JPS61143332A - Synthesis of oxygen-containing compound - Google Patents

Synthesis of oxygen-containing compound

Info

Publication number
JPS61143332A
JPS61143332A JP59265334A JP26533484A JPS61143332A JP S61143332 A JPS61143332 A JP S61143332A JP 59265334 A JP59265334 A JP 59265334A JP 26533484 A JP26533484 A JP 26533484A JP S61143332 A JPS61143332 A JP S61143332A
Authority
JP
Japan
Prior art keywords
reaction
temperature
gas
inert gas
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59265334A
Other languages
Japanese (ja)
Inventor
Tetsuo Nakajo
哲夫 中條
Kenichi Sano
健一 佐野
Shinya Matsuhira
松比良 伸也
Hiroko Noguchi
裕子 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP59265334A priority Critical patent/JPS61143332A/en
Publication of JPS61143332A publication Critical patent/JPS61143332A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To carry out the reaction for the production of acetic acid, acetaldehyde, etc. from synthetic gas in the presence of a Rh-based catalyst, by heating the reaction system close to the reaction temperature in the presence of an inert gas, switching the feed of the inert gas to the synthetic gas used as the raw material, and carrying out the reaction under pressure. CONSTITUTION:In the production of acetic acid, acetaldehyde and ethanol from a synthetic gas in the presence of an Rh-based catalyst, the reaction system is heated to a temperature lower than the reaction temperature by 0-100 deg.C in the presence of an inert gas, and thereafter, the reaction is carried out at 150-450 deg.C under 1-300 atm (preferably at 250-300 deg.C under 20-200 atm) after substituting the inert gas with the synthetic gas used as the raw material. The reaction can be started in an extremely short time at the prescribed reaction temperature without lowering the catalytic activity, and at the same time, the life and the selectivity of the catalyst can be improved. The reaction system is heated quickly to the prescribed reaction temperature by the generation of the heat of reaction when the feed of the inert gas is switched to the synthetic gas.

Description

【発明の詳細な説明】 (発明の技術的分野) 本発明は合成ガスよりの含酸素化合物の合成法に係わる
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for synthesizing oxygen-containing compounds from synthesis gas.

現今1石油化学工業において、ナフサ価格の高脇を契機
として、重質油成るいは石油代替物の利ヒト、酢酸など
の含酸素化合物やメタン、エチレン、プロピレン等の炭
化水素等を合成する所謂C化学の研究が進められて居る
Currently, in the petrochemical industry, the so-called so-called synthesis of heavy oil or petroleum substitutes, oxygenated compounds such as acetic acid, and hydrocarbons such as methane, ethylene, and propylene is taking advantage of the high naphtha price. Research on C chemistry is underway.

本発明は、2等C化学の一環として合成ガスよリエタノ
ール、アセトアルデヒド、酢酸の所謂C含酸素化合物、
特に酢酸の直接合成法に係わるものである。
As part of 2nd class C chemistry, the present invention deals with the production of so-called C oxygenated compounds such as ethanol, acetaldehyde, and acetic acid from synthesis gas.
In particular, it concerns the direct synthesis of acetic acid.

(先行技術の説明) 合成ガス、実質的にはその中に含まれる一酸化炭素と水
素、から、酢酸、アセトアルデヒド、エタノールなどの
炭素@2の含酸素炭化水素を製造する方法は公知であり
、その際用いられる触媒としてはロジウム(Rh)触媒
が効果的であることかを接触的に反応させた場合、使用
する触媒や反応条件によって反応生成物は極めて多岐に
亘り、例えば、メタンからパラフィンワックスに至る飽
和およびα−オレフィンに富む不飽和の各種脂肪族炭化
水素並びに炭素数6乃至lO数側の芳香族炭化水素や、
メタノールから炭素数20近くの高級アルコールに至る
各種アルコール類その他アルデヒド類や脂肪酸類など各
種の含酸素炭化水素化合物が生成する。換言すれば、こ
れら膨大な数の各種生成物の中から不必要な化合物の生
成を抑制し、所望とする特定の化合物のみを選択的に生
成させることは非常に難しく、そのため好適な触媒の探
索を主体に種々の工夫がなされているが、上述の酢酸、
アセトアルデヒド、エタノールなどのしかし乍ら、ロジ
ウム触媒を用いて成る条件下に反応を行った場合には、
確かに炭素ガスやメタンその他の炭化水素など好ましく
ない副生物の生成は抑制され、成る程度選択的に炭素数
2の含酸目的化合物として酢酸を所望する場合には目的
物の収率が充分ではないという難点がある。殊に、ロジ
ウムは高価な物質であるため、その触媒活性や目的物の
選択性を改善することは工業上重要な意味をもっている
DESCRIPTION OF THE PRIOR ART Methods for producing carbon@2 oxygenated hydrocarbons, such as acetic acid, acetaldehyde, and ethanol, from synthesis gas, essentially the carbon monoxide and hydrogen contained therein, are known. Rhodium (Rh) is an effective catalyst for this reaction.When a catalytic reaction is carried out, the reaction products vary widely depending on the catalyst used and the reaction conditions.For example, the reaction products range from methane to paraffin wax. various saturated and α-olefin-rich unsaturated aliphatic hydrocarbons, as well as aromatic hydrocarbons with a carbon number of 6 to 10,
Various alcohols ranging from methanol to higher alcohols having nearly 20 carbon atoms, as well as various oxygen-containing hydrocarbon compounds such as aldehydes and fatty acids are produced. In other words, it is extremely difficult to suppress the production of unnecessary compounds and selectively produce only the desired specific compounds from among these vast numbers of various products, and therefore the search for suitable catalysts is required. Various efforts have been made mainly for the above-mentioned acetic acid,
However, when the reaction is carried out under conditions using a rhodium catalyst, such as acetaldehyde or ethanol,
It is true that the formation of undesirable by-products such as carbon gas, methane, and other hydrocarbons is suppressed, and if acetic acid is desired as a target acid-containing compound having 2 carbon atoms selectively, the yield of the target product is sufficient. The problem is that there is no. In particular, since rhodium is an expensive substance, improving its catalytic activity and target product selectivity has important industrial significance.

従来より他成分の助触媒の添加による一酸化炭素の利用
率、選択性の向上、空時収率の向上について研究がなさ
れ居り、ロジウムを主成分とする多成分系の触媒の探究
が更に進められて居り、ロジウム触媒について種々の元
素を助触媒として用いる各種の報告がなされている。
Research has been conducted on improving carbon monoxide utilization, selectivity, and space-time yield by adding cocatalysts of other components, and research into multicomponent catalysts with rhodium as the main component is progressing further. Various reports have been made regarding rhodium catalysts using various elements as promoters.

又高選択性を得るには、ロジウム触媒を低還元状態で用
いて触媒活性と選択性の向上を計ることも開示せられ、
更には特開昭54−141705号公報によれば、反応
を開始するに当って、原料合成ガスを流し乍ら、所定の
転化率の得られる温度迄極めて徐々に、1時間に10℃
以下の温度上昇により昇温して選択率の向上を計る方法
等も開示せられている。
It is also disclosed that in order to obtain high selectivity, a rhodium catalyst is used in a low reduction state to improve catalytic activity and selectivity.
Furthermore, according to Japanese Patent Application Laid-Open No. 54-141705, when starting the reaction, while flowing the raw material synthesis gas, the temperature was very gradually increased to 10°C per hour until a predetermined conversion rate was obtained.
Also disclosed is a method of increasing the selectivity by raising the temperature by increasing the temperature as described below.

本発明は、上記における反応条件の改良による選択性の
向上を目途するものであるが、之に関し前者は助触媒に
マグネシウムを用いて、反応系に常時ハロゲン化アルキ
ルと共にマグネシウムが存在することを要件としている
ので、之等の化合物を反応系に連続的又は間欠的に添加
する必要があり、その添加設備を必要とする等煩雑な装
置を必要とする。又後者は反応温度迄の昇温を 1時間
10℃以下で行って酢酸生成への選択性の向上を計って
いるが、装置の稼動迄に長時間を要して好ましくない。
The present invention aims to improve selectivity by improving the reaction conditions mentioned above, but the former requires that magnesium is used as a cocatalyst and that magnesium is always present together with the alkyl halide in the reaction system. Therefore, it is necessary to add such compounds to the reaction system continuously or intermittently, and complicated equipment such as addition equipment is required. In the latter method, the temperature is raised to the reaction temperature at 10° C. or less for 1 hour in order to improve the selectivity for acetic acid production, but this is not preferable because it takes a long time to start the device.

(発明の略解) ここにおいて、本発明者はロジウム系触媒を用いて02
合酸素化合物を合成するに当り、場合により加圧下に反
応温度迄触媒を加熱するに当り、不活性ガスの存在化に
所定反応温度近く迄加熱昇温した後、ガスを反応ガス、
即ち合成ガスに切り替えて反応を行なうことにより反応
熱により昇温して所定反応温度で加圧下に反応を行なう
ことを特徴とし、之により極めて単時間に触媒活性を落
とすことなく所定温度で反応を開始出来ると共に、之に
よって触媒活性の維持向上と高選択性の達成が得られる
ことを見出した。
(Simplified explanation of the invention) Here, the present inventor uses a rhodium-based catalyst to
In synthesizing a combined oxygen compound, when heating the catalyst to the reaction temperature under pressure if necessary, the gas is heated to a temperature close to the predetermined reaction temperature to bring about the presence of an inert gas, and then the gas is heated to a reaction temperature,
In other words, it is characterized in that the reaction is carried out by switching to synthesis gas, the temperature is raised by the heat of reaction, and the reaction is carried out at a predetermined reaction temperature under pressure. It has been found that this method can maintain and improve catalyst activity and achieve high selectivity.

、上と選択性の向上を計ることにある。, and to improve selectivity.

本発明の次の目的は、上記における反応の開始を、触媒
活性を落すことなく極めて短時間に合理的に行うことの
出来る方法を提供するにある。
Another object of the present invention is to provide a method that can rationally initiate the above reaction in an extremely short period of time without reducing catalytic activity.

本発明の他の目的は、以下の記載より容易に理何れも本
反応に用いることが出来るが、一般にRhを0.01〜
15.0重量%、好ましくは0.1−10.0重量%含
有し、Rhを金属形、又は3価以下の原子価のロジウム
塩又は錯体として用い得る。
Another object of the present invention is to use Rh from 0.01 to
It contains 15.0% by weight, preferably 0.1-10.0% by weight, and Rh can be used in metallic form or as a rhodium salt or complex with a valence of 3 or less.

助触媒としては、Mn、 Mg+ Sc、 Ir、 Z
r、 or。
As co-catalysts, Mn, Mg+ Sc, Ir, Z
r, or.

No、 W、 U、 Th等、又アルカリ金属又はアル
カリ土類金属としてNa、 K、 Lf、 Cs、 R
h、 Ca、 SL、 Ha等を含んでもよいが、特に
Mnが好ましい、又助触媒としての稀土類元素としてラ
ンタニド、アクチニド系列の何れの元素をも用い得る。
No, W, U, Th, etc., and alkali metals or alkaline earth metals such as Na, K, Lf, Cs, R
h, Ca, SL, Ha, etc., but Mn is particularly preferred, and any element of the lanthanide or actinide series can be used as the rare earth element as a cocatalyst.

助触媒として使用され1化合物としては、ハロゲン酸塩
−硫酸塩−81酸塩・炭猷塩等の無機酸塩、酸化物、水
酸゛化物、酢融塩、ギ酢酸、蓚酸塩等の有機酸塩を問わ
ず使用することができる。しかし、これらの触媒成分の
担体上への坦持を容易ならしめるため、水又は他の適当
な触媒に可溶性の化合物が好ましく用いられる。
Compounds used as promoters include inorganic acid salts such as halide-sulfate-81 acid salts and carbonate salts, and organic acid salts such as oxides, hydroxides, acetate salts, formic acid salts, and oxalate salts. Any acid salt can be used. However, compounds soluble in water or other suitable catalysts are preferably used to facilitate the loading of these catalyst components onto the carrier.

坦体としては、シリカゲル、活性炭、活性アルミナ、酸
化チタン、酸化トリウム、ゼオライト等が用いられるが
、特にシリカゲルが好ましい、坦体の形態としては粉末
状、ペレット状等任意の公知の形態のものが用いられる
が、比表面積として1〜1000rn’ /gを有する
ものが好ましい。
As the carrier, silica gel, activated carbon, activated alumina, titanium oxide, thorium oxide, zeolite, etc. are used, and silica gel is particularly preferred.The carrier may be in any known form such as powder or pellet. However, those having a specific surface area of 1 to 1000 rn'/g are preferred.

Rh触媒の還元は通常300℃〜800℃の温度で水素
を用いて行われるのが一般であるが、本発明に反応条件
としては、CD:H比は30:1〜1:5、好ましくは
20:1〜1:3  の比を用い、150〜450℃、
圧力1〜300気圧、好ましくは200〜350℃、2
0〜200%圧において、空間速度10〜10 /時、
好ましくは10〜107時を用いて反応を行う6反応温
度としては、250℃前後を用いるのが最も好ましい、
然し乍ら、時間の経過と共に起る触媒の活性低下に対し
ては逐次反応温度を上昇することは通常の通りである。
Reduction of the Rh catalyst is generally carried out using hydrogen at a temperature of 300°C to 800°C, but in the present invention, the reaction conditions include a CD:H ratio of 30:1 to 1:5, preferably using a ratio of 20:1 to 1:3, 150 to 450°C,
Pressure 1-300 atm, preferably 200-350°C, 2
At 0-200% pressure, space velocity 10-10/h,
Preferably, the reaction is carried out at a temperature of 10 to 10 hours.6 The reaction temperature is most preferably around 250°C.
However, it is common practice to gradually increase the reaction temperature in response to a decrease in catalyst activity that occurs over time.

而して、本発明は反応開始に当り、200℃前後又は最
適温度近くに加熱する迄は、場合により加圧下にチッ素
ガス等の不活性ガスを反応系に流しつつ昇温して、所定
温度において不活性ガスを合成ガスに切り替えて、反応
熱の発生により所望反応温度迄急速に昇温させて加圧下
に反応を行なうことを特徴とするものである。
Therefore, in the present invention, when starting the reaction, the temperature is raised while flowing an inert gas such as nitrogen gas under pressure into the reaction system until the reaction is heated to around 200°C or near the optimum temperature. The method is characterized in that the inert gas is switched to synthesis gas at a certain temperature, the temperature is rapidly raised to the desired reaction temperature by the generation of reaction heat, and the reaction is carried out under pressure.

之によって、触媒活性及び選択性は著しく向上し、空時
収率の上昇が達成される。
As a result, catalyst activity and selectivity are significantly improved, and an increase in space-time yield is achieved.

本発明においての不活性ガスを合成ガスに切り替える温
度は反応温度より 0〜100℃低い温度1通常20〜
50℃の温度において行なう。
In the present invention, the temperature at which the inert gas is switched to the synthesis gas is 0 to 100°C lower than the reaction temperature.1 Usually 20 to
It is carried out at a temperature of 50°C.

現在迄に行われていた反応系の加熱は、原料ガス即ち合
成ガスを常温で流しつつ昇圧し、その後原料ガス存在下
に昇温しでいる。この方法によるを惹起するおそれがあ
り、又触媒活性の低下が見られる。
To date, the reaction system has been heated by increasing the pressure while flowing the raw material gas, ie, synthesis gas, at room temperature, and then raising the temperature in the presence of the raw material gas. This method may cause oxidation, and a decrease in catalytic activity is observed.

本発明によれば、不活性ガス下に昇温してから反応ガス
を流し反応系の発熱により所定反応温度に達せしめて反
応を行うか、又は不活性ガスによる反応ガスを希釈して
反応を開始することにより、安全且つ合理的に反応を高
空時収率で行うことが出来ると共に触媒活性の低下がな
い、更には、本発明によれば不活性ガスの存在下に昇温
し、しかる後反応系の温度を常温まで低下し、圧力を常
圧に戻した後1、合成ガスの存在下に反応系を加圧昇温
しても触媒活性の低下がないという特徴を有する。
According to the present invention, the reaction is carried out by raising the temperature under an inert gas and then flowing the reaction gas to reach a predetermined reaction temperature due to heat generation in the reaction system, or by diluting the reaction gas with an inert gas. By starting the reaction, the reaction can be carried out safely and rationally with a high space-time yield, and there is no decrease in catalyst activity.Furthermore, according to the present invention, the reaction is heated in the presence of an inert gas, and then It is characterized in that the catalyst activity does not decrease even if the temperature of the reaction system is lowered to room temperature and the pressure is returned to normal pressure, and then the pressure and temperature of the reaction system is increased in the presence of synthesis gas.

即ち、始めから合成ガスの存在下に昇温する場合に生起
する低収率の理由は、低温における合成ガス中の不純物
又はカルボニルガスによる触媒の活性低下も考えられる
が、その理由は詳らかでない。
That is, the reason for the low yield that occurs when the temperature is raised in the presence of synthesis gas from the beginning may be due to a decrease in the activity of the catalyst due to impurities or carbonyl gas in the synthesis gas at low temperatures, but the reason is not clear.

本発明による不活性ガスの存在下のロジウム触媒の昇温
により卓越した効果が得られる。
An outstanding effect is obtained by increasing the temperature of the rhodium catalyst in the presence of an inert gas according to the invention.

反応は通常固定床式反応器を用いて行われるが、その他
移動床又は流動床式反応器も用いらAr、 He、水蒸
気、メタン等の不純物が含まれるこもあるが、原料ガス
に之等の成分が混合されていても支障はなく、 N 、
 He、 Ar等の不活性ガスは原料ガスの希釈用に用
いることも出来る。
The reaction is usually carried out using a fixed bed reactor, but moving bed or fluidized bed reactors may also be used. There is no problem even if the components are mixed, N,
Inert gases such as He and Ar can also be used to dilute the raw material gas.

以下、実施例により本発明を説明する。The present invention will be explained below with reference to Examples.

実施例1〜3 嵩密度0.4 kg/!L、表面積300m″/g (
N吸着B、E、T、法による。)を持ったシリカゲル2
0gを担体とした。含浸液は、2.55gのRhC1−
3I O。
Examples 1 to 3 Bulk density 0.4 kg/! L, surface area 300m''/g (
By N adsorption B, E, T method. ) with silica gel 2
0g was used as a carrier. The impregnating solution contains 2.55 g of RhCl-
3IO.

0.047gの HnCl ・OHO,0,427Hの
 IrCJl   @ HO。
0.047 g of HnCl.OHO, 0.427 g of IrCJl@HO.

0.028gのLiCJlを純水に溶解し、 22.5
層文の溶液を得た。この溶液に担体を含浸させ、 80
℃で20時間乾燥した後、100℃、常圧で201/時
の水素を2〜10時間導入して還元した。還元時間2,
5゜及び10時間の3種類の触媒を得、夫々を触媒A。
Dissolve 0.028g of LiCJl in pure water, 22.5
A layered solution was obtained. A carrier is impregnated with this solution, and 80
After drying at 100 DEG C. for 20 hours, hydrogen was introduced at 201/hour at 100 DEG C. and normal pressure for 2 to 10 hours to reduce the mixture. Reduction time 2,
Three types of catalysts were obtained at 5° and 10 hours, and each was designated as catalyst A.

触媒B、触媒Cと呼ぶ。They are called catalyst B and catalyst C.

触媒A、 B、 Cを用いて合成実験を行った。Synthesis experiments were conducted using catalysts A, B, and C.

上記触媒を10mJlの反応器に充填し、Nガスで置換
し、常温から250℃まで、約1時間で昇温し、250
℃に10分間保持後、GO/Hガスで置換、して捕集し
た液体生成物及び反応ガスをガスクロマトグラフ法によ
り分析した結果を第1表に示した。
The above catalyst was packed into a 10 mJl reactor, replaced with N gas, and heated from room temperature to 250°C in about 1 hour.
Table 1 shows the results of gas chromatography analysis of the liquid product and reaction gas collected after being held at ℃ for 10 minutes and replaced with GO/H gas.

選択率(00モル%)−[(夫々の生成物に転化された
COのモル数)÷(消費されたCOのモル数) ] X
 10G 酢酸活性(g/皇時)=〔酢酸の生成量(g)〕÷[触
媒量(見)X単位時間(時)] 比較例として実施例1〜3と同一の触媒を用いて初めか
らCO/Hガス下に常温から反応温度(300℃)まで
同実施例と同じ昇温速度で昇温し、同実施例と同一の反
応条件で反応を行った。得られた結果を第1表に示した
Selectivity (00 mol%) - [(Number of moles of CO converted to each product) ÷ (Number of moles of CO consumed) ] X
10G Acetic acid activity (g/Imperial period) = [Amount of acetic acid produced (g)] ÷ [Amount of catalyst (see) x unit time (hours)] As a comparative example, the same catalyst as in Examples 1 to 3 was used from the beginning The temperature was raised from room temperature to the reaction temperature (300° C.) under CO/H gas at the same temperature increase rate as in the same example, and the reaction was carried out under the same reaction conditions as in the same example. The results obtained are shown in Table 1.

実施例4〜7 触媒の加熱処理温度が異なる以外は、上記実施例1〜3
と同一条件によりC化合物合成実験を行った。結果を第
2表に示す、触媒の還元時間は2時間であり、触媒とし
て実施例1〜3に用いた触媒Aと同一の触媒を用いた。
Examples 4 to 7 Examples 1 to 3 above except that the heat treatment temperature of the catalyst is different.
A C compound synthesis experiment was conducted under the same conditions as described above. The results are shown in Table 2. The reduction time of the catalyst was 2 hours, and the same catalyst as Catalyst A used in Examples 1 to 3 was used as the catalyst.

Claims (4)

【特許請求の範囲】[Claims] (1)ロジウム系触媒の存在下に加圧、昇温下一酸化炭
素と水素を主成分とする合成ガスより、酢酸、アセトア
ルデヒド及びエタノールを製造する方法において、場合
により加圧下に反応系の加熱昇温を所定反応温度近く迄
不活性ガスの存在下に行つた後、不活性ガスを原料合成
ガスに切り替えて加圧下に反応を行なうことを特徴とす
る方法。
(1) In a method for producing acetic acid, acetaldehyde, and ethanol from synthesis gas containing carbon monoxide and hydrogen as main components under pressure and elevated temperature in the presence of a rhodium-based catalyst, heating the reaction system under pressure as the case may be. A method characterized by raising the temperature to near a predetermined reaction temperature in the presence of an inert gas, then switching the inert gas to raw material synthesis gas and carrying out the reaction under pressure.
(2)所望反応温度が150〜450℃、好ましくは2
00〜350℃、最も好ましくは250〜300℃であ
る特許請求の範囲第1項記載の方法。
(2) Desired reaction temperature is 150 to 450°C, preferably 2
2. A method according to claim 1, wherein the temperature is 00-350<0>C, most preferably 250-300<0>C.
(3)原料ガスへの切り替え時の温度が、所望反応温度
より0〜100℃低い温度である特許請求の範囲第2項
記載の方法。
(3) The method according to claim 2, wherein the temperature at the time of switching to the raw material gas is 0 to 100°C lower than the desired reaction temperature.
(4)反応圧力が1〜300気圧、好ましくは20〜2
00気圧である特許請求の範囲第1項記載の方法。
(4) Reaction pressure is 1 to 300 atm, preferably 20 to 2
2. The method according to claim 1, wherein the pressure is 0.00 atm.
JP59265334A 1984-12-18 1984-12-18 Synthesis of oxygen-containing compound Pending JPS61143332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59265334A JPS61143332A (en) 1984-12-18 1984-12-18 Synthesis of oxygen-containing compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59265334A JPS61143332A (en) 1984-12-18 1984-12-18 Synthesis of oxygen-containing compound

Publications (1)

Publication Number Publication Date
JPS61143332A true JPS61143332A (en) 1986-07-01

Family

ID=17415742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59265334A Pending JPS61143332A (en) 1984-12-18 1984-12-18 Synthesis of oxygen-containing compound

Country Status (1)

Country Link
JP (1) JPS61143332A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203637A (en) * 1987-02-20 1988-08-23 Agency Of Ind Science & Technol Production of oxygen-containing hydrocarbon compound
CN103864595A (en) * 2014-03-07 2014-06-18 中石化上海工程有限公司 Method for using energy of acetic acid device
JP2015163594A (en) * 2014-02-28 2015-09-10 積水化学工業株式会社 Method of producing oxygenated product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910534A (en) * 1982-07-12 1984-01-20 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS5948426A (en) * 1982-08-14 1984-03-19 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−・エル・シ− Methanol catalytic manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910534A (en) * 1982-07-12 1984-01-20 Agency Of Ind Science & Technol Production of oxygen-containing compound
JPS5948426A (en) * 1982-08-14 1984-03-19 ザ・ブリテイツシユ・ピトロ−リアム・コンパニ−・ピ−・エル・シ− Methanol catalytic manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63203637A (en) * 1987-02-20 1988-08-23 Agency Of Ind Science & Technol Production of oxygen-containing hydrocarbon compound
JP2015163594A (en) * 2014-02-28 2015-09-10 積水化学工業株式会社 Method of producing oxygenated product
CN103864595A (en) * 2014-03-07 2014-06-18 中石化上海工程有限公司 Method for using energy of acetic acid device

Similar Documents

Publication Publication Date Title
EP0082641B1 (en) Catalysts for the production of alcohols from olefins and synthesis gas and process employing such catalysts
EP0198682B1 (en) Alcohols production by hydrogenation of carboxylic acids
EP0689872B2 (en) Pd and Ag containing catalyst for the selective hydrogenation of acetylene
JPS5944099B2 (en) One-step production method for vanadium-phosphorus complex oxidation catalyst
US2404438A (en) Process for the manufacture of olefin oxides
JPS6337772B2 (en)
US3816337A (en) Process for preparing a catalytic cobalt carbonyl reaction product
JP2013121939A (en) Method of manufacturing butadiene
US2446132A (en) Silver catalysts
JP5225026B2 (en) Copper catalyst regeneration method
JPS61143332A (en) Synthesis of oxygen-containing compound
JPS58128327A (en) Manufacture of olefin
US4754092A (en) Reducing methane production and increasing liquid yields in Fischer-Tropsch reactions
JPS6341893B2 (en)
JPS6341892B2 (en)
JP3036938B2 (en) Method for oxidizing saturated hydrocarbons
JPS59227831A (en) Production of oxygen-containing hydrocarbon compound
EP0522666B1 (en) Process for reducing methane formation and increasing liquid yields in a Fischer-Tropsch process
JPH0237329B2 (en)
JPS61178933A (en) Production of oxygen-containing compound
EP0196732A1 (en) Process for upgrading synthesis gas and catalysts therefor
EP0321616B1 (en) Process for reducing methane production and increasing liquid yields in Fischer-Tropsch reactions
JPH0475903B2 (en)
US2443832A (en) Oxidation of aromatic compounds
JPH0365230B2 (en)