JP2003024782A - Carboxylic acid ester producing catalyst excellent in activity - Google Patents

Carboxylic acid ester producing catalyst excellent in activity

Info

Publication number
JP2003024782A
JP2003024782A JP2001215522A JP2001215522A JP2003024782A JP 2003024782 A JP2003024782 A JP 2003024782A JP 2001215522 A JP2001215522 A JP 2001215522A JP 2001215522 A JP2001215522 A JP 2001215522A JP 2003024782 A JP2003024782 A JP 2003024782A
Authority
JP
Japan
Prior art keywords
palladium
catalyst
activated carbon
acid ester
carboxylic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001215522A
Other languages
Japanese (ja)
Other versions
JP4626931B2 (en
Inventor
Tatsuo Yamaguchi
辰男 山口
Toshihiko Ohashi
寿彦 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2001215522A priority Critical patent/JP4626931B2/en
Publication of JP2003024782A publication Critical patent/JP2003024782A/en
Application granted granted Critical
Publication of JP4626931B2 publication Critical patent/JP4626931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To eminently reduce a catalyst cost by developing high reactivity and using expensive palladium effectively with regard to a catalyst for producing a carboxylic acid ester from an aldehyde, an alcohol, and oxygen. SOLUTION: In the metal catalyst containing palladium supported on active carbon, the active carbon carrier has a specific surface area of 500-1,500 m<2> , a particle size of 75-600 meshes, and a bulk density of 0.3-0.8 g/mL, and a palladium-containing metal supported on the carrier has a specific surface area of at least 50 m<2> /g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、アルデヒド、アル
コール及び酸素からカルボン酸エステルを製造する触媒
に関するものであって、高い反応活性を発現させ、高価
な貴金パラジウムを有効に利用することで触媒コストの
大幅な改善を提供するものである。
TECHNICAL FIELD The present invention relates to a catalyst for producing a carboxylic acid ester from an aldehyde, an alcohol, and oxygen, which exhibits high reaction activity and effectively uses expensive precious gold palladium. It offers significant cost improvements.

【0002】[0002]

【従来の技術】アルデヒド、アルコール及び酸素からパ
ラジウムを含む触媒を用いカルボン酸エステルを製造す
る方法は公知である。また、従来から、一般的にパラジ
ウム等の貴金属は比較的高い表面積を有する様々な種類
の担体が目的の反応に合わせて選定され、担体上に担持
分散して利用されている。例えば、上記カルボン酸エス
テルの製造においても様々な種類の担体が選定され担体
として用いることが報告されている。具体的には、炭酸
カルシウムを用いたものが特公昭57−35856号公
報、特公昭57−35860号公報に、酸化亜鉛−アル
ミナ、チタニア−酸化ランタン、酸化亜鉛−チタニアを
用いたものが特公平4−46618号公報に、酸化亜鉛
を用いたものが特公平4−72578号公報に示されて
いる。さらに触媒の強度等の改良の観点からシリカアル
ミナを用いたものが特開平8−332383号公報に、
シリカーアルミナーマグネシアを用いたものが特開平9
−52044号公報に、ゼオライトを用いたものが特開
平9−192495号公報に示されている。
2. Description of the Related Art Methods for producing carboxylic acid esters from aldehydes, alcohols and oxygen using a catalyst containing palladium are known. In addition, conventionally, various types of carriers having a relatively high surface area, such as palladium, have generally been selected according to the intended reaction, and noble metals such as palladium have been used by being supported and dispersed on the carrier. For example, it has been reported that various kinds of carriers are selected and used as carriers also in the production of the above-mentioned carboxylic acid ester. Specifically, those using calcium carbonate are disclosed in JP-B-57-35856 and JP-B-57-35860, and those using zinc oxide-alumina, titania-lanthanum oxide, and zinc oxide-titania are particularly fair. The one using zinc oxide is disclosed in Japanese Patent Publication No. 4-72578. Further, from the viewpoint of improving the strength of the catalyst, the one using silica-alumina is disclosed in JP-A-8-332383.
A method using silica-alumina-magnesia is disclosed in Japanese Patent Application Laid-Open No. H9-96952.
-52044 discloses that using zeolite is disclosed in JP-A-9-192495.

【0003】[0003]

【発明が解決しようとする課題】白金、パラジウム等の
貴金属は、自動車排ガスの浄化触媒として、また燃料電
池の電極触媒としてなど多量に用いられ、需要は毎年増
大しており価格の高値安定が続いている。貴金属は稀少
資源であり、高価であることからも高活性を実現しその
使用量を削減することがますます重要になっている。そ
こで、本発明は貴金属の中でもパラジウムに着目し、パ
ラジウム担持触媒の高活性化を実現し、使用量を減らし
触媒コストを大幅に削減することを課題とするものであ
る。
Noble metals such as platinum and palladium are used in large amounts as catalysts for purifying automobile exhaust gas and as electrode catalysts for fuel cells, and the demand is increasing every year and prices remain stable at high prices. ing. Since precious metals are rare resources and are expensive, achieving high activity and reducing the amount used are becoming more and more important. Therefore, the present invention focuses on palladium among noble metals, and it is an object to realize high activation of a palladium-supported catalyst, reduce the amount used, and significantly reduce the catalyst cost.

【0004】[0004]

【課題を解決するための手段】本発明者らは以上のよう
な現状に鑑み、貴金属パラジウムの使用量を削減するた
めに、パラジウム担持触媒の高活性化の検討を詳細に検
討した。その結果、特定の物性値を有する活性炭が高い
反応活性を示すことを見いだした。加えて、触媒化の過
程では、活性炭を予め硝酸で加熱処理をしてパラジウム
化合物の担持に用い、さらに担持されたパラジウム化合
物を還元処理する前にアルカリで処理するという方法に
よって高い反応活性を達成することを見いだし、本発明
を完成させるに至った。
In view of the present circumstances as described above, the present inventors have made detailed investigations on the high activation of palladium-supported catalysts in order to reduce the amount of precious metal palladium used. As a result, they have found that activated carbon having specific physical properties has high reaction activity. In addition, in the process of catalysis, high reaction activity is achieved by a method in which activated carbon is preheated with nitric acid and used to support the palladium compound, and the supported palladium compound is treated with alkali before reduction treatment. As a result, they have completed the present invention.

【0005】すなわち、本発明は以下の通りである。活
性炭担持パラジウム含有金属触媒であって、該活性炭担
体の比表面積が500〜1500m2 /g、粒子径が7
5〜600メッシュ、嵩密度が0.3〜0.8g/ml
の範囲であり、且つ担持されたパラジウム含有金属の比
表面積が50m2 /g以上であるカルボン酸エステル製
造用の活性炭担持パラジウム含有金属触媒である。な
お、本発明では、上記「パラジウム含有金属」は、パラ
ジウム単体金属及び/又はパラジウム金属間化合物を意
味する。
That is, the present invention is as follows. An activated carbon-supported palladium-containing metal catalyst having a specific surface area of 500 to 1500 m 2 / g and a particle size of 7
5-600 mesh, bulk density 0.3-0.8g / ml
And the specific surface area of the supported palladium-containing metal is 50 m 2 / g or more, the activated carbon-supported palladium-containing metal catalyst for producing a carboxylic acid ester. In the present invention, the “palladium-containing metal” means a palladium simple metal and / or a palladium intermetallic compound.

【0006】一般的には、触媒活性成分を高分散させる
為には担体の比表面積は大きい方が好ましいと言われて
おり、燃料電池用に用いられる活性炭やグラファイトな
どでは約3000m2 /gの極めて大きな表面積を有す
る担体が貴金属担持触媒の高い活性を発現させるために
用いられている。本研究者らは、様々な種類の担体、ま
た担体物性値の異なる担体を広く検討した。その結果、
アルデヒドとアルコール、酸素からカルボン酸エステル
を製造する触媒では、担体の嵩密度が触媒スラリー特性
から重要であること、比表面積が極端に大きな活性炭は
機械的強度が低下し実用的でないこと、特定の粒径の範
囲以外では活性を低下させることや、触媒と反応液の分
離に問題が生ずることが明らかになった。すなわち特定
の物性値を持つ活性炭を用いることによって、はじめて
従来の触媒に比べ高い触媒活性を発現できることがわか
った。いかなる理由で高活性化が実現されるのか詳細に
ついては不明ではある。
It is generally said that it is preferable that the carrier has a large specific surface area in order to highly disperse the catalytically active component, and activated carbon or graphite used for a fuel cell has a specific surface area of about 3000 m 2 / g. Supports with extremely large surface areas are used to develop the high activity of noble metal supported catalysts. The present investigators have extensively studied various types of carriers and carriers having different carrier physical properties. as a result,
In catalysts for producing carboxylic acid esters from aldehydes, alcohols, and oxygen, the bulk density of the carrier is important from the characteristics of the catalyst slurry, and activated carbon with an extremely large specific surface area has low mechanical strength and is not practical. It was clarified that the activity was decreased and the separation of the catalyst and the reaction solution occurred when the particle size was outside the range. That is, it has been found that the use of activated carbon having specific physical properties makes it possible to exhibit higher catalytic activity than conventional catalysts for the first time. It is not clear in detail why the high activation is achieved.

【0007】活性炭の物性として比表面積は500〜1
500m2 /gの範囲が好ましく、より好ましくは60
0〜1300m2 /gの範囲である。500m2 /gよ
り小さくなるとパラジウムの分散性が悪くなり活性の低
下を招き、1500m2 /gより大きいと活性は高い傾
向が見られるが機械的強度低下や流動性の低下をまねく
ため好ましくない。活性炭の粒子径は75〜600メッ
シュが好ましい。600メッシュより小さいと、反応活
性からは問題はないが、沈降性が悪く、またフルターの
目詰まりを起こしやすく反応液から触媒の分離が困難に
なるため好ましくない。一方75メッシュより大きい
と、反応活性が低下する傾向が見られ好ましくない。反
応液との分離特性と反応活性とのバランスから、さらに
好ましくは、100〜500メッシュの範囲である。
As the physical properties of activated carbon, the specific surface area is 500 to 1
The range is preferably 500 m 2 / g, more preferably 60.
It is in the range of 0 to 1300 m 2 / g. When it is less than 500 m 2 / g, the dispersibility of palladium is deteriorated and the activity is lowered, and when it is more than 1500 m 2 / g, the activity tends to be high, but it is not preferable because it may lower the mechanical strength and the fluidity. The particle size of the activated carbon is preferably 75 to 600 mesh. If it is smaller than 600 mesh, there is no problem in terms of reaction activity, but it is not preferable because the sedimentation property is poor, and the catalyst is difficult to separate from the reaction solution because clogging of the filter is likely to occur. On the other hand, if it is larger than 75 mesh, the reaction activity tends to decrease, which is not preferable. From the viewpoint of the balance between the separation property from the reaction solution and the reaction activity, the range of 100 to 500 mesh is more preferable.

【0008】活性炭の嵩密度は触媒スラリー状態から重
要な因子であり、0.3〜0.8g/mlが好ましく、
0.3g/mlより小さいと、触媒量が多く、かさ高く
なり反応液の粘度上昇を招き好ましくない。一方0.8
g/mlより大きいと結果的に比表面積が小さく、細孔
容積が小さくなるため活性が低くなる傾向がある。した
がって、嵩密度の範囲は、反応特性と活性のバランスか
ら、さらに好ましくは0.35〜0.6g/mlの範囲
である。活性炭に担持されたパラジウム含有金属の比表
面積は触媒の活性発現によって重要な因子の一つであり
50m2 /g以上であることが必要である。より好まし
くは70m2 /g以上、さらに好ましくは100m2
g以上と大きい方が好ましい。
The bulk density of activated carbon is an important factor from the catalyst slurry state, and 0.3 to 0.8 g / ml is preferable,
If it is less than 0.3 g / ml, the amount of the catalyst is large and the bulk becomes high, and the viscosity of the reaction solution increases, which is not preferable. On the other hand, 0.8
When it is larger than g / ml, the specific surface area is small as a result, and the pore volume is small, so that the activity tends to be low. Therefore, the range of the bulk density is more preferably 0.35 to 0.6 g / ml in view of the balance between reaction characteristics and activity. The specific surface area of the palladium-containing metal supported on activated carbon is one of the important factors for the activity expression of the catalyst and is required to be 50 m 2 / g or more. More preferably 70m 2 / g or more, more preferably 100 m 2 /
It is preferably as large as g or more.

【0009】また、活性炭に担持されたパラジウム含有
金属はパラジウム単体金属であって良いが、パラジウム
金属間化合物の方がカルボン酸エステル製造にとっては
好ましい。例えばパラジウムと鉛からなるPd3 Pb1
金属間化合物、同様にパラジウムとビスマス、タリウ
ム、水銀、金などとのパラジウム金属間化合物が好適で
ある。さらに場合によってはさらに、ニッケル、クロ
ム、コバルト、インジウム、タンタル、銅、亜鉛、ジル
コニウム、ハフニウム、タングステン、マンガン、銀、
レニウム、アンチモン、スズ、ロジウム、ルテニウム、
イリジウム、白金、チタン、アルミニウム、硼素、珪素
などを含んでいてもよい。これらの異種元素は通常、還
元後の全触媒種の量に対して、5重量%、好ましくは1
重量%の範囲で含むことができる。
The palladium-containing metal supported on the activated carbon may be a palladium simple metal, but a palladium intermetallic compound is preferable for the production of carboxylic acid ester. For example, Pd 3 Pb 1 consisting of palladium and lead
Intermetallic compounds, as well as palladium intermetallic compounds of palladium with bismuth, thallium, mercury, gold, etc. are preferred. Furthermore, in some cases, nickel, chromium, cobalt, indium, tantalum, copper, zinc, zirconium, hafnium, tungsten, manganese, silver,
Rhenium, antimony, tin, rhodium, ruthenium,
It may contain iridium, platinum, titanium, aluminum, boron, silicon and the like. These foreign elements are usually 5% by weight, preferably 1% by weight, based on the total amount of catalyst species after reduction.
It can be included in the range of weight percent.

【0010】触媒調製のために用いられるパラジウム化
合物あるいは鉛などの化合物は、例えば蟻酸塩、酢酸塩
などの有機酸塩、硫酸塩、塩酸塩、硝酸塩のごとき無機
酸塩、アンミン錯体、ベンゾニトリル錯体などの有機金
属錯体、酸化物、水酸化物などのなかから適宜選ばれ
る。パラジウム化合物としては塩化パラジウム、酢酸パ
ラジウムなどが好適である。本発明においては、活性炭
は硝酸水溶液で加熱処理を行うこと、さらに活性炭で担
持したパラジウム化合物の還元処理を行う前にアルカリ
性物資で処理することが必須である。活性炭の処理は3
0〜60%硝酸濃度、室温〜100℃の温度範囲である
が通常90℃付近の温度が時間と効果の面から一般的な
温度として選ばれる。処理時間は硝酸濃度や、処理する
温度によって異なるが概ね30分〜48時間である。
Examples of the palladium compound or the lead compound used for preparing the catalyst include organic acid salts such as formate salts and acetate salts, inorganic acid salts such as sulfates, hydrochlorides and nitrates, ammine complexes and benzonitrile complexes. It is appropriately selected from organic metal complexes such as, oxides, and hydroxides. Palladium compounds such as palladium chloride and palladium acetate are preferred. In the present invention, it is essential that the activated carbon is heat-treated with an aqueous nitric acid solution, and further treated with an alkaline substance before the reduction treatment of the palladium compound supported by the activated carbon. Treatment of activated carbon is 3
A nitric acid concentration of 0 to 60% and a temperature range of room temperature to 100 ° C., but a temperature of about 90 ° C. is usually selected as a general temperature from the viewpoint of time and effect. The treatment time is generally 30 minutes to 48 hours, though it varies depending on the nitric acid concentration and the treatment temperature.

【0011】活性炭担持後に行うパラジウム化合物の還
元前のアルカリ処理では、アルカリ性物資としてLi、
Na、K、Rb、Cs、Mg、Ca、Sr、Baなどの
アルカリ、アルカリ土類の水酸化物、炭酸塩、金属アル
コキシドなどのアルカリ性化合物から選び用いることが
できる。パラジウム化合物の還元前のアルカリ処理に使
用する量や濃度は活性炭に担持するパラジウム化合物量
や用いるアルカリ性化合物の種類によっても異なるが、
担持されたパラジウム化合物量を水酸化物にするために
必要な量論量以上、好ましくは2〜3倍/Pdモルの量
を用いる。一般的なアルカリ溶液の濃度はNa OHで例
示すると、0.1〜10mol/lでパラジウムの担持
量に合わせて選定し用いることができる。アルカリ処理
溶液の溶媒としては主に水を用いるが、メタノール等を
溶媒とするアルカリ可溶性の溶媒も使用することが可能
である。
In the alkali treatment before the reduction of the palladium compound carried on the activated carbon, Li as an alkaline substance,
It is possible to select and use from alkali compounds such as alkali metals such as Na, K, Rb, Cs, Mg, Ca, Sr and Ba, and hydroxides of alkaline earth metals, carbonates and metal alkoxides. The amount and concentration used for the alkali treatment of the palladium compound before reduction varies depending on the amount of the palladium compound supported on the activated carbon and the type of the alkaline compound used,
A stoichiometric amount or more, preferably 2 to 3 times / Pd mole, necessary for converting the amount of the supported palladium compound into a hydroxide is used. The concentration of a general alkaline solution is, for example, 0.1 to 10 mol / l, which can be selected and used according to the amount of palladium supported. Although water is mainly used as a solvent for the alkali treatment solution, an alkali-soluble solvent having methanol or the like as a solvent can also be used.

【0012】パラジウム化合物の還元前に行うアルカリ
処理の操作は室温〜100℃の温度で行うことができ
る。100℃以上の温度でも液相に保つために必要な圧
力をかけて行うことも可能であり室温〜160℃、常圧
から数気圧の条件で行うことができる。アルカリ処理に
要する時間は、パラジウム化合物の担持量、調製する触
媒量によって異なるが通常30分〜6時間の範囲が一般
的である。活性炭担体へのパラジウム担持量は特に限定
はないが、該担体重量に対して通常0.1〜20重量
%、好ましくは1〜10重量%である。その他の金属は
通常0〜20重量%、好ましくは1〜5重量%である。
The operation of alkali treatment before the reduction of the palladium compound can be carried out at a temperature of room temperature to 100 ° C. It is also possible to apply the pressure required to maintain the liquid phase even at a temperature of 100 ° C. or higher, and it can be carried out under the conditions of room temperature to 160 ° C. and atmospheric pressure to several atmospheres. The time required for the alkali treatment varies depending on the amount of the palladium compound supported and the amount of the catalyst to be prepared, but is generally in the range of 30 minutes to 6 hours. The amount of palladium supported on the activated carbon carrier is not particularly limited, but is usually 0.1 to 20% by weight, preferably 1 to 10% by weight based on the weight of the carrier. The amount of other metals is usually 0 to 20% by weight, preferably 1 to 5% by weight.

【0013】パラジウム化合物やその他のパラジウム金
属間化合物形成用金属化合物の還元は一般的な還元方法
が適用できる。水素、ホルマリン、アルコール、ヒドラ
ジン、NaBH4 などの還元剤を用いて気相、液相のい
ずれの形態で行うことができる。パラジウム化合物の担
持量やパラジウム以外の助触媒金属との組み合わせによ
って最適な還元方法を選択して行う。気相で還元する場
合には還元剤として水素を用い200〜400℃の温度
で行うことが一般的である。また液相で還元する場合に
は室温〜200℃の温度で水素を吹き込みながらや、ホ
ルマリン、NaBH4 、ヒドラジン添加して行う一般的
な還元方法が採用される。液相に保つために必要な圧力
をかけておくことで100℃以上の温度で実施すること
が可能である。好ましくは室温〜160℃、常圧から数
気圧の条件で行う。還元処理による時間はパラジウム化
合物と他の構成触媒の組み合わせや種類、担持量、触媒
量など処理条件により変わるが、一般に0.5〜50時
間である。通常は24時間以内に処理が完了するように
条件を設定するのが操作性から好都合である。
A general reduction method can be applied to the reduction of the palladium compound or other metal compound for forming the palladium intermetallic compound. It can be carried out in any form of gas phase and liquid phase using a reducing agent such as hydrogen, formalin, alcohol, hydrazine, NaBH 4 . The optimum reduction method is selected depending on the amount of the palladium compound supported and the combination with a promoter metal other than palladium. When reducing in the gas phase, it is common to use hydrogen as a reducing agent at a temperature of 200 to 400 ° C. Further, in the case of reduction in the liquid phase, a general reduction method which is performed by blowing hydrogen at a temperature of room temperature to 200 ° C. or by adding formalin, NaBH 4 , and hydrazine is adopted. It is possible to carry out the treatment at a temperature of 100 ° C. or higher by applying a pressure necessary to keep the liquid phase. It is preferably carried out under the conditions of room temperature to 160 ° C. and atmospheric pressure to several atmospheres. The time required for the reduction treatment varies depending on the treatment conditions such as the combination and type of the palladium compound and other constituent catalysts, the amount supported, and the amount of catalyst, but it is generally 0.5 to 50 hours. Usually, it is convenient from the operability to set the conditions so that the treatment is completed within 24 hours.

【0014】本発明のカルボン酸エステルの製造では触
媒の使用量は、反応原料の種類、触媒の組成や調製法、
反応条件、反応形式などによって大巾に変更することが
でき、特に限定はないが、触媒をスラリー状態で反応さ
せる場合には反応液1l中に0.04〜0.5kg使用
するのが好ましい。より好ましくは、0.1〜0.3K
gの範囲である。本発明において使用するアルコールと
しては、例えば、メタノール、エタノール、イソプロパ
ノール、ブタノール、2−6ヘキサノール、オクタノー
ルなどの脂肪族系飽和アルコール、シクロペンタノー
ル、シクロヘキサノールなどの脂環族アルコール、;エ
チレングリコール、プロピレングリコール、ブタンジオ
ールなどのジオール;アリルアルコール、メタリルアル
コールなどの脂肪族不飽和アルコール;ベンジルアルコ
ールなどの芳香族アルコール、3−アルキル−3−ヒド
ロキシメチルオキセタンなどのヒドロキシオキセタン類
などがあげられる。これらのアルコールは単独もしくは
任意の二種以上の混合物として用いることができる。
In the production of the carboxylic acid ester of the present invention, the amount of the catalyst used depends on the type of reaction raw material, the composition and preparation method of the catalyst,
Although it can be widely changed depending on the reaction conditions, the reaction format, etc., it is not particularly limited, but when the catalyst is reacted in the slurry state, it is preferable to use 0.04 to 0.5 kg in 1 l of the reaction liquid. More preferably 0.1-0.3K
It is in the range of g. Examples of alcohols used in the present invention include aliphatic saturated alcohols such as methanol, ethanol, isopropanol, butanol, 2-6 hexanol, and octanol; alicyclic alcohols such as cyclopentanol and cyclohexanol; ethylene glycol; Examples thereof include diols such as propylene glycol and butanediol; aliphatic unsaturated alcohols such as allyl alcohol and methallyl alcohol; aromatic alcohols such as benzyl alcohol; and hydroxyoxetanes such as 3-alkyl-3-hydroxymethyloxetane. These alcohols can be used alone or as a mixture of two or more kinds.

【0015】本発明反応におけるアルデヒドとアルコー
ルとの使用量比には特に限定はなく例えばアルデヒド/
アルコールのモル比で10〜1/1000のような広い
範囲で実施できるが、一般的には1/2〜1/50の範
囲で実施される。本発明で使用する酸素は分子状酸素、
すなわち酸素ガス自体又は酸素ガスを反応に不活性な希
釈剤、例えば窒素、炭酸ガスなどで希釈した混合ガスの
形とすることができ、空気を用いることもできる。反応
系に供給する酸素の量は、反応器出口側の酸素分圧が
0.8atm以下となるように管理する。好ましくは
0.4atm以下である。一方、反応器流出ガスの酸素
濃度が爆発範囲(8%)を越えないように全圧を設定す
るとよい。
There is no particular limitation on the ratio of aldehyde to alcohol used in the reaction of the present invention.
It can be carried out in a wide range such as a molar ratio of alcohol of 10 to 1/1000, but is generally carried out in a range of 1/2 to 1/50. The oxygen used in the present invention is molecular oxygen,
That is, the oxygen gas itself or a mixed gas obtained by diluting the oxygen gas with a reaction-inert diluent such as nitrogen or carbon dioxide gas can be used, and air can also be used. The amount of oxygen supplied to the reaction system is controlled so that the oxygen partial pressure on the outlet side of the reactor is 0.8 atm or less. It is preferably 0.4 atm or less. On the other hand, it is advisable to set the total pressure so that the oxygen concentration of the reactor outflow gas does not exceed the explosion range (8%).

【0016】本発明反応は、気泡塔、撹拌槽、灌液反応
器などの任意の従来公知の方法で実施できる。また、各
反応器の出口ガスの酸素分圧は、本発明条件の範囲内で
あれば、各反応器ごとに変えてもかまわない。本発明反
応は、反応系にアルカリ金属もしくはアルカリ土類金属
の化合物(例えば、酸化物、水酸化物、炭酸塩、カルボ
ン酸塩など)を添加して反応系のpHを6〜9に保持す
ることが好ましい。これらのアルカリ金属もしくはアル
カリ土類金属の化合物は単独もしくは二種以上組み合わ
せて使用することができる。本発明反応は、100℃以
上の高温でも実施できるが、好ましくは30〜100℃
である。反応圧力は減圧から加圧下の任意の広い圧力範
囲で実施することができるが、通常は1〜20Kg/c
2 の圧力で実施される。反応時間は特に限定されるも
のではなく、設定した条件により異なるので一義的には
決められないが通常1〜20時間である。
The reaction of the present invention can be carried out by any conventionally known method such as a bubble column, a stirring tank, an irrigation reactor and the like. Further, the oxygen partial pressure of the outlet gas of each reactor may be changed for each reactor as long as it is within the range of the conditions of the present invention. In the reaction of the present invention, the pH of the reaction system is maintained at 6 to 9 by adding an alkali metal or alkaline earth metal compound (eg, oxide, hydroxide, carbonate, carboxylate, etc.) to the reaction system. It is preferable. These alkali metal or alkaline earth metal compounds can be used alone or in combination of two or more. The reaction of the present invention can be carried out at a high temperature of 100 ° C. or higher, but preferably 30 to 100 ° C.
Is. The reaction pressure can be carried out in any wide pressure range from reduced pressure to increased pressure, but it is usually 1 to 20 Kg / c.
It is carried out at a pressure of m 2 . The reaction time is not particularly limited and cannot be uniquely determined because it varies depending on the set conditions, but it is usually 1 to 20 hours.

【0017】以下実施例及び比較例によって、本発明を
より具体的に説明するが、本発明はこれらによって何ら
限定されるものではない。尚、以下の実施例及び比較例
において、活性炭担体の物性値、比表面積、嵩密度、粒
度、触媒のパラジウム比表面積の測定は次の方法により
実施した。 [活性炭担体の比表面積の測定]窒素ガス吸着法(ユア
サアイオニクス社製、オートソーブ:3AG型)を用い
た。 [嵩密度の測定]前処理として、担体を真空乾燥機で8
0℃、6時間乾燥、冷却後室温で担体50.0g秤量し
メスシリンダーに移し、メスシリンダーを振とう器で1
5分間タッピング充填する。試料表面平らにし充填容積
を読みとる。嵩密度は担体の重量を充填容積で割った値
である。 [粒度の調製]600メッシュ、75メッシュの篩いを
振とう器に設置し活性炭を分級して得られた75〜60
0メッシュのものを用いた。 [パラジウム含有金属比表面積の測定]COガス吸着法
(大倉理研社製、全自動COガス吸着量測定装置R60
15−G)を用いた。
The present invention will be described in more detail with reference to the following examples and comparative examples, but the present invention is not limited thereto. In the following examples and comparative examples, the physical properties, specific surface area, bulk density, particle size, and palladium specific surface area of the catalyst of the activated carbon carrier were measured by the following methods. [Measurement of Specific Surface Area of Activated Carbon Carrier] A nitrogen gas adsorption method (manufactured by Yuasa Ionics Inc., Autosorb: 3AG type) was used. [Measurement of Bulk Density] As a pretreatment, the carrier was dried in a vacuum dryer for 8 hours.
After drying at 0 ° C for 6 hours and cooling, 50.0 g of the carrier was weighed at room temperature, transferred to a graduated cylinder, and the graduated cylinder was shaken for 1 hour.
Tap and fill for 5 minutes. Flatten the sample surface and read the fill volume. Bulk density is the weight of the carrier divided by the fill volume. [Preparation of particle size] 75-60 obtained by classifying 600-mesh and 75-mesh sieve in a shaker and classifying activated carbon
The one with 0 mesh was used. [Measurement of specific surface area of metal containing palladium] CO gas adsorption method (manufactured by Okura Riken Co., Ltd., fully automatic CO gas adsorption amount measuring device R60
15-G) was used.

【0018】[0018]

【実施例1】活性炭(武田薬品(株)製、商品名:X7
100−3)をボールで粉砕し、篩いによって分級し、
75〜600メッシュの粒子を得た。60%硝酸水溶液
中に投入し90℃で30分間処理を行い、濾過後蒸留水
で10回洗浄した。ついで真空乾燥機中80℃で6時間
乾燥後、活性炭の比表面積を測定したところ978m 2
/g、嵩密度は0.35g/mlであった。前処理した
活性炭100gを触媒調製用に秤量し調製に用いた。塩
化パラジウムを担体100重量部当たりパラジウムとし
て3重量部となるように、担体を塩化パラジウム3重量
%及び塩化ナトリウム2重量%の水溶液と混合し、室温
で1時間撹拌し、塩化パラジウムを担体に完全に吸着さ
せた。ついで、液をデカントし、塩化パラジウムを吸着
させた担体を蒸留水にて10回洗浄した。
[Example 1] Activated carbon (Takeda Pharmaceutical Co., Ltd., trade name: X7)
100-3) is crushed with a ball and classified by a sieve,
Particles of 75-600 mesh were obtained. 60% nitric acid solution
Put it in the tube and treat it at 90 ° C for 30 minutes, and after filtering, distilled water
It was washed 10 times with. Then, in a vacuum dryer at 80 ° C for 6 hours
After drying, the specific surface area of the activated carbon was measured and found to be 978 m. 2
/ G, and the bulk density was 0.35 g / ml. Pretreated
100 g of activated carbon was weighed and used for preparation of the catalyst. salt
Palladium chloride is used as palladium per 100 parts by weight of the carrier.
3 parts by weight of palladium chloride so that the carrier is 3 parts by weight.
% And 2% by weight sodium chloride in water at room temperature
Stir at room temperature for 1 hour to allow palladium chloride to be completely adsorbed on the carrier.
Let Then, decant the liquid and adsorb palladium chloride.
The carrier thus obtained was washed 10 times with distilled water.

【0019】次に、300mlの蒸留水を加えた。Na
OH6.5gを75mlの水に溶解したアルカリ水溶液
を約10分間かけて撹拌しながら滴下し、その後15分
間維持した。つぎに上澄みをデカント除去、蒸留水によ
る水洗を10回行った。次に酢酸Naを6wt%に調製
した溶液に投入し撹拌した。次に酢酸鉛をPdに対しP
d/Pb=3/1.3(モル比)相当量を加え約30分
60℃でかき混ぜた。次にPd+Pbに対して3倍モル
量のNaBH4 水溶液をかき混ぜながら約30分かけゆ
っくりと滴下しパラジウム−鉛金属間化合物を還元し
た。滴下後さらに30分間保持した。次に、水洗を10
回行った。その後真空乾燥機中80℃で6時間乾燥して
活性炭担持パラジウム−鉛金属間化合物触媒を得た。得
られた触媒をCOガス吸着法によって測定し、パラジウ
ム−鉛金属間化合物の比表面積を求めたところ109m
2 /gの値を得た。
Next, 300 ml of distilled water was added. Na
An alkaline aqueous solution prepared by dissolving 6.5 g of OH in 75 ml of water was added dropwise over about 10 minutes while stirring, and then maintained for 15 minutes. Next, the supernatant was decanted and washed with distilled water 10 times. Next, the solution was prepared by adding Na acetate to 6 wt% and stirred. Next, lead acetate is added to Pd to P
An equivalent amount of d / Pb = 3 / 1.3 (molar ratio) was added, and the mixture was stirred at 60 ° C. for about 30 minutes. Next, a palladium-lead intermetallic compound was reduced by slowly dropping an aqueous solution of NaBH 4 in a 3-fold molar amount with respect to Pd + Pb over about 30 minutes while stirring. After the dropping, it was kept for another 30 minutes. Next, wash with water 10
I went there. Then, it was dried in a vacuum dryer at 80 ° C. for 6 hours to obtain a palladium-lead intermetallic compound catalyst supporting activated carbon. The obtained catalyst was measured by the CO gas adsorption method, and the specific surface area of the palladium-lead intermetallic compound was determined to be 109 m.
A value of 2 / g was obtained.

【0020】反応の活性を評価する条件として、メタク
ロレイン、メタノールの次数の影響がでにくい低転化率
の20%以下となるように予め実験で求め触媒量を設定
した。得られた触媒1.0gを上部にコンデンサーを設
置した100mlのフラスコに投入し、10wt%のメ
タクロレイン/メタノール溶液80gを加え、テフロン
(登録商標)コートの回転子を入れマグネットスターラ
ーで撹拌しながら7vol%酸素/ヘリウムガスを82
ml/minで吹き込み45℃で2時間反応した。反応
後ガスクロマトグラフィーで反応液、ベントガス中の生
成物の分析値から、メタクロレインの転化率は16.5
%、メタクリル酸メチル(MMA)の選択率89.2%
であった。MMAのパラジウム−鉛金属間化合物g当た
りの生産性は0.28mol/h・gであった。
As a condition for evaluating the activity of the reaction, the catalyst amount was set in advance by an experiment so that the conversion was 20% or less of the low conversion rate, which is less likely to be affected by the orders of methacrolein and methanol. 1.0 g of the obtained catalyst was placed in a 100 ml flask equipped with a condenser on the top, 80 g of a 10 wt% methacrolein / methanol solution was added, and a Teflon (registered trademark) -coated rotor was put therein while stirring with a magnetic stirrer. 82% 7vol% oxygen / helium gas
It was blown at a rate of ml / min and reacted at 45 ° C. for 2 hours. After the reaction, the conversion rate of methacrolein was 16.5 from the analysis values of the product in the reaction solution and the vent gas by gas chromatography.
%, Selectivity of methyl methacrylate (MMA) 89.2%
Met. The productivity of MMA per g of palladium-lead intermetallic compound was 0.28 mol / h · g.

【0021】[0021]

【比較例1】特開平9−52044号公報の実施例1に
記載のシリカ- アルミナ- マグネシア担体を用いた以外
は実施例1と同様の操作でパラジウム−鉛金属間化合物
担持触媒を得た。パラジウム−鉛金属間化合物の比表面
積を求めたところ88m2 /gの値を得た。実施例1の
触媒量1.0gにかえて触媒2.0gと2倍にした他は
同様の条件で45℃で2時間反応した。反応後ガスクロ
マトグラフィーで生成物を分析したところ、メタクロレ
インの転化率は9.5%、メタクリル酸メチル(MM
A)の選択率88.5%であった。MMAのパラジウム
−鉛金属間化合物g当たりの生産性は0.08mol/
h・gであった。
Comparative Example 1 A palladium-lead intermetallic compound-supported catalyst was obtained in the same manner as in Example 1 except that the silica-alumina-magnesia carrier described in Example 1 of JP-A-9-52044 was used. When the specific surface area of the palladium-lead intermetallic compound was determined, a value of 88 m 2 / g was obtained. The reaction was carried out at 45 ° C. for 2 hours under the same conditions except that the catalyst amount of Example 1 was changed to 1.0 g and the catalyst amount was doubled to 2.0 g. After the reaction, the product was analyzed by gas chromatography to find that the conversion of methacrolein was 9.5% and methyl methacrylate (MM
The selectivity of A) was 88.5%. The productivity of MMA per g of palladium-lead intermetallic compound is 0.08 mol /
It was h · g.

【0022】[0022]

【比較例2】活性炭(武田薬品(株)製、商品名:X7
100−3)をボールで粉砕し、篩いによって分級し、
75〜600メッシュの粒子を得た。60%硝酸水溶液
中に投入し90℃で24時間処理を行い、濾過後蒸留水
で10回洗浄した。ついで真空乾燥機中80℃で6時間
乾燥後、活性炭の比表面積を測定したところ439m 2
/g、嵩密度は0.46g/mlであった。この活性炭
を用いた以外は実施例と同様の操作で触媒を得た。パラ
ジウム−鉛金属間化合物の比表面積を求めたところ66
2 /gの値を得た。触媒を変更した以外は実施例1と
同様の条件で45℃で2時間反応した。反応後ガスクロ
マトグラフィーで生成物を分析したところ、メタクロレ
インの転化率は10.2%、メタクリル酸メチル(MM
A)の選択率88.7%であった。MMAのパラジウム
−鉛金属間化合物g当たりの生産性は0.17mol/
h・gであった。
[Comparative Example 2] Activated carbon (Takeda Pharmaceutical Co., Ltd., trade name: X7)
100-3) is crushed with a ball and classified by a sieve,
Particles of 75-600 mesh were obtained. 60% nitric acid solution
It is put into a container and treated at 90 ° C for 24 hours, filtered and distilled water.
It was washed 10 times with. Then, in a vacuum dryer at 80 ° C for 6 hours
After drying, the specific surface area of activated carbon was measured and found to be 439 m. 2
/ G, and the bulk density was 0.46 g / ml. This activated carbon
A catalyst was obtained in the same manner as in the example except that was used. Para
When the specific surface area of the indium-lead intermetallic compound was calculated, it was 66.
m2A value of / g was obtained. Example 1 except that the catalyst was changed
The reaction was carried out under the same conditions at 45 ° C. for 2 hours. After reaction
When the product was analyzed by means of
In conversion of 10.2%, methyl methacrylate (MM
The selectivity of A) was 88.7%. MMA Palladium
-Productivity per g of lead intermetallic compound is 0.17 mol /
It was h · g.

【0023】[0023]

【比較例3】活性炭(クレハ化学(株)製、商品名:B
AC−MP、平均粒子径500ミクロン(30メッシ
ュ))の粒子を用い硝酸による前処理を行なわず後蒸留
水で10回洗浄した。ついで真空乾燥機中80℃で6時
間乾燥後、活性炭の比表面積を測定したところ823m
2 /g、嵩密度は0.54g/mlであった。この活性
炭を用いた以外は実施例1と同様の操作で触媒を得た。
パラジウム−鉛金属間化合物の比表面積を求めたところ
73m2 /gの値を得た。触媒を変更した以外は実施例
1と同様の条件で45℃で2時間反応した。反応後ガス
クロマトグラフィーで生成物を分析したところ、メタク
ロレインの転化率は5.1%、メタクリル酸メチル(M
MA)の選択率89.4%であった。MMAのパラジウ
ム−鉛金属間化合物g当たりの生産性は0.087mo
l/h・gであった。
Comparative Example 3 Activated carbon (Kureha Chemical Co., Ltd., trade name: B
AC-MP, particles having an average particle size of 500 microns (30 mesh) were used, and pre-treatment with nitric acid was not performed, followed by washing with distilled water 10 times. Then, after drying in a vacuum dryer at 80 ° C. for 6 hours, the specific surface area of the activated carbon was measured and found to be 823 m.
2 / g, and the bulk density was 0.54 g / ml. A catalyst was obtained in the same manner as in Example 1 except that this activated carbon was used.
When the specific surface area of the palladium-lead intermetallic compound was determined, a value of 73 m 2 / g was obtained. The reaction was carried out at 45 ° C. for 2 hours under the same conditions as in Example 1 except that the catalyst was changed. After the reaction, the product was analyzed by gas chromatography to find that the conversion of methacrolein was 5.1% and methyl methacrylate (M
The selectivity for MA) was 89.4%. The productivity of MMA is 0.087mo per g of palladium-lead intermetallic compound.
It was 1 / h · g.

【0024】[0024]

【比較例4】パラジウム化合物担持後のアルカリ処理を
行わなかった以外は実施例1と同様の操作で触媒を得
た。パラジウム−鉛金属間化合物の比表面積を求めたと
ころ112m2 /gの値を得た。この触媒を用いた以外
は実施例1と同様の条件で45℃で2時間反応した。反
応後ガスクロマトグラフィーで生成物を分析したとこ
ろ、メタクロレインの転化率は3.2%、メタクリル酸
メチル(MMA)の選択率86.7%であった。MMA
のパラジウム−鉛金属間化合物g当たりの生産性は0.
053mol/h・gであった。
Comparative Example 4 A catalyst was obtained by the same procedure as in Example 1 except that the alkali treatment after carrying the palladium compound was not carried out. When the specific surface area of the palladium-lead intermetallic compound was determined, a value of 112 m 2 / g was obtained. Reaction was carried out at 45 ° C. for 2 hours under the same conditions as in Example 1 except that this catalyst was used. When the product was analyzed by gas chromatography after the reaction, the conversion rate of methacrolein was 3.2% and the selectivity of methyl methacrylate (MMA) was 86.7%. MMA
The productivity per g of the palladium-lead intermetallic compound is 0.
It was 053 mol / h · g.

【0025】[0025]

【実施例2】実施例1で得られた触媒を用い、反応原料
としてメタクロレインをアクロレインに変更した以外は
同様の条件、操作で45℃で2時間反応した。反応後ガ
スクロマトグラフィーで生成物を分析したところ、アク
ロレインの転化率は20.1%、アクリル酸メチル(M
A)の選択率90.7%であった。MAのパラジウム−
鉛金属間化合物g当たりの生産性は0.454mol/
h・gであった。
Example 2 Using the catalyst obtained in Example 1, reaction was carried out at 45 ° C. for 2 hours under the same conditions and operations except that methacrolein was changed to acrolein as a reaction raw material. After the reaction, the product was analyzed by gas chromatography to find that the acrolein conversion rate was 20.1% and methyl acrylate (M
The selectivity of A) was 90.7%. MA Palladium-
Productivity per g of lead intermetallic compound is 0.454 mol /
It was h · g.

【0026】[0026]

【発明の効果】アルデヒドとアルコールを分子状酸素と
反応させてカルボン酸エステルを製造するに際し、特定
の物性値を持つ活性炭を担体に用い、活性炭の硝酸によ
る前処理及びパラジウム化合物担持後のアルカリ処理を
行うことによって得られるパラジウム含有金属触媒は高
いカルボン酸エステル生成活性を得ることができる。従
来のパラジウム触媒に比べ触媒コストの大幅な削減が達
成できる。
[Effect of the Invention] When carboxylic acid ester is produced by reacting aldehyde and alcohol with molecular oxygen, activated carbon having specific physical properties is used as a carrier, pretreatment of activated carbon with nitric acid and alkali treatment after supporting palladium compound. The palladium-containing metal catalyst obtained by carrying out the above can obtain a high carboxylic acid ester forming activity. A significant reduction in catalyst cost can be achieved compared to conventional palladium catalysts.

フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C07C 69/54 C07C 69/54 Z // C07B 61/00 300 C07B 61/00 300 Fターム(参考) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC21B BC72A BC72B CB75 DA08 EA01Y EB18X EC02X EC03X EC04X EC05X EC21X FA01 FA02 FB14 FB17 FB20 FB43 4H006 AA02 AC48 BA25 BA55 BA56 BA81 BA85 BE30 KA35 4H039 CA66 CC30 CD10 CE50 Front page continuation (51) Int.Cl. 7 identification code FI theme code (reference) C07C 69/54 C07C 69/54 Z // C07B 61/00 300 C07B 61/00 300 F term (reference) 4G069 AA03 AA08 BA08A BA08B BB02A BB02B BC21B BC72A BC72B CB75 DA08 EA01Y EB18X EC02X EC03X EC04X EC05X EC21X FA01 FA02 FB14 FB17 FB20 FB43 4H006 AA02 AC48 BA25 BA55 BA56 BA81 BA85 BE30 KA35 4H039 CA66 CC30 CD10 CE10 CD30 CD10 CE10

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 アルデヒドとアルコール、及び酸素から
カルボン酸エステルを製造するための活性炭担持パラジ
ウム含有金属触媒であって、該活性炭担体の比表面積が
500〜1500m2 /g、粒子径が75〜600メッ
シュ、嵩密度が0.3〜0.8g/mlの範囲であり、
且つ担持されたパラジウム含有金属の比表面積が50m
2 /g以上であることを特徴とする、カルボン酸エステ
ル製造用の活性炭担持パラジウム含有金属触媒。
1. An activated carbon-supported palladium-containing metal catalyst for producing a carboxylic acid ester from an aldehyde, an alcohol, and oxygen, wherein the activated carbon carrier has a specific surface area of 500 to 1500 m 2 / g and a particle diameter of 75 to 600. Mesh with a bulk density in the range of 0.3-0.8 g / ml,
And the specific surface area of the supported palladium-containing metal is 50 m
An activated carbon-supported palladium-containing metal catalyst for producing a carboxylic acid ester, which has a content of 2 / g or more.
【請求項2】 該活性炭を硝酸水溶液で前処理した後
にパラジウム化合物を担持し、次いで担持されたパラ
ジウム化合物をアルカリ性物資で処理し、その後還元
するか、又は該パラジウム化合物とそれと還元によりパ
ラジウム金属間化合物を形成する金属化合物とを共に還
元することを特徴とする、請求項1記載のカルボン酸エ
ステル製造用の活性炭担持パラジウム含有金属触媒の製
造方法。
2. The activated carbon is pretreated with an aqueous nitric acid solution and then loaded with a palladium compound, and then the loaded palladium compound is treated with an alkaline substance and then reduced, or the palladium compound and a palladium metal-metal compound by reduction thereof are used. The method for producing an activated carbon-supported palladium-containing metal catalyst for producing a carboxylic acid ester according to claim 1, wherein the metal compound forming a compound is reduced together.
【請求項3】 アルデヒドとアルコール、及び酸素から
触媒の存在下にカルボン酸エステルを製造する方法であ
って、アルデヒドがアクロレイン、またはメタクロレイ
ンであり、触媒が請求項1記載の活性炭担持パラジウム
含有金属触媒であり、得られるカルボン酸エステルがア
クリル酸エステルまたはメタクリル酸エステルであるこ
とを特徴とするカルボン酸エステルの製造方法。
3. A method for producing a carboxylic acid ester from an aldehyde, an alcohol, and oxygen in the presence of a catalyst, wherein the aldehyde is acrolein or methacrolein, and the catalyst is a palladium-containing metal supported on activated carbon according to claim 1. A method for producing a carboxylic acid ester, which is a catalyst, wherein the obtained carboxylic acid ester is an acrylic acid ester or a methacrylic acid ester.
JP2001215522A 2001-07-16 2001-07-16 Carboxylate production catalyst with excellent activity Expired - Lifetime JP4626931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001215522A JP4626931B2 (en) 2001-07-16 2001-07-16 Carboxylate production catalyst with excellent activity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001215522A JP4626931B2 (en) 2001-07-16 2001-07-16 Carboxylate production catalyst with excellent activity

Publications (2)

Publication Number Publication Date
JP2003024782A true JP2003024782A (en) 2003-01-28
JP4626931B2 JP4626931B2 (en) 2011-02-09

Family

ID=19050148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001215522A Expired - Lifetime JP4626931B2 (en) 2001-07-16 2001-07-16 Carboxylate production catalyst with excellent activity

Country Status (1)

Country Link
JP (1) JP4626931B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040922A (en) * 2001-07-26 2003-02-13 Univ Kanagawa Ester compound and production method thereof
JP2016159256A (en) * 2015-03-04 2016-09-05 株式会社クレハ Catalyst complex
KR20180042524A (en) * 2016-10-18 2018-04-26 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST IMPROVING FILTERING TIME
TWI780610B (en) * 2020-02-28 2022-10-11 日商旭化成股份有限公司 Catalyst for producing carboxylate, method for producing catalyst for producing carboxylate, and method for producing carboxylate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229726B2 (en) * 1972-04-12 1977-08-03
JPS63277643A (en) * 1987-04-23 1988-11-15 Mitsubishi Kasei Corp Production of unsaturated glycol diester
JPH105586A (en) * 1996-06-20 1998-01-13 Jgc Corp Granular activated carbon formed body, carrier and catalyst
JPH1028865A (en) * 1996-07-18 1998-02-03 Asahi Chem Ind Co Ltd Improved preparation method of catalyst for production of carboxylic acid ester
JP2000095514A (en) * 1998-09-24 2000-04-04 Asahi Chem Ind Co Ltd Silica spherical particle and its production
JP2001179099A (en) * 1999-12-22 2001-07-03 Asahi Kasei Corp Vinyl acetate synthesizing catalyst

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229726B2 (en) * 1972-04-12 1977-08-03
JPS63277643A (en) * 1987-04-23 1988-11-15 Mitsubishi Kasei Corp Production of unsaturated glycol diester
JPH105586A (en) * 1996-06-20 1998-01-13 Jgc Corp Granular activated carbon formed body, carrier and catalyst
JPH1028865A (en) * 1996-07-18 1998-02-03 Asahi Chem Ind Co Ltd Improved preparation method of catalyst for production of carboxylic acid ester
JP2000095514A (en) * 1998-09-24 2000-04-04 Asahi Chem Ind Co Ltd Silica spherical particle and its production
JP2001179099A (en) * 1999-12-22 2001-07-03 Asahi Kasei Corp Vinyl acetate synthesizing catalyst

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040922A (en) * 2001-07-26 2003-02-13 Univ Kanagawa Ester compound and production method thereof
JP2016159256A (en) * 2015-03-04 2016-09-05 株式会社クレハ Catalyst complex
WO2016140358A1 (en) * 2015-03-04 2016-09-09 株式会社クレハ Catalyst composite body
KR20180042524A (en) * 2016-10-18 2018-04-26 희성금속 주식회사 PREPARATION METHOD OF Pd/C CATALYST IMPROVING FILTERING TIME
TWI780610B (en) * 2020-02-28 2022-10-11 日商旭化成股份有限公司 Catalyst for producing carboxylate, method for producing catalyst for producing carboxylate, and method for producing carboxylate

Also Published As

Publication number Publication date
JP4626931B2 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US7326806B2 (en) Catalyst for the preparation of carboxylic esters and method for producing carboxylic esters
CN109331839B (en) Preparation method and application of catalyst for producing methyl methacrylate
CN106946894B (en) Application of the Pd radicel duplex metal catalyst in HBIW catalytic hydrogenolytic cleavage
JP4994258B2 (en) Precious metal carrier and method for producing acrylic ester and / or methacrylic ester
US7335800B2 (en) Hydrogenation catalyst and hydrogenation method
JP4062647B2 (en) Catalyst for steam reforming of methanol
EP3322526B1 (en) Improved copper-containing multimetallic catalysts, and method for using the same to make biobased 1,2-propanediol
SK18242000A3 (en) VINYL ACETATE CATALYST COMPRISING METALLIC PALLADIUM AND GOLDì (54) PREPARED WITH POTASSIUM AURATE
CN111905755B (en) Catalyst for hydrogenation of 2,2,4, 4-tetramethyl-1, 3-cyclobutanedione and preparation method and application thereof
CN1259060A (en) Vinyl acetate catalyst comprising palladium and gold deposited on a copper containing carrier
JP2001026422A (en) Production of gold-containing combined body
JPWO2006088117A1 (en) Palladium-containing catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP4626931B2 (en) Carboxylate production catalyst with excellent activity
CN113967477A (en) Monoatomic transition metal catalyst, and preparation method and application thereof
JP3556397B2 (en) Improved method for producing catalyst for carboxylic acid ester production
JP4069242B2 (en) Metal particle carrier and method for producing carboxylic acid ester
JP3498102B2 (en) Catalyst for carboxylic acid ester production with excellent strength
EP1157739A1 (en) Catalyst for producing acetic acid, method for preparing the same and method for producing acetic acid using the same
JP3390777B2 (en) Methanol decomposition catalyst and method for producing the same
JP4908332B2 (en) Oxidation catalyst, method for producing the same, and method for producing α, β-unsaturated carboxylic acid
JP3153526B2 (en) Catalyst for partial hydrogenation of aromatic olefin and method for partial hydrogenation thereof
JP2005330225A (en) Method for producing carboxylic acid and/or its salt
JP5247081B2 (en) Process for producing α, β-unsaturated carboxylic acid
CN111036196A (en) Preparation method of catalyst for synthesizing indole
JP4062763B2 (en) Catalyst for the production of xylylene diacetate

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20031208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101102

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101102

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4626931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term