JP2898163B2 - Stabilized lithium hexafluorophosphate - Google Patents

Stabilized lithium hexafluorophosphate

Info

Publication number
JP2898163B2
JP2898163B2 JP6530693A JP6530693A JP2898163B2 JP 2898163 B2 JP2898163 B2 JP 2898163B2 JP 6530693 A JP6530693 A JP 6530693A JP 6530693 A JP6530693 A JP 6530693A JP 2898163 B2 JP2898163 B2 JP 2898163B2
Authority
JP
Japan
Prior art keywords
lithium hexafluorophosphate
lithium
ppm
hexafluorophosphate
lithium fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6530693A
Other languages
Japanese (ja)
Other versions
JPH06279010A (en
Inventor
辻岡  章一
広美 佐々木
満夫 高畑
久和 伊東
靖 宗野
誠 阿瀬川
和美 兼重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP6530693A priority Critical patent/JP2898163B2/en
Publication of JPH06279010A publication Critical patent/JPH06279010A/en
Application granted granted Critical
Publication of JP2898163B2 publication Critical patent/JP2898163B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム2次電池用電
解質や、有機合成反応用触媒として有用な安定化された
六フッ化リン酸リチウムに関する。
The present invention relates to stabilized lithium hexafluorophosphate useful as an electrolyte for a lithium secondary battery or a catalyst for an organic synthesis reaction.

【0002】[0002]

【従来技術】六フッ化リン酸リチウムは、非常に不安定
な化合物である。そのために製造工程上からあるいは保
管取り扱い上から、不純物として系内に混入してくる水
分等による加水分解のためにその品質が低下する。
2. Description of the Related Art Lithium hexafluorophosphate is a very unstable compound. For this reason, the quality is deteriorated due to hydrolysis by water or the like mixed into the system as an impurity from the manufacturing process or from storage and handling.

【0003】このような分解により発生した不純物を除
去するための精製方法は種々提案されているが、この分
解を根本的に抑える方法はまだ見いだされていなかっ
た。
[0003] Various purification methods have been proposed for removing impurities generated by such decomposition, but a method for fundamentally suppressing this decomposition has not yet been found.

【0004】[0004]

【問題点を解決するための具体的手段】本発明者らは、
かかる従来技術の問題点に鑑み鋭意検討の結果、本発明
に到達したものである。
[Specific means for solving the problem]
As a result of intensive studies in view of the problems of the related art, the present invention has been achieved.

【0005】すなわち本発明は、フッ化リチウム層表面
を有することを特徴とする安定化された六フッ化リン酸
リチウムを提供するものである。本発明において用いる
六フッ化リン酸リチウムは、非常に不安定な化合物であ
り、製造工程上からあるいは保管取り扱い上から、不純
物として系内に混入してくる水分により次のような加水
分解反応を起こし、品質を低下させる。 LiPF6 + xH2 O → LiPOX (6-2X)+ 2xHF (1) この分解反応により発生するLiPOX (6-2X)、HF
等の不純物は六フッ化リン酸リチウムの用途であるリチ
ウム電池用電解質として使用されたとき、その電池性能
に大きく影響を及ぼすことが知られている。
That is, the present invention provides a stabilized lithium hexafluorophosphate characterized by having a lithium fluoride layer surface. Lithium hexafluorophosphate used in the present invention is a very unstable compound, and the following hydrolysis reaction is caused by water mixed into the system as an impurity from the manufacturing process or from storage and handling. Wake up and reduce quality. LiPF 6 + xH 2 O → LiPO X F (6-2X) + 2 × HF (1) LiPO X F (6-2X) , HF generated by this decomposition reaction
It is known that impurities such as have a significant effect on battery performance when used as an electrolyte for lithium batteries, which is a use of lithium hexafluorophosphate.

【0006】本発明者らは、種々検討した結果、六フッ
化リン酸リチウムの表面を製造段階で故意にフッ化リチ
ウム層とした組成物を作ることにより、従来の純粋な六
フッ化リン酸リチウムよりも耐加水分解性、耐自己分解
性の優れたものにできることを見いだした。
As a result of various studies, the present inventors have made a conventional pure hexafluorophosphate by forming a composition in which the surface of lithium hexafluorophosphate is deliberately made into a lithium fluoride layer at the production stage. It has been found that hydrolysis resistance and self-decomposition resistance can be made better than lithium.

【0007】従来は単純に(1)式のような機構で加水
分解反応が進行すると考えられていたが、検討した結
果、次のような2段反応機構で加水分解が進行するもの
と推定される。 LiPF6 → LiF + PF5 (2) PF5 + xH2 O → POX (5-2X) + 2xHF (3) フッ化リチウム層による安定化の理由としては、単純に
物理的な表面保護だけではなく、表面のフッ化リチウム
濃度が異常に高いために、(2)式の解離平衡がくず
れ、逆反応が進行して、加水分解しやすいPF5 の発生
が抑えられるということがあると推測される。
Conventionally, it was thought that the hydrolysis reaction proceeds simply by the mechanism as shown in equation (1). However, as a result of investigation, it is estimated that the hydrolysis proceeds by the following two-stage reaction mechanism. You. LiPF 6 → LiF + PF 5 ( 2) as the reason for the PF 5 + xH 2 O → PO X F (5-2X) + 2xHF (3) stabilization by lithium fluoride layer is simply physical surface protection rather, due to the unusually high lithium fluoride concentration in the surface, (2) dissociation equilibrium is disturbed, and the reverse reaction proceeds, presumed occurrence of hydrolysable PF 5 is sometimes referred suppressed Is done.

【0008】この安定化させるためのフッ化リチウム
は、PF5 ガスが進入可能な表層に六フッ化リン酸リチ
ウムに対して0.01〜0.5wt%好ましくは、0.
02〜0.1wt%存在することが必要である。
[0008] lithium fluoride order to this stabilization, 0.01-0.5%, preferably against lithium hexafluorophosphate PF 5 gas to possible ingress surface, 0.
It needs to be present in an amount of 02 to 0.1 wt%.

【0009】0.01wt%以下では安定化の効果がな
く、0.5wt%以上では効果があるものの六フッ化リ
ン酸リチウムを溶媒に溶かしたときに大量のLiFが未
溶解分として残り濾過等の操作が必要となり煩雑であ
る。
At 0.01 wt% or less, there is no stabilizing effect, and at 0.5 wt% or more, there is an effect, but when lithium hexafluorophosphate is dissolved in a solvent, a large amount of LiF remains as an undissolved component and is filtered. Operation is required, which is complicated.

【0010】このような方法で安定化した六フッ化リン
酸リチウムは−20℃の露点を持つ空気中での取り扱い
を行っても、ほとんど分解は起こらなかったが、フッ化
リチウム層のない六フッ化リン酸リチウムは分解により
発生する不純物の一つであるHFの濃度が400ppm
ほど増加した。
[0010] Lithium hexafluorophosphate stabilized by such a method hardly decomposed even when handled in air having a dew point of -20 ° C, but it did not have a lithium fluoride layer. The concentration of HF, one of the impurities generated by decomposition, is 400 ppm.
Increased.

【0011】六フッ化リン酸リチウムの結晶表面をフッ
化リチウム層とするための具体的な手段としては、結晶
を加熱処理して、表面のみを分解し、フッ化リチウムに
変換する方法などがあるが、方法については特に限定す
るものではない。
As a specific means for forming a crystal surface of lithium hexafluorophosphate into a lithium fluoride layer, there is a method of subjecting the crystal to heat treatment, decomposing only the surface, and converting the crystal to lithium fluoride. However, the method is not particularly limited.

【0012】[0012]

【実施例】以下実施例により本発明を具体的に説明する
が、本発明はかかる実施例により限定されるものではな
い。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0013】実施例1 フッ化リチウム32gを無水フッ酸500gに溶解させ
る。この溶液に五フッ化リンガス155gを吹き込み、
フッ化リチウムと反応させた。得られた反応溶液を一晩
かけてゆっくりと−20℃まで冷却することにより、六
フッ化リン酸リチウムの結晶を析出させた。これを濾別
し、減圧下で付着フッ酸を除いた。これにより、1mm
程度の粒径の揃った六フッ化リン酸リチウム結晶65g
が得られた。このものの純度は99.9%以上であり、
不純物としてのフッ酸は50ppm、フッ化リチウムは
50ppm以下であった。
Example 1 32 g of lithium fluoride is dissolved in 500 g of hydrofluoric anhydride. 155 g of phosphorus pentafluoride gas is blown into this solution,
Reacted with lithium fluoride. The resulting reaction solution was slowly cooled to −20 ° C. overnight to precipitate crystals of lithium hexafluorophosphate. This was separated by filtration, and the attached hydrofluoric acid was removed under reduced pressure. Thereby, 1mm
65 g of lithium hexafluorophosphate crystals of uniform particle size
was gotten. Its purity is 99.9% or more,
Hydrofluoric acid as an impurity was 50 ppm, and lithium fluoride was 50 ppm or less.

【0014】この六フッ化リン酸リチウムをSUS30
4製の処理装置に入れて、160℃に加熱した後に、1
torrの減圧下で1時間加熱処理を行った。得られた
六フッ化リン酸リチウム中のフッ酸濃度は50ppm、
フッ化リチウムは900ppm(0.09wt%)であ
った。なお、この処理後の結晶の表面にPF5 ガスを導
入したところ、フッ化リチウムが50ppm以下に減少
したという事実から、このフッ化リチウムがPF5 ガス
が進入可能な表層に存在することが確認できた。
This lithium hexafluorophosphate is SUS30
4 and heated to 160 ° C.
Heat treatment was performed for 1 hour under reduced pressure of torr. The concentration of hydrofluoric acid in the obtained lithium hexafluorophosphate is 50 ppm,
Lithium fluoride was 900 ppm (0.09 wt%). In addition, when PF 5 gas was introduced into the surface of the crystal after this treatment, the fact that lithium fluoride was reduced to 50 ppm or less confirmed that this lithium fluoride was present on the surface layer through which PF 5 gas could enter. did it.

【0015】処理後の六フッ化リン酸リチウムを−20
℃の露点を持つ空気中に5時間放置したところ、フッ酸
の増加が認められなかった。 実施例2 実施例1と同様の方法により、合成した六フッ化リン酸
リチウムをSUS304製の処理装置に入れて、40℃
で24時間、5L/min.の流速で窒素ガスを装置内
に流通させた。その結果、不純物のフッ酸濃度が50p
pm、表面のフッ化リチウム濃度が400ppm(0.
04wt%)の六フッ化リン酸リチウムが得られた。
After the treatment, lithium hexafluorophosphate is added to -20.
When left in air having a dew point of 5 ° C. for 5 hours, no increase in hydrofluoric acid was observed. Example 2 In the same manner as in Example 1, the synthesized lithium hexafluorophosphate was put into a SUS304 processing apparatus, and heated at 40 ° C.
For 24 hours at 5 L / min. Nitrogen gas was passed through the apparatus at a flow rate of. As a result, the hydrofluoric acid concentration of the impurity becomes 50 p.
pm, the concentration of lithium fluoride on the surface is 400 ppm (0.
(0.4 wt%) of lithium hexafluorophosphate.

【0016】処理後の六フッ化リン酸リチウムを−20
℃の露点を持つ空気中に5時間放置したところ、フッ酸
濃度が100ppmになった。 実施例3 実施例1と同様の方法により、合成した六フッ化リン酸
リチウムをSUS304製の処理装置に入れて、40℃
で12時間、5L/min.の流速で窒素ガスを装置内
に流通させた。その結果、不純物のフッ酸濃度が50p
pm、表面のフッ化リチウム濃度が200ppm(0.
02wt%)の六フッ化リン酸リチウムが得られた。
After the treatment, lithium hexafluorophosphate is added to -20.
When left in air having a dew point of ° C. for 5 hours, the hydrofluoric acid concentration became 100 ppm. Example 3 Lithium hexafluorophosphate synthesized in the same manner as in Example 1 was placed in a SUS304 processing apparatus and heated at 40 ° C.
For 12 hours at 5 L / min. Nitrogen gas was passed through the apparatus at a flow rate of. As a result, the hydrofluoric acid concentration of the impurity becomes 50 p.
pm, the concentration of lithium fluoride on the surface is 200 ppm (0.
02 wt%) of lithium hexafluorophosphate.

【0017】処理後の六フッ化リン酸リチウムを−20
℃の露点を持つ空気中に5時間放置したところ、フッ酸
濃度が200ppmになった。 比較例1 実施例1と同様の方法により、六フッ化リン酸リチウム
を合成した。そのものの純度は99.9%以上で、不純
物のフッ酸濃度は50ppm、フッ化リチウム濃度は5
0ppm以下であった。
After the treatment, lithium hexafluorophosphate is added to -20.
When left in air having a dew point of ° C. for 5 hours, the hydrofluoric acid concentration became 200 ppm. Comparative Example 1 Lithium hexafluorophosphate was synthesized in the same manner as in Example 1. It has a purity of 99.9% or more, a hydrofluoric acid concentration of impurities of 50 ppm, and a lithium fluoride concentration of 5 ppm.
It was 0 ppm or less.

【0018】この安定化させていない六フッ化リン酸リ
チウムを−20℃の露点を持つ空気中に5時間放置した
ところ、フッ酸濃度は700ppmまで増加した。
When this unstabilized lithium hexafluorophosphate was left in air having a dew point of -20 ° C. for 5 hours, the hydrofluoric acid concentration increased to 700 ppm.

【0019】[0019]

【発明の効果】本発明の安定化した六フッ化リン酸リチ
ウムは、従来のものよりも取り扱いが容易であり、リチ
ウム2次電池用等に用いる場合に有害とされているフッ
酸等の分解生成物の発生がきわめて少ないものである。
The stabilized lithium hexafluorophosphate of the present invention is easier to handle than the conventional lithium hexafluorophosphate, and decomposes hydrofluoric acid and the like, which are considered harmful when used for lithium secondary batteries and the like. The generation of products is extremely low.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊東 久和 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社宇部研究所内 (72)発明者 宗野 靖 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社宇部研究所内 (72)発明者 阿瀬川 誠 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社宇部研究所内 (72)発明者 兼重 和美 山口県宇部市大字沖宇部5253番地 セン トラル硝子株式会社宇部研究所内 (56)参考文献 特開 平4−175216(JP,A) 特開 昭60−251109(JP,A) (58)調査した分野(Int.Cl.6,DB名) C01B 25/455 H01M 6/18 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Hisakazu Ito 5253 Oki Obe, Oji, Ube City, Yamaguchi Prefecture Inside Central Glass Co., Ltd. Inside Ube Laboratory, Glass Co., Ltd. (72) Inventor Makoto Asegawa, 5253 Oki Ube, Oji, Ube City, Yamaguchi Prefecture Central Glass Co., Ltd. Ube Research Laboratories, Inc. (56) References JP-A-4-175216 (JP, A) JP-A-60-251109 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C01B 25 / 455 H01M 6/18

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フッ化リチウム層表面を有することを特
徴とする安定化された六フッ化リン酸リチウム。
1. A stabilized lithium hexafluorophosphate having a lithium fluoride layer surface.
JP6530693A 1993-03-24 1993-03-24 Stabilized lithium hexafluorophosphate Expired - Lifetime JP2898163B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6530693A JP2898163B2 (en) 1993-03-24 1993-03-24 Stabilized lithium hexafluorophosphate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6530693A JP2898163B2 (en) 1993-03-24 1993-03-24 Stabilized lithium hexafluorophosphate

Publications (2)

Publication Number Publication Date
JPH06279010A JPH06279010A (en) 1994-10-04
JP2898163B2 true JP2898163B2 (en) 1999-05-31

Family

ID=13283097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6530693A Expired - Lifetime JP2898163B2 (en) 1993-03-24 1993-03-24 Stabilized lithium hexafluorophosphate

Country Status (1)

Country Link
JP (1) JP2898163B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6001325A (en) * 1996-11-26 1999-12-14 Fmc Corporation Process for removing acids from lithium salt solutions
CN105098189B (en) * 2014-05-21 2018-02-16 微宏动力系统(湖州)有限公司 Negative material additive and preparation method thereof

Also Published As

Publication number Publication date
JPH06279010A (en) 1994-10-04

Similar Documents

Publication Publication Date Title
US6001325A (en) Process for removing acids from lithium salt solutions
CN107001042B (en) Method for producing lithium difluorophosphate powder and lithium difluorophosphate
CN103733416A (en) Method for producing lithium tetrafluoroborate solution
EP1055640B1 (en) Method of purifying lithium hexafluorophosphate
KR20200049164A (en) Very efficient Method for preparing lithium bis(fluorosulfonyl)imide
JP2013166680A (en) Method for producing concentrated lithium hexafluorophosphate solution
WO2012023534A1 (en) Method for producing a lithium hexafluorophosphate concentrated liquid
CN115340573A (en) Preparation method of lithium difluorobis (oxalate) phosphate
WO2016072158A1 (en) Method for purifying electrolyte solution and method for producing electrolyte solution
JP2008156190A (en) Method for production of lithium fluoride
JP3483099B2 (en) Method for producing lithium hexafluorophosphate
JP2898163B2 (en) Stabilized lithium hexafluorophosphate
JP2882723B2 (en) Purification method of lithium hexafluorophosphate
CN112591727B (en) Preparation method of lithium difluorophosphate
CN1850593A (en) Method for purifying lithium hexafluoro phosphate
JPH10316409A (en) Production of lithium hexafluorophosphate
JP2009292724A (en) Method of manufacturing low-moisture lithium hexafluorophosphate
JPH06298506A (en) Purification of lithium hexafluorophosphate
JP3555720B2 (en) Addition compound of lithium hexafluorophosphate, method for producing the same, and electrolyte using the same
JP4747654B2 (en) Purification method of electrolyte for lithium ion battery
JP3483107B2 (en) Purification method of lithium hexafluorophosphate
US6884403B2 (en) Method of purifying lithium hexafluorophosphate
JP5151121B2 (en) Method for producing electrolytic solution for lithium ion battery and lithium ion battery using the same
JP2001122603A (en) Method for production of low moisture lithium hexafluorophosphate
JPH06298720A (en) Purification of fluoroalkyl sulfonic acid

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20090312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100312

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120312

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120312

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130312

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20130312