JPS6246525B2 - - Google Patents

Info

Publication number
JPS6246525B2
JPS6246525B2 JP59202047A JP20204784A JPS6246525B2 JP S6246525 B2 JPS6246525 B2 JP S6246525B2 JP 59202047 A JP59202047 A JP 59202047A JP 20204784 A JP20204784 A JP 20204784A JP S6246525 B2 JPS6246525 B2 JP S6246525B2
Authority
JP
Japan
Prior art keywords
rhodium
catalyst
compound
heat treatment
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59202047A
Other languages
Japanese (ja)
Other versions
JPS6183134A (en
Inventor
Keiji Ishii
Takushi Yokoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59202047A priority Critical patent/JPS6183134A/en
Publication of JPS6183134A publication Critical patent/JPS6183134A/en
Publication of JPS6246525B2 publication Critical patent/JPS6246525B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) この発明は合成ガスから、エチレン、プロピレ
ンを主成分とする不飽和炭化水素を製造する方法
に関するものである。 (従来技術) 一酸化炭素と水素とを含む混合ガスを鉄系触媒
やコバルト系触媒の存在下接触的に反応させた場
合、ある程度選択的に不飽和炭化水素が生成する
ことが知られている(例えば特開昭51−131809、
同56−25117、同56−136890、同57−82323等参
照)が、エチレン、プロピレンの選択率の点で十
分満足すべきものではなかつた。 一方、一酸化炭素と水素とを含む混合ガスを実
質上金属ロジウムよりなる不均一系触媒の存在下
接触的に反応させた場合の主生成物は、炭素数2
の含酸素化合物である(特開昭51−80806、同52
−14706等参照)。 (発明が解決しようとする問題点) この発明は、エチレン、プロピレンの高選択率
をもつて、合成ガスから不飽和炭化水素を製造す
る方法を提供するものである。 (問題点を解決するための手段) 本発明者らは、一酸化炭素と水素とを含む混合
ガスを原料とした触媒反応について検討を進め、
アンモニウム化合物と共に担体上に担持されたロ
ジウム化合物を加熱処理した場合、従来のものに
比べてやや大きい粒子径のロジウム触媒が得ら
れ、この触媒を用いることにより炭素数2及び3
の不飽和炭化水素が主生成物として得られること
を見出して本発明を完成した。 即ち本発明は、一酸化炭素と水素とを反応させ
て、エチレン、プロピレンを主成分とする不飽和
炭化水素を製造する方法において、アンモニウム
化合物と共に担体上に担持されたロジウム化合物
の加熱処理により得られる、平均粒子径100〜200
Åをもつ活性なロジウム触媒を用いることを特徴
とする不飽和炭化水素の製造法である。 このような特定のロジウム含有触媒の、反応条
件下における動的な状態での真の活性種は必ずし
も明らかではないが、実施例に示すように本発明
の触媒を用いれば公知のロジウム含有触媒を用い
た場合と異なる主生成物である不飽和炭化水素が
選択的に得られることから、担体上におけるロジ
ウムとアンモニウム化合物との反応により新規な
活性型のロジウムが形成されたものと考えられ
る。 本発明で用いられるロジウム触媒はこのように
従来と異なる生成物選択性をもつ点に特徴を持つ
が、この触媒の反応活性を高める上でマンガン成
分と組合せて用いることが好ましい。たとえばマ
ンガン成分としてマンガンイオンまたは過マンガ
ン酸イオンを用い、これをロジウム化合物及びア
ンモニウム化合物と共に担体上に担持したのち加
熱処理すればよい。 以下本発明で用いる触媒とその調製法につき更
に詳細に説明する。 触媒調製上使用されるロジウム化合物として
は、例えば塩化ロジウム、臭化ロジウム、ヨウ化
ロジウム、硝酸ロジウム、硫酸ロジウム、等の無
機酸塩、酢酸ロジウム、ギ酸ロジウム、シユウ酸
ロジウム等の有機酸塩、酸化ロジウム、あるいは
アンミン錯塩、クラスター、ロジウムカルボニル
及びロジウムカルボニルアセチルアセトナート等
の、通常の貴金属触媒調製に用いられる化合物が
いずれも使用できるが、取扱いの容易さから塩化
物が特に推奨される。これらのロジウム化合物
は、加熱処理前は、活性(一酸化炭素と水素とか
らの不飽和炭化水素の合成活性をさす。以下同
じ)状態にはない。 これらのロジウム、成分を担持するための担体
としては、比表面積1〜1000m2/gを有する多孔
質無機化合物が好ましく、シリカ、アルミナ、シ
リカアルミナ、酸化チタン、酸化ジルコニウム、
酸化トリウム、酸化マグネシウム、活性炭、ゼオ
ライト等が用い得るが、特にシリカ系担体が好ま
しい。これらの担体は粉末状、ペレツト状などあ
らゆる形状のものについて適用可能である。 ロジウム化合物と共に触媒上に担持させロジウ
ム化合物から活性触媒をつくる加熱処理段階で作
用すると考えられるアンモニウムイオン化合物と
しては、例えば塩化アンモニウム等のハロゲン化
物、塩素酸アンモニウム等のハロゲン酸素酸塩、
硫酸塩、硝酸塩、炭酸塩等の無機酸塩、水酸化
物、酢酸塩、ギ酸塩、シユウ酸塩等の有機酸塩等
を使用することができる。 本発明の触媒と組合せて用いることのできるマ
ンガン成分は、マンガン塩の他、過マンガン酸イ
オンの形で好ましく用いられ、これをロジウム化
合物と共に担体に担持させる。過マンガン酸化合
物は過マンガン酸自体でも、またその金属塩例え
ばリチウム、ナトリウム等のアルカリ金属塩でも
用いられる。 これら触媒調製に用いられる成分は、担体上へ
の担持を容易ならしめるため、水など適当な溶媒
に可能性の化合物が好ましく用いられる。 本発明で用いられる触媒の調製に関する一般的
技術としては、貴金属触媒調製における常法が適
用できる。例えば含浸法、浸漬法、イオン交換
法、共沈法、混練法等が用いられる。更に詳しく
は、上記触媒成分を水またはn−ヘキサン、アル
コール等の有機溶媒に溶解し、この溶液に多孔質
無機担体を加え担持させた後、還元加熱処理する
ことにより触媒を得ることができる。担体上への
触媒成分の担持方法は、すべての触媒成分を同時
に担持してもよく、また各成分ごとに逐次的に担
体に担持する方法、あるいは、各成分を必要に応
じて還元加熱処理等の処理を行ないながら、逐次
的、段階的に担持する方法などの各手法を用いる
ことができる。 含浸法を一例として更に説明すれば、熱分解性
無機ロジウム化合物(およびマンガン化合物)お
よびアンモニウム塩を担体の吸水率に応じた水量
により水溶液とし、その溶液中に担体を加え、撹
拌混合後、加熱乾燥して担持させる。この様なロ
ジウムとアンモニウム化合物とを担持した固体
は、更に加熱処理により、微細に分散したロジウ
ムを担持した活性な触媒になる。 アンモニウム化合物を用いた上記方法で作られ
た触媒は、ロジウムの平均粒子径100〜200Åであ
り、不飽和炭化水素生成活性をもつ。この点、ア
ンモニウム化合物を用いないで調製した公知技術
のロジウム触媒の平均粒子径が30〜40Åであり、
含酸素化合物生成活性をもつのと対照を成してい
る。 加熱処理は、アンモニウムイオンと共に担体上
に担持されたロジウム化合物を150℃以上の温度
に、通常は還元条件下で加熱することにより行な
われ、この加熱処理により、ロジウム化合物は活
性なロジウム触媒になる。例えばアンモニウムイ
オンと共に担持された塩化ロジウムは、水素気流
中で加熱処理されて金属またはそれに近い低い原
子価状態に変り、活性を呈する。 先行技術に開示されたロジウム系触媒も、担持
されたロジウム化合物を還元条件下で加熱するこ
とにより得られ、沈着させたロジウムは代表的に
は金属の形のものであると記載されている。本発
明で用いる触媒を得るにあたつては、アンモニウ
ムイオンの存在下に、先行技術と同様の条件の加
熱処理を適用することが可能である。 活性なロジウム化合物は金属ないし、わずかに
正電荷を有する形が主体であると考えられるの
で、原子価の高いロジウム塩を担持させた場合は
加熱処理は還元を伴なうべきである。しかし、ロ
ジウムカルボニル等低原子価のロジウム化合物を
担持させた場合は還元を伴わない加熱処理でよ
い。 ロジウム化合物を活性状態に変える加熱処理
は、反応条件下すなわち反応系に原料として供給
される一酸化炭素と水素との混合ガス中の水素の
存在下における反応温度への加熱であつてもよい
が、反応に用いる以前に水素気流中で還元を伴う
加熱処理をおこなうことによつて活性化すること
が望ましい。 還元処理は水素ガスまたは一酸化炭素と水素の
混合ガスの存在下に行なうことができる。場合に
よつては窒素、ヘリウム、アルゴン等の不活性ガ
スで一部希釈しておこなてもよい。還元処理温度
としては、100〜600℃、好ましくは150〜500℃の
温度において行なう。この際触媒の各成分の活性
状態を最適な状態に保つ目的で、低温より徐々に
あるいは段階的に昇温しながら還元処理を行なつ
てもよい。またメタノール、ヒドラジン、ホルマ
リン等の還元剤を用いて化学的に還元を行なうこ
ともできる。 各触媒成分の使用量については、かならずしも
厳密な制限はないが、担体の表面積(1〜1000
m2/g)を考慮して定める。通常、担持触媒中の
ロジウムの含有量は0.01〜15重量%、好ましくは
0.1〜10重量%である。マンガンを用いる場合、
含有量は0.001〜10重量%、好ましくは0.01〜5
重量%である。アンモニウムとロジウムの比率は
原子比で0.01〜100、好ましくは0.1〜10の範囲で
ある。 上記のような触媒を用いて、合成ガス即ち一酸
化炭素と水素の混合ガスを不飽和炭化水素に転化
させる。 反応は通常気相で行なわれ、例えば触媒を充填
した固定床式反応器に一酸化炭素と水素を含む原
料ガスを導通させる。この場合原料ガスには一酸
化炭素と水素以外に、例えば二酸化炭素、窒素、
アルゴン、ヘリウム、メタン、水蒸気等の他の成
分を含んでいてもよい。また、触媒反応器は固定
床式に限らず、移動床式や流動床式等他の形式で
あつてもよい。また、場合によつては触媒を適当
な溶媒中に懸濁して原料ガスを導通して反応させ
る液相反応でも実施することができる。 反応条件は広い範囲で変えることができる。好
適な範囲として一酸化炭素と水素のモル比は20:
1から1:5、好ましくは10:1から1:2、反
応温度は200〜400℃、好ましくは220〜350℃、圧
力は1から300気圧、好ましくは20から200気圧、
空間速度は標準状態換算(0℃,1気圧)で102
から106Hr-1、好ましくは103から5×104Hr-1
ある。 以下具体例により本発明を説明する。 (発明の効果) これらの具体例における反応の結果はまとめて
第1表に示した。転化率は一酸化炭素の供給モル
数に対する消費モル数の比で表わされる。選択率
(%)は次の式で定義される。 特定の生成物へ変換されたCOのモル数×100/消費
されたCOのモル数 エステル類はそれぞれ酸とアルコールに振分け
て計算し、酢酸、エタノール、アセトアルデヒド
は一括して含酸素化合物として示した。 第1表でわかるようにアンモニウム化合物を用
いて調製された触媒の使用によりエチレン、プロ
ピレンなど不飽和炭化水素への選択率が向上す
る。
(Industrial Application Field) This invention relates to a method for producing unsaturated hydrocarbons containing ethylene and propylene as main components from synthesis gas. (Prior art) It is known that when a mixed gas containing carbon monoxide and hydrogen is catalytically reacted in the presence of an iron-based catalyst or a cobalt-based catalyst, unsaturated hydrocarbons are selectively produced to some extent. (For example, JP-A-51-131809,
(see 56-25117, 56-136890, 57-82323, etc.) were not fully satisfactory in terms of selectivity for ethylene and propylene. On the other hand, when a mixed gas containing carbon monoxide and hydrogen is catalytically reacted in the presence of a heterogeneous catalyst consisting essentially of metal rhodium, the main product has 2 carbon atoms.
It is an oxygen-containing compound (JP-A-51-80806, JP-A-52-80806)
-14706 etc.) (Problems to be Solved by the Invention) The present invention provides a method for producing unsaturated hydrocarbons from synthesis gas with high selectivity for ethylene and propylene. (Means for solving the problem) The present inventors have proceeded with studies on a catalytic reaction using a mixed gas containing carbon monoxide and hydrogen as a raw material,
When a rhodium compound supported on a carrier is heat-treated together with an ammonium compound, a rhodium catalyst with a slightly larger particle size than that of conventional catalysts can be obtained.
The present invention was completed by discovering that unsaturated hydrocarbons can be obtained as the main product. That is, the present invention provides a method for producing unsaturated hydrocarbons containing ethylene and propylene as main components by reacting carbon monoxide and hydrogen. Average particle size 100-200
This is a method for producing unsaturated hydrocarbons characterized by using an active rhodium catalyst with Å. The true active species of such specific rhodium-containing catalysts in a dynamic state under reaction conditions is not necessarily clear, but as shown in the examples, if the catalyst of the present invention is used, known rhodium-containing catalysts can be used. Since an unsaturated hydrocarbon, which is the main product different from that obtained when using this method, was selectively obtained, it is thought that a new active type of rhodium was formed by the reaction between rhodium and an ammonium compound on the carrier. The rhodium catalyst used in the present invention is characterized in that it has a product selectivity different from conventional products as described above, but it is preferably used in combination with a manganese component in order to increase the reaction activity of this catalyst. For example, manganese ions or permanganate ions may be used as the manganese component, supported on a carrier together with a rhodium compound and an ammonium compound, and then heated. The catalyst used in the present invention and its preparation method will be explained in more detail below. Rhodium compounds used for catalyst preparation include, for example, inorganic acid salts such as rhodium chloride, rhodium bromide, rhodium iodide, rhodium nitrate, and rhodium sulfate; organic acid salts such as rhodium acetate, rhodium formate, and rhodium oxalate; Any of the compounds commonly used in the preparation of noble metal catalysts, such as rhodium oxide, ammine complex salts, clusters, rhodium carbonyl, and rhodium carbonylacetylacetonate, can be used, but chlorides are particularly recommended for ease of handling. These rhodium compounds are not in an active state (referring to the activity of synthesizing unsaturated hydrocarbons from carbon monoxide and hydrogen; the same applies hereinafter) before heat treatment. The carrier for supporting these rhodium and components is preferably a porous inorganic compound having a specific surface area of 1 to 1000 m 2 /g, such as silica, alumina, silica alumina, titanium oxide, zirconium oxide,
Although thorium oxide, magnesium oxide, activated carbon, zeolite, etc. can be used, silica-based carriers are particularly preferred. These carriers can be applied in any form such as powder or pellet form. Examples of ammonium ion compounds that are supported on a catalyst together with a rhodium compound and are thought to act in the heat treatment step to produce an active catalyst from the rhodium compound include halides such as ammonium chloride, halogen oxyacids such as ammonium chlorate,
Inorganic acid salts such as sulfates, nitrates, carbonates, etc., organic acid salts such as hydroxides, acetates, formates, oxalates, etc. can be used. The manganese component that can be used in combination with the catalyst of the present invention is preferably used in the form of a permanganate ion in addition to a manganese salt, and this is supported on a carrier together with a rhodium compound. Permanganic acid compounds can be used either as permanganic acid itself or as its metal salts, such as alkali metal salts such as lithium and sodium. These components used in the preparation of the catalyst are preferably compounds that can be dissolved in a suitable solvent such as water in order to facilitate loading on the carrier. As a general technique for preparing the catalyst used in the present invention, conventional methods for preparing noble metal catalysts can be applied. For example, an impregnation method, a dipping method, an ion exchange method, a coprecipitation method, a kneading method, etc. are used. More specifically, the catalyst can be obtained by dissolving the above catalyst component in water or an organic solvent such as n-hexane or alcohol, adding a porous inorganic carrier to this solution to support the solution, and then subjecting the solution to a reductive heat treatment. As for the method of supporting the catalyst components on the carrier, all the catalyst components may be supported simultaneously, each component may be supported on the carrier sequentially, or each component may be subjected to reduction heat treatment, etc. as necessary. It is possible to use various techniques such as a method of sequentially or stepwise loading while carrying out processing. To further explain the impregnation method as an example, a thermally decomposable inorganic rhodium compound (and manganese compound) and an ammonium salt are made into an aqueous solution in an amount of water depending on the water absorption rate of the carrier, the carrier is added to the solution, and after stirring and mixing, heating is performed. Dry and support. Such a solid supporting rhodium and an ammonium compound becomes an active catalyst supporting finely dispersed rhodium by further heat treatment. The catalyst produced by the above method using an ammonium compound has an average rhodium particle diameter of 100 to 200 Å and has unsaturated hydrocarbon production activity. In this regard, the average particle diameter of the known technology rhodium catalyst prepared without using an ammonium compound is 30 to 40 Å,
In contrast, it has oxygen-containing compound generating activity. The heat treatment is performed by heating the rhodium compound supported on the carrier together with ammonium ions to a temperature of 150°C or higher, usually under reducing conditions. Through this heat treatment, the rhodium compound becomes an active rhodium catalyst. . For example, rhodium chloride supported together with ammonium ions is heated in a hydrogen stream to change to a metal state or a low valence state close to that of a metal, and becomes active. Rhodium-based catalysts disclosed in the prior art are also obtained by heating a supported rhodium compound under reducing conditions, and the rhodium deposited is typically in the metallic form. In obtaining the catalyst used in the present invention, it is possible to apply heat treatment under the same conditions as in the prior art in the presence of ammonium ions. Since active rhodium compounds are thought to be mainly metallic or slightly positively charged, if a rhodium salt with a high valence is supported, the heat treatment should involve reduction. However, when a low valence rhodium compound such as rhodium carbonyl is supported, heat treatment without reduction may be sufficient. The heat treatment for converting the rhodium compound into an active state may be heating to the reaction temperature under reaction conditions, that is, in the presence of hydrogen in a mixed gas of carbon monoxide and hydrogen supplied as a raw material to the reaction system. , it is desirable to activate it by carrying out a heat treatment accompanied by reduction in a hydrogen stream before using it in the reaction. The reduction treatment can be carried out in the presence of hydrogen gas or a mixed gas of carbon monoxide and hydrogen. Depending on the case, it may be partially diluted with an inert gas such as nitrogen, helium, or argon. The reduction treatment temperature is 100 to 600°C, preferably 150 to 500°C. At this time, in order to maintain the activation state of each component of the catalyst in an optimal state, the reduction treatment may be performed while raising the temperature gradually or stepwise from a low temperature. Further, the reduction can also be carried out chemically using a reducing agent such as methanol, hydrazine or formalin. There is no strict limit to the amount of each catalyst component used, but the surface area of the carrier (1 to 1000
m 2 /g). Usually the content of rhodium in the supported catalyst is 0.01-15% by weight, preferably
It is 0.1-10% by weight. When using manganese,
Content is 0.001-10% by weight, preferably 0.01-5
Weight%. The ratio of ammonium to rhodium is in the range of 0.01 to 100, preferably 0.1 to 10, in terms of atomic ratio. Catalysts such as those described above are used to convert synthesis gas, a mixture of carbon monoxide and hydrogen, into unsaturated hydrocarbons. The reaction is usually carried out in the gas phase, for example, a raw material gas containing carbon monoxide and hydrogen is passed through a fixed bed reactor packed with a catalyst. In this case, in addition to carbon monoxide and hydrogen, the raw material gas includes carbon dioxide, nitrogen,
It may also contain other components such as argon, helium, methane, and water vapor. Further, the catalytic reactor is not limited to a fixed bed type, but may be of other types such as a moving bed type or a fluidized bed type. In some cases, a liquid phase reaction may also be carried out, in which the catalyst is suspended in a suitable solvent and a raw material gas is passed therethrough. Reaction conditions can be varied within wide limits. The preferred range is a molar ratio of carbon monoxide to hydrogen of 20:
1 to 1:5, preferably 10:1 to 1:2, reaction temperature 200 to 400°C, preferably 220 to 350°C, pressure 1 to 300 atm, preferably 20 to 200 atm,
The space velocity is 10 2 in standard conditions (0°C, 1 atm)
to 10 6 Hr −1 , preferably from 10 3 to 5×10 4 Hr −1 . The present invention will be explained below using specific examples. (Effects of the Invention) The results of the reactions in these specific examples are summarized in Table 1. The conversion rate is expressed as the ratio of the number of moles of carbon monoxide consumed to the number of moles of carbon monoxide supplied. Selectivity (%) is defined by the following formula. Number of moles of CO converted to a specific product x 100/number of moles of CO consumed Esters were calculated by dividing them into acids and alcohols, and acetic acid, ethanol, and acetaldehyde were collectively shown as oxygen-containing compounds. . As can be seen in Table 1, the use of catalysts prepared using ammonium compounds improves the selectivity to unsaturated hydrocarbons such as ethylene and propylene.

【表】 実施例 1 三塩化ロジウム三水塩1.9182gと、硝酸マンガ
ン六水塩0.6896gと塩化アンモニウム1.1690gを
蒸溜水40mlに完全に溶解させてから、富士デビソ
ン化学社製ID型シリカゲル(以下ID型シリカと
いう)、30gに含浸し、一夜間風乾した。 送風乾燥機で110℃、4時間乾燥させた後、石
英ガラス製還元管に充填し、水素気流中(20l/
時)350℃、2時間保持し加熱処理した後、ただ
ちに窒素気流に切替え放冷した。 X線回折法による担持ロジウムの平均粒子径は
110〜120Åであつた。 この触媒15mlをハステロイB製U字形反応管に
充填し、圧力50Kg/cm2G、温度277℃の条件で原
料ガス(CO:H2=2:1)を50Nl/時の速度で
送入し反応を行ない、触媒の活性評価を行なつ
た。 第1表に見られるように塩化アンモニウムを用
いなかつた比較例1の触媒に比べ炭素数2および
3の不飽和炭化水素の割合は40%を上回るまでに
上昇している。 実施例 2 実施例1で得た触媒を用いて温度262℃で反応
を行なつた。他の反応条件は実施例1と同じであ
る。 比較例 1 三塩化ロジウム三水塩0.9591gと、硝酸マンガ
ン六水塩0.3448gとを蒸溜水20mlに完全に溶解さ
せてから、ID型シリカ15gに含浸し、一夜間風
乾した。 以下実施例1と同様の方法で乾燥および加熱処
理をして触媒を得た。 X線回折法による担持ロジウムの平均粒子径は
35〜40Åであつた。 この触媒を用いて温度260℃で反応を行なつ
た。他の反応条件は実施例1と同じである。 実施例 3 三塩化ロジウム三水塩1.9182gと、硝酸マンガ
ン六水塩0.6896gと塩化アンモニウム1.1690gを
蒸溜水40mlに完全に溶解させてから、富士デビソ
ン化学社製#57シリカゲル(以下#57シリカとい
う)、30gに含浸し、一夜間風乾した。以下実施
例1と同様の方法で乾燥および加熱処理をして触
媒を得た。 X線回折法による担持ロジウムの平均粒子径は
150〜160Åであつた。 この触媒を用いて温度261℃で反応を行なつ
た。他の反応条件は実施例1と同じである。 比較例 2 三塩化ロジウム三水塩3.8364gと、硝酸マンガ
ン六水塩1.3792gとを蒸溜水80mlに完全に溶解さ
せてから、#57シリカ60gに含浸し、一夜間風乾
した。 以下実施例1と同様の方法で乾燥および加熱処
理をして触媒を得た。 X線回折法による担持ロジウムの平均粒子径は
30〜40Åであつた。 この触媒を用いて温度264℃で反応を行なつ
た。他の反応条件は実施例1と同じである。
[Table] Example 1 After completely dissolving 1.9182 g of rhodium trichloride trihydrate, 0.6896 g of manganese nitrate hexahydrate, and 1.1690 g of ammonium chloride in 40 ml of distilled water, ID type silica gel manufactured by Fuji Davison Chemical Co., Ltd. (hereinafter referred to as It was impregnated with 30 g of ID type silica) and air-dried overnight. After drying in a blow dryer at 110℃ for 4 hours, it was filled into a quartz glass reduction tube and heated in a hydrogen stream (20L/
After heat treatment at 350°C for 2 hours, the temperature was immediately changed to a nitrogen stream and allowed to cool. The average particle diameter of supported rhodium determined by X-ray diffraction method is
It was 110-120 Å. 15 ml of this catalyst was filled into a Hastelloy B U-shaped reaction tube, and raw material gas (CO:H 2 = 2:1) was fed at a rate of 50 Nl/hour under conditions of a pressure of 50 Kg/cm 2 G and a temperature of 277°C. A reaction was conducted and the activity of the catalyst was evaluated. As seen in Table 1, the proportion of unsaturated hydrocarbons having 2 and 3 carbon atoms increased to over 40% compared to the catalyst of Comparative Example 1 which did not use ammonium chloride. Example 2 Using the catalyst obtained in Example 1, a reaction was carried out at a temperature of 262°C. Other reaction conditions are the same as in Example 1. Comparative Example 1 0.9591 g of rhodium trichloride trihydrate and 0.3448 g of manganese nitrate hexahydrate were completely dissolved in 20 ml of distilled water, and then impregnated with 15 g of ID type silica and air-dried overnight. Thereafter, drying and heat treatment were performed in the same manner as in Example 1 to obtain a catalyst. The average particle diameter of supported rhodium determined by X-ray diffraction method is
It was 35-40 Å. A reaction was carried out at a temperature of 260°C using this catalyst. Other reaction conditions are the same as in Example 1. Example 3 After completely dissolving 1.9182 g of rhodium trichloride trihydrate, 0.6896 g of manganese nitrate hexahydrate, and 1.1690 g of ammonium chloride in 40 ml of distilled water, #57 silica gel manufactured by Fuji Davison Chemical Co., Ltd. (hereinafter referred to as #57 silica ), and was impregnated with 30 g and air-dried overnight. Thereafter, drying and heat treatment were performed in the same manner as in Example 1 to obtain a catalyst. The average particle diameter of supported rhodium determined by X-ray diffraction method is
It was 150-160 Å. A reaction was carried out at a temperature of 261°C using this catalyst. Other reaction conditions are the same as in Example 1. Comparative Example 2 3.8364 g of rhodium trichloride trihydrate and 1.3792 g of manganese nitrate hexahydrate were completely dissolved in 80 ml of distilled water, and then impregnated with 60 g of #57 silica and air-dried overnight. Thereafter, drying and heat treatment were performed in the same manner as in Example 1 to obtain a catalyst. The average particle diameter of supported rhodium determined by X-ray diffraction method is
It was 30-40 Å. A reaction was carried out at a temperature of 264°C using this catalyst. Other reaction conditions are the same as in Example 1.

Claims (1)

【特許請求の範囲】[Claims] 1 一酸化炭素と水素とを反応させて、エチレ
ン、プロピレンを主成分とする不飽和炭化水素を
製造する方法において、アンモニウム化合物と共
に担体上に担持されたロジウム化合物の加熱処理
により得られる、平均粒子径100〜200Åをもつ活
性なロジウム触媒を用いることを特徴とする不飽
和炭化水素の製造法。
1. Average particles obtained by heat treatment of a rhodium compound supported on a carrier together with an ammonium compound in a method for producing unsaturated hydrocarbons mainly composed of ethylene and propylene by reacting carbon monoxide and hydrogen. A method for producing unsaturated hydrocarbons, characterized by using an active rhodium catalyst having a diameter of 100 to 200 Å.
JP59202047A 1984-09-28 1984-09-28 Production of unsaturated hydrocarbon Granted JPS6183134A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59202047A JPS6183134A (en) 1984-09-28 1984-09-28 Production of unsaturated hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59202047A JPS6183134A (en) 1984-09-28 1984-09-28 Production of unsaturated hydrocarbon

Publications (2)

Publication Number Publication Date
JPS6183134A JPS6183134A (en) 1986-04-26
JPS6246525B2 true JPS6246525B2 (en) 1987-10-02

Family

ID=16451046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59202047A Granted JPS6183134A (en) 1984-09-28 1984-09-28 Production of unsaturated hydrocarbon

Country Status (1)

Country Link
JP (1) JPS6183134A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62258328A (en) * 1986-05-02 1987-11-10 Agency Of Ind Science & Technol Selective synthesis of ethylene from synthetic gas
WO2017086048A1 (en) 2015-11-17 2017-05-26 コニカミノルタ株式会社 Optical reflection film and optical reflector

Also Published As

Publication number Publication date
JPS6183134A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
US6022823A (en) Process for the production of supported palladium-gold catalysts
JP4750283B2 (en) Catalyst for the production of vinyl acetate by vapor phase oxidation of ethylene and acetic acid, its production and its use
JPS6323743A (en) Production of nickel and/or cobalt catalyst
JPS624443A (en) Manufacture of catalyst containing silver
JP2854143B2 (en) Method for producing vinyl acetate
JPS6246525B2 (en)
US4568699A (en) Process for producing oxygen-containing hydrocarbon compounds
JPH049580B2 (en)
JPS6114130B2 (en)
JPS6341893B2 (en)
JPH049578B2 (en)
JPS6341892B2 (en)
JPH085819B2 (en) Method for producing oxygen-containing compound mainly containing acetaldehyde
JPS6233215B2 (en)
JPH07188096A (en) Production of acetic acid
JPS6210485B2 (en)
JPS621928B2 (en)
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound
JPS6064937A (en) Production of oxygen-containing hydrocarbon compound
JPS611630A (en) Production of lower alcohol
JPS6246526B2 (en)
JPS6064938A (en) Production of oxygen-containing hydrocarbon compound
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS6238336B2 (en)
JPS63227531A (en) Production of oxygen-containing compound

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term