成分を
乾燥等によって除去し固定する方法。好ましくは担体の
細孔容積と等しいかあるいはやや少な目の溶液に酢酸カ
リウムを吸収させ含浸、乾燥する方法。あるいは、触媒
粒子を80℃の温度でかき混ぜながら所定の酢酸カリウ
ムをスプレーしながら担持する方法によって固定化する
ことができる。乾燥温度は溶媒の水や有機溶媒が除けれ
は室温以下の温度〜150℃の範囲で実施できる。通常
常圧で実施する場合には、60℃〜150℃、好ましく
は70℃〜120℃の範囲で乾燥される。
The present invention is characterized by adding an alkali metal acetate in addition to the above-mentioned palladium component. Hereinafter, the method of addition will be described. The alkali metal acetate is, for example, a method of dissolving a predetermined amount of potassium acetate in water or an organic solvent, impregnating the carrier carrying a palladium component, and removing and fixing the solvent component by drying or the like. Preferably, a method in which potassium acetate is absorbed into a solution having a pore volume equal to or slightly smaller than the pore volume of the carrier, impregnated, and dried. Alternatively, the catalyst particles can be immobilized by a method in which predetermined potassium acetate is sprayed and supported while stirring at a temperature of 80 ° C. The drying can be carried out at a temperature of room temperature or lower to 150 ° C., except for the solvent water and the organic solvent. When it is usually carried out at normal pressure, it is dried at a temperature of 60C to 150C, preferably 70C to 120C.

【0026】以上の方法にて本発明の触媒を製造するこ
とが可能となる。次に本発明の触媒を用いた酢酸ビニル
の製造条件について説明する。先ずエチレン、酸素、酢
酸および水を気相で反応させて酢酸ビニルを製造する
際、反応温度は100〜250℃であるが、好ましくは
140〜200℃であることが実用上有利である。ま
た、反応圧力は設備の点から0.5×105Pa〜3.
0×106Paであることが実用上有利であるが、更に
好ましくは1.0×105Pa〜1.0×106Paの範
囲である。
The catalyst of the present invention can be produced by the above method. Next, conditions for producing vinyl acetate using the catalyst of the present invention will be described. First, when ethylene, oxygen, acetic acid and water are reacted in the gas phase to produce vinyl acetate, the reaction temperature is 100 to 250 ° C, preferably 140 to 200 ° C. The reaction pressure is 0.5 × 10 5 Pa to 3.3 from the viewpoint of equipment.
Although it is practically advantageous to be 0 × 10 6 Pa, it is more preferably in the range of 1.0 × 10 5 Pa to 1.0 × 10 6 Pa.

【0027】本発明の方法において反応系に供給するガ
スはエチレン、酸素、酢酸および水からなり、必要に応
じて窒素、二酸化炭素または反応に不活性なガスなどを
希釈剤として使用することもできる。かかる供給ガス全
量に対して、エチレンは2〜80容量%、好ましくは5
〜50容量%の割合となる量で、酸素は1〜15容量
%、好ましくは3〜10容量%の割合となる量で、また
酢酸は2〜30容量 %、好ましくは3〜10容量%の割
合となる量、水は0.5〜50容量%、好ましくは0.
5〜30容量%で反応系に供給される。
In the method of the present invention, the gas supplied to the reaction system comprises ethylene, oxygen, acetic acid and water. If necessary, nitrogen, carbon dioxide or a gas inert to the reaction can be used as a diluent. . Ethylene is 2-80% by volume, preferably 5%, based on the total amount of the supplied gas.
Oxygen in an amount of 1 to 15% by volume, preferably 3 to 10% by volume, and acetic acid in an amount of 2 to 30% by volume, preferably 3 to 10% by volume. The proportioning amount of water is 0.5 to 50% by volume, preferably 0.1 to 50% by volume.
It is supplied to the reaction system at 5 to 30% by volume.

【0028】本発明の方法を実施するに当たり、原料エ
チレンとして高純度のものを用いるのが有利であるが、
メタン、エタン、プロパン等の低級飽和炭化水素が若干
混入しても差し支えない。また酸素は、窒素、炭酸ガス
等の不活性ガスで希釈されたもの、例えば空気の形でも
供給できるが、反応ガスを循環させる場合には一般に高
濃度、好適には99%以上の酸素を用いるほうが有利で
ある。反応混合ガスの供給速度は、触媒が流動状態を形
成する速度以上であれば原理的に実施できる。ラボ装置
のように数mmから数cm径の反応器では最小流動化速
度より大きい線速であれば特に問題は無いが、反応器の
直径が数メーターに及ぶ大型の反応器では、流動層内に
おける気泡の成長や逆混合による滞留時間の増大に伴い
生成物の分解が発生する恐れがある。したがって、反応
器の大きさに合わせた流速の選定は重要である。最適な
速度は、反応器の直径、触媒分離用サイクロンの能力に
よって最適な範囲が選定されるが。通常は線速度0.0
1m/sec〜2.0m/sec、の範囲から選定され
る。好ましくは一般に0.02〜1.5m/secの範
囲で行われる。
In carrying out the process of the present invention, it is advantageous to use high-purity ethylene as a raw material.
A small amount of lower saturated hydrocarbon such as methane, ethane and propane may be mixed. Oxygen can also be supplied in a form diluted with an inert gas such as nitrogen or carbon dioxide gas, for example, in the form of air. However, when circulating a reaction gas, oxygen having a high concentration, preferably 99% or more is generally used. Is more advantageous. The reaction mixture gas can be supplied in principle at a rate higher than the rate at which the catalyst forms a fluid state. In a reactor with a diameter of several mm to several cm, such as a lab device, there is no particular problem if the linear velocity is higher than the minimum fluidization speed, but in a large reactor with a diameter of several meters, the inside of the fluidized bed The decomposition of the product may occur due to the growth of air bubbles and the increase in the residence time due to back mixing. Therefore, it is important to select a flow rate according to the size of the reactor. The optimum speed is selected according to the diameter of the reactor and the capacity of the cyclone for separating the catalyst. Normally linear velocity 0.0
It is selected from the range of 1 m / sec to 2.0 m / sec. Preferably, it is generally performed in the range of 0.02 to 1.5 m / sec.

【0029】[0029]

【発明の実施の形態】本発明を実施例をもってより具体
的に説明する。尚、本発明では反応器による触媒活性の
評価試験、摩耗性試験は以下の方法にて測定した。 (反応器による触媒活性評価試験)50gの触媒を底部
に目開き10μmのSUS製の焼結フィルターを設置
し、上部にも触媒と反応ガスを分離することを目的とし
た底部と同様の目開き10μmのSUS焼結フィルター
を備えた直径1インチのSUS製の流動床反応器に投入
し、底部のフィルター側から反応原料ガスを供給して触
媒活性の評価試験を行う。標準的には触媒層と反応原料
ガスの接触時間は3秒となるように反応原料ガスを供給
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described more specifically with reference to embodiments. In the present invention, the catalyst activity evaluation test and the abrasion test using a reactor were measured by the following methods. (Catalyst activity evaluation test using a reactor) A SUS sintered filter with a mesh size of 10 μm was installed at the bottom with 50 g of catalyst, and the same mesh size as the bottom was used at the top to separate the catalyst and the reaction gas. It is charged into a 1-inch diameter SUS fluidized-bed reactor equipped with a 10-μm SUS sintered filter, and a reaction raw material gas is supplied from the filter side at the bottom to perform an evaluation test of catalytic activity. Typically, the reactant gas is supplied such that the contact time between the catalyst layer and the reactant gas is 3 seconds.

【0030】反応によって生成した生成ガスはガスクロ
マトグラフィーによって分析する。ガス反応器流出物を
オンラインで、熱伝導度検出器(TCD)および燃焼イ
オン検出器(FID)が装着された島津14B型ガスク
ロマトグラフ装置を用いて分析した。酸素と窒素とエチ
レンと二酸化炭素はモレキュラシーブ(13X)と担体
の粒子径が80/100メッシュのクロモソルブ101
を用いTCDにより定量する。酢酸ビニルと酢酸はガス
クロパックー56で分離し、FIDにより定量する。そ
して、反応器圧力を制御し、配管は全て180℃程度に
維持して、液体供給物もしくは生成物の凝縮を防止す
る。
The product gas generated by the reaction is analyzed by gas chromatography. The gas reactor effluent was analyzed online using a Shimadzu Model 14B gas chromatograph equipped with a thermal conductivity detector (TCD) and a combustion ion detector (FID). Oxygen, nitrogen, ethylene, and carbon dioxide consist of molecular sieve (13X) and chromosolve 101 having a carrier particle diameter of 80/100 mesh.
And quantified by TCD. Vinyl acetate and acetic acid are separated by gas chromatography-56 and quantified by FID. The reactor pressure is then controlled, and all piping is maintained at about 180 ° C. to prevent condensation of liquid feed or product.

【0031】(摩耗性試験)触媒粒子の摩耗強度は、通
常の流動接触触媒(FCC)の試験方法を用いる。即
ち、底部に1/64インチの3つのオリフィスを有する
孔明円板を備えた、内径1.5インチの垂直チューブに
粒子50gを正確に秤量、投入し孔の部位で音速となる
速度で空気を流し粒子を激しく稼働させた。触媒粒子の
摩耗強度は、5〜20時間の間に微細化して垂直チュー
ブの上部から逸散した粒子の初期投入量に対する割合と
して求めた。 <参考製造例>シリカゾル水溶液として日産化学社製ス
ノーテックスN−30(SiO2分:30重量%)に硝
酸アルミ、硝酸マグネシウムをそれぞれAl/Si+A
l=10モル%、Mg/Si+Mg=10モル%となる
ように加え固形分濃度26重量%の溶液を調整した。1
30℃の温度に設定した噴霧乾燥機で噴霧乾燥して乾燥
粒子を得た。乾燥した粒子は空気を吹き込みながら、室
温から400℃まで2時間かけて昇温し1時間保持さら
に600℃まで1時間で昇温し600℃で2時間焼成
し、150μm以上、20μm以下は篩い分けて除き平
均粒子径60μmの球状シリカ−アルミナ−マグネシア
担体を得た。嵩密度を測定したところ0.91g/ml
であった。
(Abrasion test) The abrasion strength of the catalyst particles is determined by using a conventional test method for a fluid contact catalyst (FCC). That is, 50 g of particles are accurately weighed and charged into a 1.5-inch inner diameter vertical tube equipped with a perforated disk having three orifices of 1/64 inch at the bottom, and air is blown at a speed that is sonic at the hole. The sink particles were run vigorously. The abrasion strength of the catalyst particles was determined as a percentage of the initial charge of particles that were refined during 5-20 hours and escaped from the top of the vertical tube. <Reference Manufacturing Example> Aluminum nitrate and magnesium nitrate were respectively added to Al / Si + A in Snowtex N-30 (SiO 2 content: 30% by weight) manufactured by Nissan Chemical Industries as a silica sol aqueous solution.
A solution having a solid content of 26% by weight was prepared by adding l = 10 mol% and Mg / Si + Mg = 10 mol%. 1
The dried particles were obtained by spray drying with a spray dryer set at a temperature of 30 ° C. The dried particles are heated from room temperature to 400 ° C. over 2 hours and kept for 1 hour while blowing air, and then heated up to 600 ° C. for 1 hour and calcined at 600 ° C. for 2 hours, and sieved at 150 μm or more and 20 μm or less. After removal, a spherical silica-alumina-magnesia carrier having an average particle diameter of 60 μm was obtained. When the bulk density was measured, it was 0.91 g / ml.
Met.

【0032】[0032]

【実施例1】参考製造例の球状シリカーアルミナーマグ
ネシア担体100重量部当たりパラジウムとして1.0
重量部、アルミとして0.35重量部となるように塩化
パラジウムナトリウム塩(Na2PdCl4)、硝酸アル
ミを溶解した15重量%水溶液を90℃に加温し撹拌し
ながら準備しておく。つぎに担体100重量部を乾燥状
態で瞬時に投入し90℃でさらに60分間撹拌する。溶
液中のパラジウムを完全に吸着させた後に、液をデカン
トしパラジウムを担持した担体を数回蒸留水で洗浄し
た。
EXAMPLE 1 1.0 palladium per 100 parts by weight of the spherical silica-alumina-magnesia carrier of Reference Production Example
A 15% by weight aqueous solution in which palladium chloride sodium salt (Na 2 PdCl 4 ) and aluminum nitrate are dissolved is heated to 90 ° C. and prepared with stirring so that the weight becomes 0.35 parts by weight of aluminum. Next, 100 parts by weight of the carrier is instantaneously charged in a dry state, and the mixture is further stirred at 90 ° C. for 60 minutes. After the palladium in the solution was completely adsorbed, the liquid was decanted and the carrier supporting palladium was washed several times with distilled water.

【0033】つぎに酢酸ナトリウムをパラジウムに対し
て6倍モル量加えた水溶液に、上記のパラジウム担持体
を投入し撹拌した。温度を60℃に加温し、つぎにPd
/Pb=3/1.3(モル比)相当の酢酸鉛溶液を加え
30分間保持した。つぎに、パラジウムに対し4倍モル
量のヒドラジン水溶液をかき混ぜながら約30分間かけ
てゆっくりと滴下して、還元処理を3時間行った。引き
続き蒸留水で、塩素イオンが検出されなくなるまで約1
0回洗浄した。そして、洗浄終了後強制通気オーブン内
で60℃にて1晩乾燥した後、冷却し、次いで担体10
0重量部に対して3.5重量部の酢酸カリウムの水溶液
を加え、できるだけ均一に分散担持されるように混合物
を回動させながら含浸した。次いで再びステンレス鋼ス
クリーン上で強制通気オーブン内にて60℃で乾燥し本
発明の触媒を得た。
Next, the above-mentioned palladium carrier was added to an aqueous solution in which sodium acetate was added in a molar amount 6 times the amount of palladium, and the mixture was stirred. The temperature was raised to 60 ° C. and then Pd
A lead acetate solution corresponding to /Pb=3/1.3 (molar ratio) was added and maintained for 30 minutes. Next, a hydrazine aqueous solution having a molar ratio of 4 times the amount of palladium was slowly added dropwise over about 30 minutes while stirring, and a reduction treatment was performed for 3 hours. Continue using distilled water until chlorine ions are no longer detected.
Washed 0 times. After the washing is completed, the substrate is dried in a forced air oven at 60 ° C. overnight, cooled, and then dried.
An aqueous solution of 3.5 parts by weight of potassium acetate was added to 0 parts by weight, and the mixture was impregnated while rotating so that the mixture was dispersed and supported as uniformly as possible. Then, it was dried again at 60 ° C. in a forced air oven on a stainless steel screen to obtain a catalyst of the present invention.

【0034】得られた触媒を樹脂に包埋し研磨して触媒
粒子断面を形成させ、日本電子製JXA−8800R、
X線マクロアナライザー(EPMA)を用いて測定し
た。加速電圧15KV、電子ビーム直径0.1μm、分
光結晶はPd=PETH、Pb=PETH、Si=TA
Pを用いて行った。粒子断面の画像解析から、粒子外表
面から深さ方向2μmにはパラジウムは存在せず、外表
面から10μm以内にほぼ100%分散担持されている
ことが観測された。一酸化炭素の吸着より求めたパラジ
ウム金属の比表面積(MAS)は103m2/Pdgの
値が得られた。触媒の摩耗強度を測定したところ、5〜
20時間の重量減少は1.2%であった。また、摩耗強
度測定後の試料を王水に溶解しパラジウムの減少率を測
定したところ0.1%以下であった。
The obtained catalyst was embedded in a resin and polished to form a cross section of catalyst particles, and JXA-8800R manufactured by JEOL Ltd.
The measurement was performed using an X-ray macro analyzer (EPMA). Acceleration voltage: 15 KV, electron beam diameter: 0.1 μm, spectral crystals: Pd = PETH, Pb = PETH, Si = TA
Performed with P. From the image analysis of the cross section of the particles, it was observed that palladium was not present in the depth direction of 2 μm from the outer surface of the particles and almost 100% was dispersed and supported within 10 μm from the outer surface. The specific surface area (MAS) of palladium metal determined from adsorption of carbon monoxide was 103 m 2 / Pdg. When the wear strength of the catalyst was measured,
The 20 hour weight loss was 1.2%. Further, the sample after the measurement of the wear strength was dissolved in aqua regia and the reduction ratio of palladium was measured to be 0.1% or less.

【0035】[0035]

【実施例2】直径1インチのSUS製反応器に実施例1
の触媒50gを充填し8.0×10 5Paおよび150
℃にて反応器による触媒活性の評価試験を行なった。触
媒の前処理として、触媒を窒素気流中160℃で3時
間、次いでエチレン気流中150℃で10分間8.0×
105Paにて加熱した。次いで酢酸蒸気をエチレンと
15対1となるように混合した混合ガスを少なくとも1
時間にわたり供給した。
Example 2 Example 1 was applied to a 1-inch diameter SUS reactor.
Of 8.0 × 10 FivePa and 150
An evaluation test of the catalyst activity was conducted at ℃ in a reactor. Touch
As a pretreatment of the medium, the catalyst was placed in a nitrogen stream at 160 ° C. for 3 hours.
8.0 × 10 minutes at 150 ° C. in a stream of ethylene.
10FiveHeated at Pa. The acetic acid vapor is then combined with ethylene.
At least 1 mixture of 15: 1 gas mixture
Feeded over time.

【0036】反応は前記した酢酸蒸気とエチレンとの混
合ガスに水を添加したものを供給しながら、ヘリウムと
酸素の混合ガスを徐々に添加し、最終的にはエチレン、
酸素、酢酸、水、ヘリウムの比率が60:4:15:1
5:6の割合になるような混合比とした。エチレン、酸
素、酢酸、水、ヘリウムの混合ガスと触媒との接触時間
が3秒になる流速を維持し、150℃で酢酸ビニルの合
成を行った。生成したガスをガスクロマトグラフィーに
て分析した結果、酢酸ビニルの選択率85.2%、炭酸
ガス(二酸化炭素)の選択率14.5%、エチレンの転
化率は16.7%であった。選択率は反応生成物中の酢
酸ビニルと炭酸ガスを生成する為に必要なエチレンに換
算し直して、その割合から算出した。示した数値は全
て、エチレン、酸素、酢酸、水、ヘリウムが先の混合比
となってから8時間後の反応ガスを測定した結果であ
る。
In the reaction, a mixed gas of helium and oxygen is gradually added while supplying the above-mentioned mixed gas of acetic acid vapor and ethylene to which water has been added.
The ratio of oxygen, acetic acid, water and helium is 60: 4: 15: 1
The mixing ratio was 5: 6. The flow rate at which the contact time between the mixed gas of ethylene, oxygen, acetic acid, water and helium and the catalyst was 3 seconds was maintained, and vinyl acetate was synthesized at 150 ° C. As a result of analyzing the generated gas by gas chromatography, the selectivity of vinyl acetate was 85.2%, the selectivity of carbon dioxide (carbon dioxide) was 14.5%, and the conversion of ethylene was 16.7%. The selectivity was recalculated to ethylene required to generate vinyl acetate and carbon dioxide in the reaction product, and calculated from the ratio. All the numerical values shown are the results of measuring the reaction gas 8 hours after the mixing ratio of ethylene, oxygen, acetic acid, water, and helium became the above.

【0037】[0037]

【比較例1】市販のシリカゲル(平均粒子径100μ
m)を担体に用い、4wt%のマグネシウム量の酢酸マ
グネシウムを含浸させ、600℃で焼成した。担体10
0重量部当たりパラジウムとして1.0重量部となるよ
うに塩化パラジウムナトリウム塩(Na2PdCl4)の
15重量%水溶液を室温で撹拌しながら準備し、つぎに
担体100重量部を乾燥状態で瞬時に投入し室温でさら
に120分間撹拌する。溶液中のパラジウムを完全に吸
着させた後に、液をデカントしパラジウムを担持した担
体を数回蒸留水で洗浄した。
Comparative Example 1 Commercially available silica gel (average particle diameter 100 μm)
m) was used as a carrier, and impregnated with magnesium acetate having a magnesium content of 4 wt%, and calcined at 600 ° C. Carrier 10
A 15% by weight aqueous solution of sodium palladium chloride (Na 2 PdCl 4 ) is prepared at room temperature with stirring so that the amount of palladium becomes 1.0 part by weight per 0 parts by weight, and then 100 parts by weight of the carrier is instantaneously dried. And stirred at room temperature for another 120 minutes. After the palladium in the solution was completely adsorbed, the liquid was decanted and the carrier supporting palladium was washed several times with distilled water.

【0038】つぎに酢酸ナトリウムをパラジウムに対し
て6倍モル量加えた水溶液に、上記のパラジウム担持体
を投入し撹拌した。温度を60℃に加温しつぎにPd/
Pb=3/1.3(モル比)相当の酢酸鉛溶液を加え3
0分間保持する。つぎに、パラジウムに対し4倍モル量
のヒドラジン水溶液をかき混ぜながら約30分間かけて
ゆっくりと滴下して、還元処理を3時間行った。引き続
き蒸留水で、塩素イオンが検出されなくなるまで約10
回洗浄した。そして、洗浄終了後触媒を強制通気オーブ
ン内で60℃にて1晩乾燥し、冷却し、次いで担体10
0重量部に対して3.5重量部の酢酸カリウムの水溶液
を加え、できるだけ均一に分散担持されるように混合物
を回動させながら含浸した。次いで再びステンレス鋼ス
クリーン上で強制通気オーブン内にて60℃で乾燥しシ
リカゲルを担体とした触媒を得た。
Next, the above-mentioned palladium carrier was added to an aqueous solution in which sodium acetate was added in a molar amount 6 times the amount of palladium, and the mixture was stirred. The temperature was raised to 60 ° C and then Pd /
A lead acetate solution corresponding to Pb = 3 / 1.3 (molar ratio) was added and 3
Hold for 0 minutes. Next, a hydrazine aqueous solution having a molar ratio of 4 times the amount of palladium was slowly added dropwise over about 30 minutes while stirring, and a reduction treatment was performed for 3 hours. Continue with distilled water until chlorine ions are no longer detected.
Washed twice. After the washing, the catalyst is dried in a forced air oven at 60 ° C. overnight, cooled, and then dried.
An aqueous solution of 3.5 parts by weight of potassium acetate was added to 0 parts by weight, and the mixture was impregnated while rotating so that the mixture was dispersed and supported as uniformly as possible. Then, it was dried again at 60 ° C. in a forced air oven on a stainless steel screen to obtain a catalyst using silica gel as a carrier.

【0039】得られた触媒を実施例1と同様に画像解析
を行った。その結果、粒子断面の画像解析の結果から、
粒子外表面から深さ方向に均一にパラジウムが存在して
いることが判明した。また、鉛もパラジウムと同一の分
布を示した。一酸化炭素の吸着より求めたパラジウム金
属の比表面積(MAS)は31m2/Pdgの値が得ら
れた。得られた触媒を用いて、実施例2と同様の評価を
行ったところ、酢酸ビニルの選択率82.2%、炭酸ガ
スの選択率17.5%、エチレンの転化率は6.3%で
あった。触媒の摩耗強度を測定したところ、5〜20時
間の重量減少は5.8%であり、摩耗強度測定後の試料
を王水に溶解しパラジウムの減少率を測定したところ
5.3%であった。
The obtained catalyst was subjected to image analysis in the same manner as in Example 1. As a result, from the results of image analysis of the particle cross section,
It was found that palladium was uniformly present in the depth direction from the outer surface of the particles. Lead also showed the same distribution as palladium. The specific surface area (MAS) of palladium metal determined from the adsorption of carbon monoxide was 31 m 2 / Pdg. When the same evaluation as in Example 2 was performed using the obtained catalyst, the selectivity for vinyl acetate was 82.2%, the selectivity for carbon dioxide was 17.5%, and the conversion of ethylene was 6.3%. there were. When the wear strength of the catalyst was measured, the weight loss in 5 to 20 hours was 5.8%, and the sample after the wear strength measurement was dissolved in aqua regia and the reduction rate of palladium was measured to be 5.3%. Was.

【0040】[0040]

【実施例3】参考製造例の球状シリカーアルミナーマグ
ネシア担体100重量部当たりパラジウムとして1.3
重量部、アルミとして0.35重量部となるように塩化
パラジウムナトリウム塩(Na2PdCl4)、硝酸アル
ミを溶解した15重量%水溶液を90℃に加温し撹拌し
ながら準備しておく。つぎに担体100重量部を乾燥状
態で瞬時に投入し90℃でさらに60分間撹拌する。溶
液中のパラジウムを完全に吸着させた後に、液をデカン
トしパラジウムを担持した担体を数回蒸留水で洗浄し
た。
EXAMPLE 3 1.3 as palladium per 100 parts by weight of the spherical silica-alumina-magnesia carrier of Reference Production Example.
A 15% by weight aqueous solution in which palladium chloride sodium salt (Na 2 PdCl 4 ) and aluminum nitrate are dissolved is heated to 90 ° C. and prepared with stirring so that the weight becomes 0.35 parts by weight of aluminum. Next, 100 parts by weight of the carrier is instantaneously charged in a dry state, and the mixture is further stirred at 90 ° C. for 60 minutes. After the palladium in the solution was completely adsorbed, the liquid was decanted and the carrier supporting palladium was washed several times with distilled water.

【0041】つぎに溶液を50%1−プロパノール水溶
液に置換し、酢酸ナトリウムをパラジウムに対して6倍
モル量加えた。90℃に加温しつぎにPd/Bi=5/
2.5(モル比)相当のトリフェニルビスマス/1−プ
ロパノール溶液をかき混ぜながら滴下し30分間保持す
る。つぎに、パラジウムに対し4倍モル量のヒドラジン
水溶液をかき混ぜながら約30分間かけてゆっくりと滴
下して、還元処理を6時間行った。つぎに蒸留水で、塩
素イオンが検出されなくなるまで約10回洗浄した。そ
して、洗浄終了後触媒を強制通気オーブン内で60℃に
て1晩乾燥し、冷却し、次いで担体100重量部に対し
て3.2重量部の酢酸カリウムの水溶液を加え、できる
だけ均一に分散担持されるように混合物を回動させなが
ら含浸した。次いで触媒を再びステンレス鋼スクリーン
上で強制通気オーブン内にて60℃で乾燥し触媒を得
た。
Next, the solution was replaced with a 50% 1-propanol aqueous solution, and sodium acetate was added in a molar amount 6 times the amount of palladium. After heating to 90 ° C., Pd / Bi = 5 /
A triphenylbismuth / 1-propanol solution equivalent to 2.5 (molar ratio) was added dropwise with stirring and maintained for 30 minutes. Next, a hydrazine aqueous solution having a molar amount of 4 times the amount of palladium was slowly added dropwise over about 30 minutes while stirring, and a reduction treatment was performed for 6 hours. Next, it was washed about 10 times with distilled water until no chlorine ion was detected. After the washing is completed, the catalyst is dried in a forced air oven at 60 ° C. overnight, cooled, and then 3.2 parts by weight of an aqueous solution of potassium acetate is added to 100 parts by weight of the carrier to disperse and support as uniformly as possible. The mixture was impregnated while rotating as it did. The catalyst was then dried again at 60 ° C. in a forced air oven on a stainless steel screen to obtain a catalyst.

【0042】得られた触媒を実施例1と同様に画像解析
を行った。その結果、得られた粒子断面の画像解析か
ら、粒子外表面から深さ方向2μmにはパラジウムは存
在せず、外表面から10μm以内にほぼ100%分散担
持されていることが観測された。ビスマスの分布もパラ
ジウムと同一の分布を示した。一酸化炭素の吸着より求
めたパラジウム金属の比表面積(MAS)は98m2
Pdgの値が得られた。この触媒を用いて実施例2と同
様の評価を行ったところ、酢酸ビニルの選択率84.8
%、炭酸ガスの選択率15.1%、エチレンの転化率は
14.9%であった。
The obtained catalyst was subjected to image analysis in the same manner as in Example 1. As a result, from the image analysis of the obtained particle cross section, it was observed that palladium was not present in the depth direction of 2 μm from the outer surface of the particle, and almost 100% was dispersed and supported within 10 μm from the outer surface. The distribution of bismuth also showed the same distribution as palladium. The specific surface area (MAS) of palladium metal determined from adsorption of carbon monoxide is 98 m 2 /
The value of Pdg was obtained. When the same evaluation as in Example 2 was performed using this catalyst, the selectivity of vinyl acetate was 84.8.
%, The selectivity of carbon dioxide was 15.1%, and the conversion of ethylene was 14.9%.

【0043】[0043]

【比較例2】実施例1のパラジウムを担持する工程で、
硝酸アルミを添加しなかった以外は同様の操作で触媒を
調製した。実施例1と同様の処理をして画像解析を行っ
た結果、パラジウムは全て粒子の外表面から10μm以
内に担持されていた。一酸化炭素の吸着より求めたパラ
ジウム金属の比表面積(MAS)は88m2/Pdgの
値が得られた。また、実施例2と同様におこなった評価
結果は、酢酸ビニルの選択率85.4%、炭酸ガスの選
択率14.5%、エチレンの転化率は17.1%であっ
た。摩耗強度を評価したところ5〜20時間の重量減少
は1.3%であった。また、摩耗強度評価後のこの試料
を王水に溶解しパラジウムの減少率を測定したところ
5.5%の高い値を示した。
Comparative Example 2 In the step of supporting palladium of Example 1,
A catalyst was prepared by the same operation except that aluminum nitrate was not added. As a result of performing image analysis by performing the same processing as in Example 1, all palladium was supported within 10 μm from the outer surface of the particles. The specific surface area (MAS) of palladium metal determined from adsorption of carbon monoxide was 88 m 2 / Pdg. The evaluation results performed in the same manner as in Example 2 showed that the selectivity for vinyl acetate was 85.4%, the selectivity for carbon dioxide was 14.5%, and the conversion of ethylene was 17.1%. When the wear strength was evaluated, the weight loss in 5 to 20 hours was 1.3%. Further, this sample after the evaluation of abrasion strength was dissolved in aqua regia and the reduction ratio of palladium was measured. As a result, a high value of 5.5% was shown.

【0044】[0044]

【発明の効果】本発明の触媒は、流動床の反応器に用い
ることが可能であり、且つ、活性が高いため効率的に酢
酸ビニルを合成することが可能となった。
Industrial Applicability The catalyst of the present invention can be used in a fluidized bed reactor, and has high activity, so that vinyl acetate can be efficiently synthesized.

フロントページの続き Fターム(参考) 4G069 AA03 AA08 BA01A BA01B BA02A BA02B BA06A BA06B BB06B BC01A BC21A BC21B BC25A BC25B BC56A BC72A BC72B BE08A CB61 CB74 DA08 EA02Y EB18X EC02X EC02Y EC03X EC03Y EC21X FB14 FB31 FB45 FC08 4H006 AA02 AC48 BA02 BA07 BA09 BA11 BA13 BA15 BA25 BA32 BA55 BA56 BE30 KA12 4H039 CA66 CF10 Continued on front page F-term (reference) 4G069 AA03 AA08 BA01A BA01B BA02A BA02B BA06A BA06B BB06B BC01A BC21A BC21B BC25A BC25B BC56A BC72A BC72B BE08A CB61 CB74 DA08 EA02Y EB18X EC02X EC02 EC03 EB04 EC02 EC03X02 BA15 BA25 BA32 BA55 BA56 BE30 KA12 4H039 CA66 CF10

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パラジウム成分と、アルカリ金属酢酸塩
を担体に担持し、該担体の粒子径が200μm未満、嵩
密度が0.7〜1.5g/mlの範囲の粒子であり、担
体がアルミおよびマグネシウムを含有するシリカ系組成
物であって、アルミをAl23として5〜30重量%、
マグネシウムをMgOとして3〜30重量%、ケイ素を
SiO2として40〜92重量%の範囲で含み、かつ、
アルミに対するマグネシウムの原子比(マグネシウム/
アルミ)が1/2より大きく、該担体の外表面から中心
方向に0μmより大きく80μm未満の範囲にパラジウ
ム成分が担持された層を有し、一酸化炭素の吸着から求
めたパラジウム金属成分の表面積が40〜300m2
Pdgであることを特徴とする酢酸ビニル合成触媒。
1. A palladium component and an alkali metal acetate supported on a carrier, wherein the carrier has a particle size of less than 200 μm and a bulk density of 0.7 to 1.5 g / ml, and the carrier is aluminum. And a magnesium-containing silica-based composition, wherein aluminum is 5 to 30% by weight as Al 2 O 3 ,
Comprises magnesium 3-30% by weight MgO, silicon in the range of 40 to 92 wt% as SiO 2, and,
Atomic ratio of magnesium to aluminum (magnesium /
Aluminum) having a layer in which the palladium component is supported in a range from 0 μm to less than 80 μm from the outer surface of the carrier toward the center from the outer surface of the carrier, and the surface area of the palladium metal component determined from the adsorption of carbon monoxide. Is 40 to 300 m 2 /
A vinyl acetate synthesis catalyst, which is Pdg.
【請求項2】 当該パラジウム成分がパラジウム金属間
化合物であることを特徴とする請求項1記載の酢酸ビニ
ル合成触媒。
2. The vinyl acetate synthesis catalyst according to claim 1, wherein the palladium component is a palladium intermetallic compound.
【請求項3】 当該パラジウム金属間化合物がパラジウ
ムとX(X=鉛、ビスマス、タリウム、水銀、テルル)
との金属間化合物であることを特徴とする請求項2記載
の酢酸ビニル合成触媒。
3. The palladium intermetallic compound is composed of palladium and X (X = lead, bismuth, thallium, mercury, tellurium).
The vinyl acetate synthesis catalyst according to claim 2, which is an intermetallic compound of
【請求項4】 請求項1〜3のいずれかに記載の酢酸ビ
ニル合成触媒を用いてエチレンと、酸素および酢酸から
酢酸ビニルを製造する方法。
4. A process for producing vinyl acetate from ethylene, oxygen and acetic acid using the vinyl acetate synthesis catalyst according to claim 1.
JP36482899A 1999-12-22 1999-12-22 Vinyl acetate synthesis catalyst Expired - Lifetime JP4409021B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP36482899A JP4409021B2 (en) 1999-12-22 1999-12-22 Vinyl acetate synthesis catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP36482899A JP4409021B2 (en) 1999-12-22 1999-12-22 Vinyl acetate synthesis catalyst

Publications (2)

Publication Number Publication Date
JP2001179099A true JP2001179099A (en) 2001-07-03
JP4409021B2 JP4409021B2 (en) 2010-02-03

Family

ID=18482765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP36482899A Expired - Lifetime JP4409021B2 (en) 1999-12-22 1999-12-22 Vinyl acetate synthesis catalyst

Country Status (1)

Country Link
JP (1) JP4409021B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP2003024782A (en) * 2001-07-16 2003-01-28 Asahi Kasei Corp Carboxylic acid ester producing catalyst excellent in activity
JP2005013800A (en) * 2003-06-24 2005-01-20 Mitsubishi Chemicals Corp Solid-state catalyst and method for manufacturing oxidative addition product using it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001198468A (en) * 2000-01-17 2001-07-24 Asahi Kasei Corp Catalyst for synthesis of acetic acid
JP4489222B2 (en) * 2000-01-17 2010-06-23 旭化成ケミカルズ株式会社 Acetic acid synthesis catalyst
JP2003024782A (en) * 2001-07-16 2003-01-28 Asahi Kasei Corp Carboxylic acid ester producing catalyst excellent in activity
JP4626931B2 (en) * 2001-07-16 2011-02-09 旭化成ケミカルズ株式会社 Carboxylate production catalyst with excellent activity
JP2005013800A (en) * 2003-06-24 2005-01-20 Mitsubishi Chemicals Corp Solid-state catalyst and method for manufacturing oxidative addition product using it

Also Published As

Publication number Publication date
JP4409021B2 (en) 2010-02-03

Similar Documents

Publication Publication Date Title
US6992040B2 (en) Process for preparing a shell-type catalyst
CA2064444C (en) Catalysts and processes for the manufacture of vinyl acetate
US5347046A (en) Catalyst and process for using same for the preparation of unsaturated carboxylic acid esters
US6528453B2 (en) Process for making a catalyst composition
US6103916A (en) Silver catalyst for production of ethylene oxide, method for production thereof, and method for production of ethylene oxide
US5783726A (en) Process for the preparation of vinyl acetate catalyst
UA77384C2 (en) Catalyst and process for producing vinyl acetate
Overbeek et al. Preparation, characterization and testing of newly developed titania supported V P O catalysts
JP2000176285A (en) Fluidized bed vinyl acetate catalyst
JP2001520651A (en) Catalyst for ethylene oxide
US5274181A (en) Catalysts and processes for the manufacture of vinyl acetate
JPS62431A (en) Manufacture of 1,2-dichloroethane
PL158085B1 (en) Method of obtaining a silver containing catalyst
US5536693A (en) Process for the preparation of vinyl acetate catalyst
JP4409021B2 (en) Vinyl acetate synthesis catalyst
WO2006136781A2 (en) Vinyl acetate catalyst and support
JP4489222B2 (en) Acetic acid synthesis catalyst
KR20090025352A (en) Process for production of catalyst for alkenyl acetate production
JPS6241577B2 (en)
JPH0764781B2 (en) Method for producing allyl acetate
RU2061544C1 (en) Catalyst for vinyl acetate synthesis
JP2001170485A (en) Hydrogenation catalyst for anthraquinones
JPS6246525B2 (en)
JPS6210485B2 (en)
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091111

R150 Certificate of patent or registration of utility model

Ref document number: 4409021

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121120

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131120

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term