JPS6341892B2 - - Google Patents

Info

Publication number
JPS6341892B2
JPS6341892B2 JP60289269A JP28926985A JPS6341892B2 JP S6341892 B2 JPS6341892 B2 JP S6341892B2 JP 60289269 A JP60289269 A JP 60289269A JP 28926985 A JP28926985 A JP 28926985A JP S6341892 B2 JPS6341892 B2 JP S6341892B2
Authority
JP
Japan
Prior art keywords
gas
catalyst
rhodium
hydrogen
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60289269A
Other languages
Japanese (ja)
Other versions
JPS62148437A (en
Inventor
Kenichi Sano
Shinya Matsuhira
Tetsuo Nakajo
Hiroko Noguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP60289269A priority Critical patent/JPS62148437A/en
Publication of JPS62148437A publication Critical patent/JPS62148437A/en
Publication of JPS6341892B2 publication Critical patent/JPS6341892B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】 (発明の技術的分野) 本発明は合成ガスよりの含酸素化合物の合成法
に係わるものである。 現今、石油化学工業において、ナフサ価格の高
騰を契機として、重質油或るいは石油代替物の利
用など原料の多様化対策が検討されて居り、その
1つとして一酸化炭素と水素を主成分とする合成
ガスより直接又は一旦メタノールとなした後、エ
チレングリコール、エタノール、アセトアルデヒ
ド、酢酸などの含酸素化合物やメタン、エチレ
ン、プロピレン等の炭化水素等を合成する所謂
C1化学の研究が進められて居る。 本発明は、之等C1化学の一環として合成ガス
よリエタノール、アセトアルデヒド、酢酸の所謂
C2含酸素化合物、特に酢酸の直接合成法に係わ
るものである。 (先行技術の説明) 合成ガス、実質的にはその中に含まれる一酸化
炭素と水素から、酢酸、アセトアルデヒド、エタ
ノールなどの炭素数2の含酸素炭化水素を製造す
る方法は公知であり、その際用いられる触媒とし
てはロジウム(Rh)触媒が効果的であることが
知られている(例えば、特開昭51−80806号、同
51−80807号、同52−14706号、同54−138504号、
同54−141705号、同55−57527号等参照)。即ち、
合成ガス又は一酸化炭素と水素を含むガス混合物
を接触的に反応させた場合、使用する触媒や反応
条件によつて反応生成物は極めて多岐に亘り、例
えば、メタンからパラフインワツクスに至る飽和
およびα−オレフインに富む不飽和の各種脂肪族
炭化水素並びに炭素数6乃至10数個の芳香族炭化
水素や、メタノールから炭素数20近くの高級アル
コールに至る各種アルコール類その他アルデヒド
類や脂肪酸類など各種の含酸素炭化水素化合物が
生成する。換言すれば、これら膨大な数の各種生
成物の中から不必要な化合物の生成を抑制し、所
望とする特定の化合物のみを選択的に生成させる
ことは非常に難しく、そのため好適な触媒の探索
を主体に種々の工夫がなされているが、上述の酢
酸、アセトアルデヒド、エタノールなどの2個の
炭素原子を有する含酸素炭化水素化合物を高い選
択率をもつて取得するにはロジウム触媒が特異的
に優れていると言われている。 しかし乍ら、ロジウム触媒を用いて或る条件下
に反応を行つた場合には、確かに炭素ガスやメタ
ンその他の炭化水素など好ましくない副生物の生
成は抑制され、或る程度選択的に炭素数2の含酸
素化合物が生成することが認められるが、触媒活
性成分としてロジウム単独では活性が低く、ま
た、選択性に関しても炭素数2の含酸素化合物の
うち主たる生成物はアセトアルデヒドであるため
目的化合物として酢酸を所望する場合には目的物
の収率が充分ではないという難点がある。殊に、
ロジウムは高価な物質であるため、その触媒活性
や目的物の選択性を改善することは工業上重要な
意味をもつている。 従来より他成分の助触媒の添加により一酸化炭
素の利用率、選択性の向上、空時収率の向上につ
いて研究がなされて居り、ロジウムを主成分とす
る多成分系の触媒の探究が更に進められて居り、
ロジウム触媒について種々の元素を助触媒として
用いる各種の報告がなされている。 一方、含イオウ化合物をニツケル、鉄、白金等
へ付着させ、触媒性能への影響を調べた実験が報
告されている。 たとえば、J.F Schulty等によると、溶融鉄触
媒をS化合物で被毒し、一酸化炭素、水素の混合
ガスと反応させると、活性が著しく低下すること
が示されている。(Ind.Eng.Chem.Prod.Res.Dev.
2、43(1963);、33(1964)) また、最初に小量のイオウを鉄触媒へ付与する
と、ワツクス形成が阻害され、C1〜C4炭化水素
が増加することが報告されている(J.Phys.
Chem.66、501(1962)) 液相反応における硫化金属塩の使用は、例えば
Cu、Ni、Ti等を用いてのアルコールの生成(特
開昭60−112725)ロジウムカルボニル硫黄クラス
ターを用いた多価アルコールの生成(特開昭54−
71098)がある。 また気相反応においては、硫酸、硫酸カリなど
を共含浸法にて調製したロジウム触媒(特開昭60
−114342)が開示されている。 いずれの特許においても著しい活性低下が認め
られ、しかも経時的変化が大きい不利な点があ
る。これは工業的見地からすれば、触媒としての
機能を果していないことと等しいことは明らかで
ある。 以上文献・特許等で見られる現象は、立体的、
電子的効果で説明されることであるが、複雑で不
明な点が多い。その為、選択性、活性の変化の定
量的把握など全く不可能である。 しかしながら本発明者は気相にて、含イオウ化
合物の適度な量をロジウム表面に部分的に強吸着
させ、それほど活性を犠牲にせずに、高選択性の
触媒を開発した。更に反応活性点を被毒させず副
生物のみ抑制するため、含イオウ化合物を気相接
触させない前に、一酸化炭素にて前処理し、しか
る後含イオウ化合物を吸着させることによつて、
更に高活性、高選択性触媒になることを見い出し
た。 従つて本発明の目的は合成ガスよりC2含酸素
化合物の合成において、その触媒の活性の著しい
抵下をまねくことなく、高選択性を計ることにあ
る。 本発明の他の目的は、以下の記載より容易に理
解し得るであろう。 (発明の説明) 先づ、上記反応について更に説明すれば、触媒
のロジウム系の主として助触媒を有する触媒は、
何れも本反応に用いることが出来るが、一般に
Rhを0.01〜15.0重量%、好ましくは0.1〜10.0重量
%含有し、Rhを金属形、又は3価以下の原子価
のロジウム塩又は錯体として用い得る。 助触媒としては、Mn、Mg、Sc、Ir、Zr、Hf、
Mo、W、U、Th等、又アルカリ金属又はアルカ
リ土類金属としてNa、K、Li、Cs、Rb、Ca、
St、Ba等を含んでもよいが、特にMnが好まし
い。又助触媒としての稀土類元素としてランタニ
ド、アクチニド系列の何れの元素をも用い得る。 助触媒として使用される化合物としては、ハロ
ゲン酸塩・硫酸塩・硝酸塩・炭酸塩等の無機酸
塩、酸化物、水酸化物、酢酸塩、ギ酢酸、蓚酸塩
等の有機酸塩を問わず使用することができる。し
かし、これらの触媒成分の担体上への担持を容易
ならしめるため、水又は他の適当な触媒に可溶性
の化合物が好ましく用いられる。 担体としては、シリカゲル、活性炭、活性アル
ミナ、酸化チタン、酸化トリウム、ゼオライト等
が用いられるが、特にシリカゲルが好ましい。担
体の形態としては粉末状、ペレツト状等任意の公
知の形態のものが用いられるが、比表面積として
1〜1000m2/gを有するものが好ましい。 調製法としては、上記ロジウム、場合によつて
は助触媒を水又はn−ヘキサン、アルコール、ア
セトン等の有機溶媒に溶解し、この溶液に多孔質
無機担体物質を加え、含浸法・イオン交換法その
他の常法により担持させた後、還元又は熱処理す
ることにより担持固定された目的物を得ることが
できる。担体上への触媒成分の担持はすべての触
媒成分を同時に行なつてもよいし、又、各成分ご
とに逐次的に担体に担持する方法、あるいは各成
分を必要に応じて還元、熱処理等の処理を行いな
がら、逐次的、段階的に担持する方法などの各手
法を用いることができる。上述の手法によつて調
製された触媒は通常還元処理を行うことによりロ
ジウムを実質的金属状態に活性化し、ついで反応
に供せられる。還元処理を行うには水素ガス下又
は水素及び一酸化炭素の混合ガス下、場合によつ
ては窒素、ヘリウム、アルゴン等の不活性ガスで
一部希釈された水素ガスまたは上記混合ガス下で
行うことができる。 還元処理温度としては100〜600℃、好ましくは
250〜550℃の温度において行う。この際、触媒の
各成分の活性状態を最適な状態に保つ目的で、低
温より徐々に、あるいは段階的に昇温しながら還
元処理を行つてもよい。 又、ロジウム化合物の還元はメタノール、ヒド
ラジン、ホルマリン等の還元剤で処理することに
よつて行なつてもよい。 而して、本発明は、上記賦活処理後、一度一酸
化炭素ガスにて前処理し所定量の含イオウ化合物
でロジウム触媒(助触媒の存在の有無にかかわら
ない。)所定温度にて、気相接触処理することを
特徴とするものである。場合によつてはこの後更
に500℃以下で水素等で還元してもよい。 これによつて、触媒活性をそれほど低下させず
に、選択性は著しく向上させ、活性の維持向上を
計ることができた。 本発明においての含イオウ化合物としては、硫
化水素、硫化カルボニルが効果的である。 用いる含イオウ化合物とRhとの原子比は
0.00001〜2の範囲で処理する。 本発明においての前処理の一酸化炭素と含イオ
ウ化合物を触媒と接触させる温度は室温又は20か
ら600℃、好ましくは200〜450℃、最も好ましく
は300〜400℃で行う。 気相接触を行う際、ガス状含イオウ化合物は
1000ppm〜0.1ppbにN2、Ar、He、H2、CO等で
希釈したガスを用いると良い。液状含イオウ化合
物は適度な温度にさらし、その蒸気圧を上記ガス
等を用いて適度な濃度(1000ppm〜0.1ppb)にて
同伴する方法でも良い。 更に、含イオウ化合物を気相接触した後、水素
還元等を500℃以下にて行つても良い。 本発明による含イオウ化合物による気相接触処
理により卓越した効果が得られる。 反応は通常固定床式反応器を用いて行われる
が、その他移動床又は流動床式反応器も用いら
れ、場合により触媒を懸濁系で用いる液相系も用
いられる。又原料ガスには上記の如く合成ガスを
用いるが、他に製鉄所副生ガスを用いて、原料の
多様化も計り得る。之等の原料ガスにはCO2
N2、Ar、He、水蒸気、メタン等の不純物が含ま
れることもあるが、原料ガスに之等の成分が混合
されていても支障はなく、N2、He、Ar等の不活
性ガスは原料ガスの希釈用に用いることも出来
る。 反応条件は広い範囲で変えることができるが、
固定床流通式反応装置に適用される反応条件を代
表的な範囲として以下に示す。 一酸化炭素と水素のモル比:50:1〜1:5、
好ましくは10:1〜1:3、反応温度150〜450
℃、200〜350℃、圧力1〜300atm、好ましくは
20〜200atm、SV:100〜106H-1、好ましくは
1000〜105H-1程度が適当である。 (実施例) 以下、本発明について、実施例をもつて、更に
詳細に説明するが、これらの例は本発明について
の理解を容易にするため、あえて条件を統一して
示すもので本発明はこれらの例によつて何ら制限
されないことは勿論である。 触媒調製 実施例 1 塩化ロジウム(RhCl3・3H2O)3.57g、塩化マ
ンガン(MnCl2・6H2O)0.0790g、四塩化イリ
ジウム(IrCl4・H2O)0.598g、塩化リチウム
(LiCl)0.0437gを加えた純水23mlに溶解した水
溶液中に700℃1時間焼成処理したシリカゲル
(富士デヴイソン化学(株)#57)20gを加え、均一
に含浸させた。時々、撹拌しながら、室温下で1
時間、80℃で20時間乾燥した。この触媒を石英ガ
ラス製還元反応管に入れ、水素15N/H流通
下、450℃2時間水素還元した。続いて、350℃に
て一酸化炭素ガス25N/Hrにて30分間流し、
引き続き25N/Hrにて80ppm硫化水素/窒素
(バランス)ガスにて処理した。 比較例 1 一酸化炭素ガスの前処理を行わなかつた以外実
施例1と同じ。 参考例 1 一酸化炭素ガス、硫化水素ガスの後処理を行な
わなかつた以外実施例1に同じ。 実施例 2 実施例1で硫化水素のガス量を2倍使用し、そ
の他は同じ操作とした。 実施例 3 実施例1で硫化水素のガス量を3倍使用し、そ
の他は同じ操作とした。 上記触媒を10mlの反応器に充填し、N2ガスで
置換し、常温から250℃まで、約1時間で昇温し、
250℃に10分間保持後、CO/H2ガスで置換、昇
圧し、目的とする反応温度(300℃)まで昇温し
た。次いで原料ガス(CO/H2=9/1)を100
(標準状態)/時の速度で送入し、反応圧力
100Kg/cm2、反応温度300℃において反応を行つ
た。加圧冷却して捕集した液体生成物及び反応ガ
スをガスクロマトグラフ法により分析した結果を
第1表及び第2表に示した。 選択率(COモル%)=〔(夫々の生成物に転化されたCO
のモル数)÷(消費されたCOのモル数)〕×100 酢酸活性(g/時)=〔酢酸の生成量(g)〕÷〔触
媒量()×単位時間(時)〕 また触媒の安定性を示すために第3表に実施例
1で用いた触媒の経時変化を示した。 【表】 【表】 【表】
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for synthesizing oxygen-containing compounds from synthesis gas. Currently, in the petrochemical industry, taking advantage of the soaring price of naphtha, measures to diversify raw materials such as the use of heavy oil or petroleum substitutes are being considered, and one of these measures is to use carbon monoxide and hydrogen as the main components. Synthesis gas is used to synthesize oxygen-containing compounds such as ethylene glycol, ethanol, acetaldehyde, and acetic acid, and hydrocarbons such as methane, ethylene, and propylene, either directly or once converted into methanol.
Research on C1 chemistry is underway. The present invention deals with the so-called synthesis of synthesis gas, reethanol, acetaldehyde, and acetic acid as part of C1 chemistry.
It concerns the direct synthesis of C2 oxygenated compounds, especially acetic acid. (Description of Prior Art) A method for producing oxygenated hydrocarbons having two carbon atoms, such as acetic acid, acetaldehyde, and ethanol, from synthesis gas, essentially carbon monoxide and hydrogen contained therein, is known. Rhodium (Rh) catalysts are known to be effective as catalysts (for example, JP-A No. 51-80806,
No. 51-80807, No. 52-14706, No. 54-138504,
(See No. 54-141705, No. 55-57527, etc.) That is,
When synthesis gas or gas mixtures containing carbon monoxide and hydrogen are reacted catalytically, the reaction products can vary greatly depending on the catalyst used and the reaction conditions, for example saturated and Various unsaturated aliphatic hydrocarbons rich in α-olefins, aromatic hydrocarbons with 6 to 10 carbon atoms, various alcohols ranging from methanol to higher alcohols with nearly 20 carbon atoms, aldehydes, fatty acids, etc. of oxygenated hydrocarbon compounds are produced. In other words, it is extremely difficult to suppress the production of unnecessary compounds and selectively produce only the desired specific compounds from among these vast numbers of various products, and therefore the search for suitable catalysts is required. Although various efforts have been made mainly for It is said to be excellent. However, when the reaction is carried out under certain conditions using a rhodium catalyst, the production of undesirable by-products such as carbon gas, methane, and other hydrocarbons is certainly suppressed, and carbon is selectively reduced to a certain extent. It is recognized that several 2 oxygen-containing compounds are produced, but the activity of rhodium alone as a catalytic active component is low, and in terms of selectivity, the main product among oxygen-containing compounds with 2 carbon atoms is acetaldehyde, so it is not suitable for the purpose. When acetic acid is desired as a compound, there is a problem that the yield of the target product is not sufficient. Especially,
Since rhodium is an expensive substance, improving its catalytic activity and target product selectivity has important industrial significance. Research has been carried out to improve carbon monoxide utilization, selectivity, and space-time yield by adding cocatalysts of other components, and research into multicomponent catalysts with rhodium as the main component is further underway. It is being advanced,
Various reports have been made regarding rhodium catalysts using various elements as promoters. On the other hand, experiments have been reported in which sulfur-containing compounds were attached to nickel, iron, platinum, etc., and the effects on catalyst performance were investigated. For example, JF Schulty et al. have shown that when a molten iron catalyst is poisoned with an S compound and reacted with a mixed gas of carbon monoxide and hydrogen, its activity is significantly reduced. (Ind.Eng.Chem.Prod.Res.Dev.
2, 43 (1963); 3 , 33 (1964)) It has also been reported that when a small amount of sulfur is initially added to the iron catalyst, wax formation is inhibited and C1 - C4 hydrocarbons increase. (J.Phys.
Chem. 66 , 501 (1962)) The use of sulfide metal salts in liquid phase reactions is e.g.
Production of alcohol using Cu, Ni, Ti, etc. (JP-A-60-112725) Production of polyhydric alcohol using rhodium carbonyl sulfur cluster (JP-A-1989-112725)
71098). In gas phase reactions, rhodium catalysts prepared by co-impregnation with sulfuric acid, potassium sulfate, etc.
-114342) is disclosed. In all of the patents, a significant decrease in activity is observed, and furthermore, there is a disadvantage that there is a large change over time. From an industrial standpoint, it is clear that this is equivalent to not functioning as a catalyst. The phenomena seen in the above documents, patents, etc. are three-dimensional,
Although it is explained by electronic effects, there are many complex and unclear points. Therefore, it is completely impossible to quantitatively understand changes in selectivity and activity. However, the present inventors have developed a highly selective catalyst by partially adsorbing an appropriate amount of a sulfur-containing compound onto the rhodium surface in the gas phase, without sacrificing activity too much. Furthermore, in order to suppress only the by-products without poisoning the reaction active sites, before the sulfur-containing compound is brought into contact with the gas phase, it is pretreated with carbon monoxide, and then the sulfur-containing compound is adsorbed.
It has also been found that the catalyst can be highly active and highly selective. Therefore, the object of the present invention is to achieve high selectivity in the synthesis of C 2 oxygen-containing compounds from synthesis gas without significantly reducing the activity of the catalyst. Other objects of the invention will be readily understood from the following description. (Description of the Invention) First, to further explain the above reaction, the rhodium-based catalyst mainly having a co-catalyst is:
Any of these can be used in this reaction, but generally
It contains Rh in an amount of 0.01 to 15.0% by weight, preferably 0.1 to 10.0% by weight, and Rh can be used in a metallic form or as a rhodium salt or complex with a valence of 3 or less. As promoters, Mn, Mg, Sc, Ir, Zr, Hf,
Mo, W, U, Th, etc., and alkali metals or alkaline earth metals such as Na, K, Li, Cs, Rb, Ca,
Although it may contain St, Ba, etc., Mn is particularly preferred. Furthermore, any of the lanthanide and actinide series elements can be used as the rare earth element as a cocatalyst. Compounds used as cocatalysts include inorganic acid salts such as halogenates, sulfates, nitrates, and carbonates, and organic acid salts such as oxides, hydroxides, acetates, formic acids, and oxalates. can be used. However, compounds soluble in water or other suitable catalysts are preferably used to facilitate the loading of these catalyst components onto the carrier. As the carrier, silica gel, activated carbon, activated alumina, titanium oxide, thorium oxide, zeolite, etc. are used, and silica gel is particularly preferred. The carrier may be in any known form such as powder or pellet, but preferably has a specific surface area of 1 to 1000 m 2 /g. The preparation method is to dissolve the rhodium and, in some cases, a co-catalyst in water or an organic solvent such as n-hexane, alcohol, or acetone, add a porous inorganic carrier material to this solution, and perform an impregnation method or an ion exchange method. After being supported by other conventional methods, the supported and fixed target object can be obtained by reduction or heat treatment. The catalyst components may be supported on the carrier at the same time, or each component may be supported on the carrier sequentially, or each component may be supported by reduction, heat treatment, etc. as necessary. It is possible to use various methods such as a method of sequentially or stepwise loading while processing. The catalyst prepared by the above method is usually subjected to a reduction treatment to activate rhodium to a substantially metallic state, and then subjected to a reaction. The reduction treatment is performed under hydrogen gas or under a mixed gas of hydrogen and carbon monoxide, or in some cases under hydrogen gas partially diluted with an inert gas such as nitrogen, helium, argon, etc., or under the above mixed gas. be able to. The reduction treatment temperature is 100 to 600℃, preferably
Carry out at a temperature of 250-550°C. At this time, in order to maintain the activation state of each component of the catalyst in an optimal state, the reduction treatment may be performed while raising the temperature gradually or stepwise from a low temperature. Further, the rhodium compound may be reduced by treatment with a reducing agent such as methanol, hydrazine or formalin. Accordingly, in the present invention, after the above activation treatment, the rhodium catalyst (regardless of the presence or absence of a co-catalyst) is pretreated with carbon monoxide gas and then heated with a predetermined amount of a sulfur-containing compound at a predetermined temperature. It is characterized by phase contact treatment. Depending on the case, it may be further reduced with hydrogen or the like at a temperature below 500°C. As a result, the selectivity was significantly improved without significantly reducing the catalyst activity, and it was possible to maintain and improve the activity. Hydrogen sulfide and carbonyl sulfide are effective as the sulfur-containing compound in the present invention. The atomic ratio of the sulfur-containing compound used and Rh is
Process in the range of 0.00001 to 2. In the present invention, the temperature at which the pretreated carbon monoxide and sulfur-containing compound are brought into contact with the catalyst is carried out at room temperature or from 20 to 600°C, preferably from 200 to 450°C, and most preferably from 300 to 400°C. When performing gas phase contact, gaseous sulfur-containing compounds
It is preferable to use a gas diluted with N 2 , Ar, He, H 2 , CO, etc. to 1000 ppm to 0.1 ppb. A method may also be used in which the liquid sulfur-containing compound is exposed to an appropriate temperature and its vapor pressure is entrained at an appropriate concentration (1000 ppm to 0.1 ppb) using the above-mentioned gas or the like. Furthermore, after contacting the sulfur-containing compound with the gas phase, hydrogen reduction or the like may be performed at 500°C or lower. Excellent effects can be obtained by the gas phase contact treatment with the sulfur-containing compound according to the present invention. The reaction is usually carried out using a fixed bed reactor, but a moving bed or fluidized bed reactor may also be used, and in some cases a liquid phase system using a suspended catalyst may also be used. Furthermore, although synthesis gas is used as the raw material gas as described above, it is also possible to diversify the raw material by using steelworks byproduct gas. The raw material gases include CO 2 ,
Although it may contain impurities such as N 2 , Ar, He, water vapor, and methane, there is no problem even if these components are mixed in the raw material gas, and inert gases such as N 2 , He, Ar, etc. It can also be used for diluting raw material gas. Although reaction conditions can be varied within a wide range,
The reaction conditions applied to the fixed bed flow reactor are shown below as typical ranges. Molar ratio of carbon monoxide and hydrogen: 50:1 to 1:5,
Preferably 10:1 to 1:3, reaction temperature 150 to 450
℃, 200-350℃, pressure 1-300atm, preferably
20~200atm, SV: 100~ 106H -1 , preferably
Approximately 1000 to 10 5 H -1 is appropriate. (Example) The present invention will be explained in more detail below with reference to Examples. However, in order to make it easier to understand the present invention, these examples are purposely shown under unified conditions. Of course, there is no restriction in any way by these examples. Catalyst Preparation Example 1 Rhodium chloride (RhCl 3・3H 2 O) 3.57 g, manganese chloride (MnCl 2・6H 2 O) 0.0790 g, iridium tetrachloride (IrCl 4・H 2 O) 0.598 g, lithium chloride (LiCl) 20 g of silica gel (Fuji Davison Chemical Co., Ltd. #57) calcined at 700° C. for 1 hour was added to an aqueous solution of 0.0437 g dissolved in 23 ml of pure water and uniformly impregnated. 1 at room temperature with occasional stirring.
Dry at 80°C for 20 hours. This catalyst was placed in a reduction reaction tube made of quartz glass, and hydrogen reduction was performed at 450° C. for 2 hours while flowing 15N/H hydrogen. Next, carbon monoxide gas was flowed at 25N/Hr for 30 minutes at 350℃.
Subsequently, it was treated with 80 ppm hydrogen sulfide/nitrogen (balance) gas at 25 N/Hr. Comparative Example 1 Same as Example 1 except that carbon monoxide gas pretreatment was not performed. Reference Example 1 Same as Example 1 except that carbon monoxide gas and hydrogen sulfide gas were not post-treated. Example 2 The same procedure was used as in Example 1 except that twice the amount of hydrogen sulfide gas was used. Example 3 The same procedure was used as in Example 1 except that three times the amount of hydrogen sulfide gas was used. Fill a 10ml reactor with the above catalyst, replace it with N2 gas, and raise the temperature from room temperature to 250℃ in about 1 hour.
After holding at 250°C for 10 minutes, the mixture was replaced with CO/H 2 gas, the pressure was increased, and the temperature was raised to the desired reaction temperature (300°C). Next, the raw material gas (CO/H 2 = 9/1) was
(Standard state) Feed at a rate of / hour, reaction pressure
The reaction was carried out at a pressure of 100 Kg/cm 2 and a reaction temperature of 300°C. Tables 1 and 2 show the results of analyzing the liquid product and reaction gas collected by pressurized cooling by gas chromatography. Selectivity (CO mol%) = [(CO converted to each product
(number of moles of CO) ÷ (number of moles of CO consumed)] × 100 Acetic acid activity (g/hour) = [Amount of acetic acid produced (g)] ÷ [Amount of catalyst () × unit time (hour)] In order to show the stability, Table 3 shows the change over time of the catalyst used in Example 1. [Table] [Table] [Table]

Claims (1)

【特許請求の範囲】[Claims] 1 ロジウム系触媒の存在下に一酸化炭素と水素
を主成分とする合成ガスより、酢酸、アセトアル
デヒド及びエタノールを製造する方法において、
反応に先立つて、ロジウム系触媒を一酸化炭素に
て前処理し、しかる後硫化水素又は硫化カルボニ
ルで気相接触処理することを特徴とする方法。
1. A method for producing acetic acid, acetaldehyde and ethanol from synthesis gas containing carbon monoxide and hydrogen as main components in the presence of a rhodium-based catalyst,
A method characterized in that, prior to the reaction, a rhodium-based catalyst is pretreated with carbon monoxide, and then subjected to gas phase contact treatment with hydrogen sulfide or carbonyl sulfide.
JP60289269A 1985-12-24 1985-12-24 Production of oxygen-containing organic compound Granted JPS62148437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60289269A JPS62148437A (en) 1985-12-24 1985-12-24 Production of oxygen-containing organic compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60289269A JPS62148437A (en) 1985-12-24 1985-12-24 Production of oxygen-containing organic compound

Publications (2)

Publication Number Publication Date
JPS62148437A JPS62148437A (en) 1987-07-02
JPS6341892B2 true JPS6341892B2 (en) 1988-08-19

Family

ID=17740970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60289269A Granted JPS62148437A (en) 1985-12-24 1985-12-24 Production of oxygen-containing organic compound

Country Status (1)

Country Link
JP (1) JPS62148437A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706914B2 (en) 2000-05-18 2004-03-16 Haldor Topsoe A/S Rhodium containing solutions

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127432A (en) * 1998-01-29 2000-10-03 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates and catalysts therefor
US6521783B1 (en) 1998-01-29 2003-02-18 Union Carbide Chemicals & Plastics Technology Corporation Processes for preparing oxygenates
GB0510356D0 (en) 2005-05-20 2005-06-29 Bp Chem Int Ltd Process for the conversion of synthesis gas to oxygenate
EP1741692A1 (en) 2005-07-06 2007-01-10 BP Chemicals Limited Process for the conversion of hydrocarbons to C2-oxygenates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6706914B2 (en) 2000-05-18 2004-03-16 Haldor Topsoe A/S Rhodium containing solutions

Also Published As

Publication number Publication date
JPS62148437A (en) 1987-07-02

Similar Documents

Publication Publication Date Title
CA2306788C (en) A process for preparing vinyl acetate utilizing a catalyst comprising palladium, gold, and any of certain third metals
JPS6341892B2 (en)
JPS6341893B2 (en)
JPS6113689B2 (en)
JPS6039653B2 (en) Method for producing oxygen-containing hydrocarbon compound
US4207249A (en) Catalytic process for synthesizing methane by reacting hydrogen with carbon monoxide
JPS6039652B2 (en) Method for producing lower oxygen-containing organic compounds
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound
JPH07188096A (en) Production of acetic acid
JPS6119608B2 (en)
JPS61143332A (en) Synthesis of oxygen-containing compound
JPS6233215B2 (en)
JPS6238336B2 (en)
AU762149B2 (en) Vinyl acetate catalyst comprising palladium, gold, copper and any of certain fourth metals
JPS6114137B2 (en)
JPH0371417B2 (en)
JPS6218530B2 (en)
JPS63412B2 (en)
JPS6032730A (en) Production of oxygen-containing compound composed mainly of ethanol
JPS6218531B2 (en)
JPS6049612B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS63416B2 (en)
JPS6238342B2 (en)
JPS6049611B2 (en) Method for producing oxygen-containing hydrocarbon compound
JPS63414B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term