JP2894245B2 - High frequency transmission line - Google Patents

High frequency transmission line

Info

Publication number
JP2894245B2
JP2894245B2 JP7127929A JP12792995A JP2894245B2 JP 2894245 B2 JP2894245 B2 JP 2894245B2 JP 7127929 A JP7127929 A JP 7127929A JP 12792995 A JP12792995 A JP 12792995A JP 2894245 B2 JP2894245 B2 JP 2894245B2
Authority
JP
Japan
Prior art keywords
transmission line
conductor
film
width
linear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7127929A
Other languages
Japanese (ja)
Other versions
JPH08321706A (en
Inventor
玄一 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Original Assignee
IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK filed Critical IDOTAI TSUSHIN SENTAN GIJUTSU KENKYUSHO KK
Priority to JP7127929A priority Critical patent/JP2894245B2/en
Publication of JPH08321706A publication Critical patent/JPH08321706A/en
Application granted granted Critical
Publication of JP2894245B2 publication Critical patent/JP2894245B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は伝導材を使用したマイ
クロストリップ伝送線路等の平面型伝送線路において、
その伝送電力を飛躍的に向上させることが可能な高周波
伝送線路、およびそれを用いたフィルタ回路に関する。
The present invention relates in planar transmission line such as a microstrip transmission line using a superconducting material,
The present invention relates to a high-frequency transmission line capable of dramatically improving its transmission power , and a filter circuit using the same .

【0002】[0002]

【従来の技術】マイクロ波等の高周波を伝送する伝送線
路としてマイクロストリップ伝送線路等の平面型伝送線
路が多用されており、近年、通信回路の低損失化、低雑
音化等の観点より上記伝送線路への超伝導材の使用が試
みられている。前記平面型伝送線路を構成する導体は通
常、一定幅の平面導体であり、一般に超伝導材の平面導
体に電流を流すと、いわゆるマイスナー効果によって、
電流は前記導体の表面付近のみを流れる。特にマイクロ
ストリップ伝送線路では、導体膜の断面端部に電流が集
中し、その様子を図4、図5に示す。
2. Description of the Related Art A planar transmission line such as a microstrip transmission line is frequently used as a transmission line for transmitting a high frequency such as a microwave. Attempts have been made to use superconducting materials in tracks. The conductor constituting the planar transmission line is usually a planar conductor having a constant width, and generally, when a current flows through a planar conductor made of a superconducting material, the so-called Meissner effect causes
Current flows only near the surface of the conductor. In particular, in a microstrip transmission line, current concentrates on the cross-sectional end of the conductor film, and this is shown in FIGS.

【0003】図4において、誘電体板2の下面には全面
に超伝導材のアース導体膜3が形成され、一方、上面に
は所定幅のストリップ導体膜1が超伝導材の単一膜で形
成されている。ストリップ導体膜1の幅方向をx、その
長手方向をy、膜厚方向をzとすると、偏平な長方形の
膜断面内におけるy方向電流密度Jy の分布は図5に示
すものとなる。
In FIG. 4, a ground conductor film 3 of a superconductive material is formed on the entire lower surface of a dielectric plate 2, while a strip conductive film 1 of a predetermined width is formed on the upper surface by a single film of a superconductive material. Is formed. Assuming that the width direction of the strip conductor film 1 is x, the longitudinal direction is y, and the film thickness direction is z, the distribution of the current density Jy in the y direction in the flat rectangular film cross section is as shown in FIG.

【0004】すなわち、図5から知られるように、電流
密度Jy は膜断面内の両端部(図のB部)で極大を示
し、特に誘電体板2に接した側(図の手前側)で大きな
値を示す不均一なものとなる。したがって、前記両端部
を除いた膜断面の中間部(図のA部)では電流密度は極
く小さくなり、この結果、導体膜1全体の電流輸送効率
は悪い。なお、これは通常伝導材の導体に高周波電流を
流した場合にも、いわゆる表皮効果によって同様の現象
が現れる。
That is, as is known from FIG. 5, the current density Jy shows a maximum at both ends (B in the drawing) in the cross section of the film, and particularly on the side in contact with the dielectric plate 2 (the front side in the drawing). It becomes a non-uniform thing showing a large value. Therefore, the current density is extremely small in the middle part (A in the figure) of the film cross section excluding the both ends, and as a result, the current transport efficiency of the entire conductor film 1 is poor. In addition, the same phenomenon appears due to a so-called skin effect even when a high-frequency current flows through a conductor of a normal conductive material.

【0005】特に、超伝導材にはそれぞれ固有の臨界電
流があり、たとえ臨界温度以下に冷却されていても、上
記臨界電流(臨界電流密度)を越える電流が流れると、
この部分で超伝導状態が破壊される。したがって、超伝
導材を使用した場合には、前記電流密度Jy の極大値を
臨界電流密度以下に抑える必要があり、超伝導材による
電流輸送効率向上の効果は大きく減殺される。
In particular, each superconducting material has its own critical current. Even if the superconducting material is cooled below the critical temperature, if a current exceeding the critical current (critical current density) flows,
The superconducting state is destroyed in this part. Therefore, when a superconducting material is used, it is necessary to keep the maximum value of the current density Jy below the critical current density, and the effect of improving the current transport efficiency by the superconducting material is greatly reduced.

【0006】そこで、マイクロストリップ伝送線路のフ
ィルタ(共振器)において、図6に示すように、フィル
タFの形状を円板形とすることによって、共振領域での
電流密度のピーク値を抑えて、投入電力(電流)の増大
を図ったものが提案されている(信学技報 SCE93
−53 社団法人 電子情報通信学会)。
Therefore, in the filter (resonator) of the microstrip transmission line, as shown in FIG. 6, by making the shape of the filter F disc-shaped, the peak value of the current density in the resonance region is suppressed. A proposal for increasing the input power (current) has been proposed (IEICE Technical Report SCE93).
−53 The Institute of Electronics, Information and Communication Engineers).

【0007】[0007]

【発明が解決しようとする課題】しかし、フィルタ形状
を円板形にすると、線路幅がフィルタ部分で非常に大き
くなり、特に、急峻なフィルタ特性を得るためにフィル
タを多段化する場合等には通信回路が大型化するという
問題がある。そこで、本発明はこのような課題を解決す
るもので、線路幅の増大を抑えつつ、より大きな電流の
輸送を可能として、投入電力の向上を図った高周波伝送
線路を提供することを目的とする。
However, when the shape of the filter is a disk, the line width becomes very large in the filter portion. In particular, when the filter is multi-staged to obtain a steep filter characteristic, etc. There is a problem that a communication circuit becomes large. In view of the above, an object of the present invention is to provide a high-frequency transmission line capable of transporting a larger current while suppressing an increase in line width and improving input power. .

【0008】[0008]

【課題を解決するための手段】本発明は上記目的を達成
するため、請求項1に記載の発明においては、誘電体基
板(2)と、この誘電体基板(2)の上面において、一
定幅(W1)で一定の隣接間隔(d)を保ち、長手方向
に平行に複数形成されて平面型伝送線路を構成する線状
導体(11)とを備え、前記複数形成された線状導体
(11)は、超伝導材で構成されており、その長手方向
の両端においても前記一定の隣接間隔(d)を保って形
成されていることを特徴としている。 この場合、前記線
状導体の導体幅を約1μmに設定するとともに、これら
線状導体の隣接間隔をその導体幅と同程度の約0.8〜
1.5μmに設定すると好適である。
Since the present invention SUMMARY OF] is to achieve the above object, in the invention according to claim 1, the dielectric base
The plate (2) and the upper surface of the dielectric substrate (2)
A constant width (W1) and a constant adjacent distance (d)
Lines that are formed in parallel to each other to form a planar transmission line
And a conductor (11), wherein the plurality of linear conductors are formed.
(11) is made of a superconducting material, and its longitudinal direction
At the both ends of the shape with the above-mentioned constant adjacent distance (d) maintained.
It is characterized by being made. In this case, the conductor width of the linear conductor is set to about 1 μm, and the adjacent distance between these linear conductors is set to about 0.8 to about the same as the conductor width.
It is preferable to set the thickness to 1.5 μm.

【0009】請求項2に記載の発明においては、誘電体
基板(2)と、この誘電体基板(2)の上面において、
長手方向に平行に複数形成されて平面型伝送線路を構成
する線状導体(11)とを備え、前記複数形成された線
状導体(11)は、超伝導材で構成されており、その長
手方向の両端においても互いに接続されていない状態を
保って形成されていることを特徴としている。請求項3
に記載の発明においては、請求項1又は2に記載の線状
導体(11)をフィルタ(F)として用いたことを特徴
としている。
According to the second aspect of the present invention, the dielectric material
On the substrate (2) and the upper surface of the dielectric substrate (2),
Formed in parallel with the longitudinal direction to form a flat transmission line
And the plurality of formed wires are provided.
The conductor (11) is made of a superconducting material and has a long length.
The state where both ends in the hand direction are not connected to each other
It is characterized by being formed while maintaining. Claim 3
In the invention described in (1), the linear shape according to claim 1 or 2
Characterized in that the conductor (11) is used as a filter (F)
And

【0010】なお、上記各手段のカッコ内の符号は、後
述する実施例記載の具体的手段との対応関係を示すもの
である。
[0010] The symbols in parentheses of the above means indicate the correspondence with the concrete means described in the embodiments described later.

【0011】[0011]

【発明の作用効果】請求項1、2に記載の発明によれ
ば、従来の単一導体の両端部に流れる高周波電流を、複
数設けた線状導体の各断面端部に分流させることができ
るから、通常伝導材による平面型伝送線路全体に低損失
で必要な高周波電流を流すことができる。この場合、前
記各線状導体の線幅方向の間隔を互いの電磁的影響が小
さくなる適当範囲に設定すれば、電流搬送効率を高く維
持しつつ線路幅の増大も抑えられる。
According to the first and second aspects of the present invention, the high-frequency current flowing through both ends of the conventional single conductor can be diverted to the respective cross-sectional ends of the plurality of linear conductors. Therefore, a necessary high-frequency current can be caused to flow with low loss through the entire planar transmission line made of a normal conductive material. In this case, if the distance between the linear conductors in the line width direction is set to an appropriate range in which mutual electromagnetic influences are reduced, it is possible to keep the current carrying efficiency high and suppress an increase in the line width.

【0012】そして、線状導体の導体幅を約1μmと
し、導体の隣接間隔を約0.8〜1.5μmに設定する
と、導体膜間の電磁的影響を最小限にしつつ線路幅の増
大を抑えることができる
When the conductor width of the linear conductor is set to about 1 μm and the distance between adjacent conductors is set to about 0.8 to 1.5 μm, the line width can be increased while minimizing the electromagnetic effect between the conductor films. Can be suppressed .

【0013】また、臨界電流密度が存在する超伝導材に
おいて、各線状導体で電流密度を上記臨界電流密度以下
に抑えつつ、伝送線路の線路幅を大きく拡大することな
く全体の最大電流を増大させることができる。
Further, in the superconducting material critical current density is present, while reducing the current density below the critical current density at each linear conductor, increases the overall maximum current without enlarging increase the line width of the transmission line be able to.

【0014】[0014]

【実施例】以下、本発明を図に示す実施例について説明
する。図1には、本発明を超伝導材を使用したマイクロ
ストリップ伝送線路に適用した例を示し、誘電体基板2
の下面には全面にアース導体膜3が形成されている。一
方、前記誘電体基板2の上面には、幅W1 の線状導体膜
11が、隣接間隔dを保って高周波伝播方向(図の前後
方向)へ多数平行に形成されて、ストリップ導体膜1を
構成している。なお、ストリップ導体膜1全体の幅はW
である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. FIG. 1 shows an example in which the present invention is applied to a microstrip transmission line using a superconducting material.
A ground conductor film 3 is formed on the entire lower surface. On the other hand, on the upper surface of the dielectric substrate 2, a large number of linear conductor films 11 having a width W1 are formed in parallel with each other in the high-frequency propagation direction (front-rear direction in the drawing) while maintaining the adjacent distance d. Make up. The width of the entire strip conductor film 1 is W
It is.

【0015】この時の前記各線状導体膜11の膜断面内
における電流密度分布は、図2に示すようなものとな
る。図から知られるように、各線状導体膜11はその線
幅が十分小さいから、単一膜で構成された従来のストリ
ップ導体膜におけるような、電流密度が小さい中間部
(図5のA部)は殆ど生じず、マイスナー効果による電
流密度の大きい部分が各線状導体膜11のそれぞれの両
端部に現れて、ストリップ導体膜1全体では電流量が大
幅に増加する。
At this time, the current density distribution in the section of each linear conductor film 11 is as shown in FIG. As can be seen from the figure, since each linear conductor film 11 has a sufficiently small line width, an intermediate portion (part A in FIG. 5) where the current density is small as in a conventional strip conductor film formed of a single film. Hardly occurs, portions where the current density is high due to the Meissner effect appear at both ends of each linear conductor film 11, and the current amount greatly increases in the entire strip conductor film 1.

【0016】以下、これを理論的に検討すると、マイク
ロストリップ伝送線路の特性を検討したSamir
M.El−Ghazaly等の報告(IEEE TRA
NSACTIONS ON MICROWAVE TH
EORY AND TECHNIQUES,Vol.4
0,No.3 1992 p.499〜508)によれ
ば、線路のストリップ導体膜として超伝導材の単一膜を
使用した場合、当該導体膜を流れる最大電流ImaxUと膜
幅W´の関係は、数1で近似される。
In the following, when this is theoretically examined, the Samir, which examines the characteristics of the microstrip transmission line, is described.
M. Report of El-Ghazally et al. (IEEE TRA
NSACTIONS ON MICROWAVE TH
EORY AND TECHNIQUES, Vol. 4
0, No. 3 1992 p. According to 499 to 508), when a single film of a superconducting material is used as the strip conductor film of the line, the relationship between the maximum current ImaxU flowing through the conductor film and the film width W ′ is approximated by Expression 1.

【0017】[0017]

【数1】ImaxU∝W´1/2 ところで、誘電率が約10、基板厚が500μmの誘電
体基板を使用し、線路の特性インピーダンス50Ωを実
現するには、従来の単一膜のストリップ導体膜ではその
膜幅W´(図4)を500μm程度とする必要がある。
そこで、前記線状導体膜11の膜幅W1 (図1)および
隣接間隔dをいずれも1μmとし、1μm間隔で1μm
幅の線状導体膜11を250本平行に形成して、ストリ
ップ導体膜1全体の幅Wが500μm程度になるように
すると、各線状導体膜11を流れる最大電流Imaxsは数
1より、 Imaxs∝W1 1/2 =(W´/500)1/2 となる。
[Number 1] ImaxUarufaW' 1/2 way, a dielectric constant of about 10, using a dielectric substrate substrate thickness is 500 [mu] m, in order to realize the characteristic impedance 50Ω line, the strip conductor of the conventional single layer In the film, the film width W ′ (FIG. 4) needs to be about 500 μm.
Therefore, the film width W1 (FIG. 1) and the adjacent distance d of the linear conductor film 11 are both set to 1 .mu.m and 1 .mu.m at 1 .mu.m intervals.
When 250 linear conductor films 11 having a width are formed in parallel so that the entire width W of the strip conductor film 1 is about 500 μm, the maximum current Imaxs flowing through each linear conductor film 11 is expressed by the following equation. W1 1/2 = (W '/ 500) 1/2

【0018】この時のストリップ導体膜1全体の最大電
流ImaxCは、数2のようになる。
At this time, the maximum current ImaxC of the entire strip conductor film 1 is as shown in Expression 2.

【0019】[0019]

【数2】 ImaxC=Imaxs×250∝(W´/500)1/2 ×250 =(125W´)1/2 したがって、250本の超伝導材の線状導体膜で構成し
た線路幅500μmのストリップ導体膜1の搬送可能な
最大電流は、単一膜で構成した同一線路幅のストリップ
導体膜のそれの1251/2 倍(=ImaxC/ImaxU)とな
る(すなわち、投入可能な電力は125倍となる)。
ImaxC = Imaxs × 250∝ (W ′ / 500) 1/2 × 250 = (125 W ′) 1/2 Therefore, a strip having a line width of 500 μm constituted by 250 linear conductor films of superconducting material The maximum current that can be carried by the conductor film 1 is 125 1/2 times (= ImaxC / ImaxU) that of a strip conductor film having the same line width formed of a single film (that is, the inputtable power is 125 times). Becomes).

【0020】なお、前記Samir M.El−Gha
zaly等の報告は、電気的に孤立したマイクロストリ
ップ伝送線路における考察であり、近接して多数の線状
導体膜を形成した場合には、隣接する導体膜間の電磁的
干渉により、上記理論値よりは、ある程度電流倍率は小
さくなる。ところで、多数の線状導体膜でマイクロスト
リップ伝送線路を構成すると、その回路定数が変動して
線路インピーダンスが変化することが懸念される。この
点、発明者のシミュレーション結果では、500μm幅
の単一膜よりなる伝送線路と、1μm幅の多数(250
本)の超伝導材の線状導体膜を平行に配して全体として
500μm幅とした伝送線路とで、線路インピーダンス
は殆ど変化しないことが確認された。
The above-mentioned Samir M. El-Gha
Zally et al. consider the use of electrically isolated microstrip transmission lines. When a large number of linear conductor films are formed close to each other, the above theoretical value is obtained due to electromagnetic interference between adjacent conductor films. Rather, the current magnification becomes smaller to some extent. By the way, when a microstrip transmission line is constituted by a large number of linear conductor films, there is a concern that the circuit constant fluctuates and the line impedance changes. In this regard, the simulation results of the inventor show that a transmission line consisting of a single film having a width of 500 μm and a large number (250
It was confirmed that the line impedance hardly changed between the transmission line having a width of 500 μm as a whole by arranging the linear conductive films of the superconducting material of the present invention in parallel.

【0021】このようなマイクロストリップ伝送線路
は、高周波回路を構成する各種のデバイスに適用するこ
とができるが、特にフィルタ回路に適用すると、その大
型化を避けることができる点で効果が大きい。すなわ
ち、図3には、本発明の線路構造を使用したフィルタF
をマイクロストリップ伝送線路L中に設けた例を示し、
このフィルタFはその幅が全体の線路幅Wに等しく、長
さmは使用高周波の半波長に等しくしてある。このよう
なフィルタFではその長手方向の中央部で大きな共振電
流が流れるが、許容される最大電流量が十分大きくなっ
ているため、フィルタ形状を円板形にする(図6参照)
ことなく、投入電力を十分大きくすることができる。し
たがって、フィルタ設置部で線路幅が過大になるという
不具合が避けられる。
Although such a microstrip transmission line can be applied to various devices constituting a high-frequency circuit, it is particularly effective when applied to a filter circuit in that the size can be avoided. That is, FIG. 3 shows a filter F using the line structure of the present invention.
Is provided in the microstrip transmission line L,
This filter F has a width equal to the entire line width W and a length m equal to a half wavelength of the used high frequency. In such a filter F, a large resonance current flows in the central portion in the longitudinal direction. However, since the maximum allowable current amount is sufficiently large, the filter is formed into a disk shape (see FIG. 6).
Without this, the input power can be made sufficiently large. Therefore, it is possible to avoid a problem that the line width becomes excessive at the filter installation portion.

【0022】Samir M.El−Ghazaly等
の前記報告によれば、線状導体膜11の膜幅を小さくし
て、より多くの導体膜を設ければ、最大電流量を増加さ
せることができるが、実際には膜幅1μm程度で断面内
の通過磁束が飽和して電流密度の均一化がそれ以上進行
しなくなることと、エッチングによる膜形成が困難にな
る等の理由により、線状導体膜の膜幅は1μm程度とす
るのが良い。
[0022] Samir M. According to the report by El-Ghazally et al., If the film width of the linear conductor film 11 is reduced and more conductor films are provided, the maximum current amount can be increased. The width of the linear conductor film is about 1 μm because the magnetic flux passing through the cross section is saturated at about 1 μm and the current density cannot be further uniformed, and the film formation by etching becomes difficult. Good to do.

【0023】また、線状導体膜の隣接間隔を大きくした
方が、互いの電磁的影響を小さくできる点で有利である
が、線路幅の増大を抑えるためには前記隣接間隔は小さ
い方が良い。そこで、この二律背反的な要請に対して
は、既述の如く、隣接間隔を膜幅と同じ程度の0.8〜
1.5μm程度にすると、隣接する導体膜間の電磁的影
響を最小限にしつつ、線路幅の増大も抑えることができ
る。
It is advantageous to increase the distance between adjacent linear conductor films in that the mutual electromagnetic influence can be reduced. However, in order to suppress an increase in line width, the distance between adjacent lines is preferably smaller. . Therefore, in response to this reciprocal request, as described above, the adjacent distance is set to 0.8 to about the same as the film width.
When the thickness is about 1.5 μm, an increase in the line width can be suppressed while minimizing the electromagnetic influence between the adjacent conductor films.

【0024】なお、上記実施例では超伝導材のマイクロ
ストリップ伝送線路への本発明の適用について説明した
が、本発明は平板導体を有する平面型伝送線路に広く適
用することができ。また、既述の如く、本発明は導体材
料に超伝導材を使用した伝送線路において、その伝送電
力を飛躍的に向上させるという優れた効果を有するが、
導体材料に通常伝導材を使用した伝送線路においても、
高周波伝送時の損失を大きく低減できるという効果を有
する。
Although the application of the present invention to a microstrip transmission line made of a superconducting material has been described in the above embodiment, the present invention can be widely applied to a flat transmission line having a flat conductor. Also, as described above, the present invention has an excellent effect of dramatically improving the transmission power of a transmission line using a superconducting material as a conductor material,
Even in a transmission line using a normal conductive material for the conductor material,
This has the effect that the loss during high frequency transmission can be greatly reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用したマイクロストリップ伝送線路
の一実施例を示す切断斜視図である。
FIG. 1 is a cutaway perspective view showing one embodiment of a microstrip transmission line to which the present invention is applied.

【図2】各線状導体膜の電流密度分布を示すグラフであ
る。
FIG. 2 is a graph showing a current density distribution of each linear conductor film.

【図3】本発明を適用したマイクロストリップ伝送線路
のフィルタ設置部の切断斜視図である。
FIG. 3 is a cutaway perspective view of a filter installation portion of a microstrip transmission line to which the present invention is applied.

【図4】従来のマイクロストリップ伝送線路の一実施例
を示す切断斜視図である。
FIG. 4 is a cutaway perspective view showing one embodiment of a conventional microstrip transmission line.

【図5】従来のマイクロストリップ伝送線路の電流密度
分布を示すグラフである。
FIG. 5 is a graph showing a current density distribution of a conventional microstrip transmission line.

【図6】従来のマイクロストリップ伝送線路のフィルタ
設置部の切断斜視図である。
FIG. 6 is a cutaway perspective view of a filter installation portion of a conventional microstrip transmission line.

【符号の説明】[Explanation of symbols]

1…ストリップ導体膜(平板導体)、11…線状導体
膜、2…誘電体板、3…アース導体膜、L…マイクロス
トリップ伝送線路(平面型伝送線路)
DESCRIPTION OF SYMBOLS 1 ... Strip conductor film (flat conductor), 11 ... Linear conductor film, 2 ... Dielectric plate, 3 ... Ground conductor film, L ... Microstrip transmission line (flat transmission line)

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01P 3/08 H01P 1/203 JICSTファイル(JOIS)──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) H01P 3/08 H01P 1/203 JICST file (JOIS)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 誘電体基板(2)と、 この誘電体基板(2)の上面において、 一定幅(W1)
一定の隣接間隔(d)を保ち、長手方向に平行に複数
形成されて平面型伝送線路を構成する線状導体(11)
とを備え、 前記複数形成された線状導体(11)は、超伝導材で構
成されており、その長手方向の両端においても前記一定
の隣接間隔(d)を保って形成されている ことを特徴と
する高周波伝送線路。
A constant width (W1) is defined between a dielectric substrate (2) and an upper surface of the dielectric substrate (2 ).
In certain adjacent spacing (d) a Chi coercive, linear conductors longitudinally formed in plurality in parallel to constitute a planar transmission line (11)
With the door, said plurality formed linear conductor (11) is configured with a superconducting material
And the same constant at both ends in the longitudinal direction.
A high-frequency transmission line formed so as to keep the adjacent distance (d) .
【請求項2】 誘電体基板(2)と、 この誘電体基板(2)の上面において、長手方向に平行
に複数形成されて平面型伝送線路を構成する線状導体
(11)とを備え、 前記複数形成された線状導体(11)は、超伝導材で構
成されており、その長手方向の両端においても互いに接
続されていない状態を保って形成されている ことを特徴
とする高周波伝送線路。
2. A dielectric substrate (2) and an upper surface of the dielectric substrate (2) which is parallel to a longitudinal direction.
Conductors that are formed in a plurality to form a planar transmission line
(11), wherein the plurality of linear conductors (11) are made of a superconductive material.
At both ends in the longitudinal direction.
A high-frequency transmission line formed so as not to be connected.
【請求項3】 請求項1又は2に記載の線状導体(1
1)をフィルタ(F)として用いたフィルタ回路。
3. The linear conductor (1 ) according to claim 1 or 2,
A filter circuit using 1) as a filter (F).
JP7127929A 1995-05-26 1995-05-26 High frequency transmission line Expired - Fee Related JP2894245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7127929A JP2894245B2 (en) 1995-05-26 1995-05-26 High frequency transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7127929A JP2894245B2 (en) 1995-05-26 1995-05-26 High frequency transmission line

Publications (2)

Publication Number Publication Date
JPH08321706A JPH08321706A (en) 1996-12-03
JP2894245B2 true JP2894245B2 (en) 1999-05-24

Family

ID=14972134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7127929A Expired - Fee Related JP2894245B2 (en) 1995-05-26 1995-05-26 High frequency transmission line

Country Status (1)

Country Link
JP (1) JP2894245B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11177310A (en) * 1997-10-09 1999-07-02 Murata Mfg Co Ltd High frequency transmission line, dielectric resonator, filter, duplexer and communication equipment
JP3391271B2 (en) * 1998-09-01 2003-03-31 株式会社村田製作所 Low loss electrode for high frequency
JP3379471B2 (en) 1999-04-19 2003-02-24 株式会社村田製作所 Transmission line, resonator, filter, duplexer, and communication device
US6683260B2 (en) 2000-07-04 2004-01-27 Matsushita Electric Industrial Co., Ltd. Multilayer wiring board embedded with transmission line conductor
JP4489113B2 (en) 2007-11-26 2010-06-23 株式会社東芝 Resonator and filter
JP4768791B2 (en) 2008-09-26 2011-09-07 株式会社東芝 Resonator and filter

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3587264B2 (en) * 1993-09-22 2004-11-10 株式会社村田製作所 Stripline and transmission line, resonator and filter using it

Also Published As

Publication number Publication date
JPH08321706A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
US7825751B2 (en) Resonant circuit, filter circuit, and antenna device
Guckel et al. A parallel-plate waveguide approach to microminiaturized, planar transmission lines for integrated circuits
CA1164966A (en) Suspended microstrip circuit for the propagation of an odd-wave mode
KR100618422B1 (en) Coplanar waveguide filter and method of forming same
JP6625226B2 (en) Frequency selection limiter
US6041245A (en) High power superconductive circuits and method of construction thereof
US5922650A (en) Method and structure for high power HTS transmission lines using strips separated by a gap
JP2894245B2 (en) High frequency transmission line
JPH07105642B2 (en) Superconducting variable phase shifter
US7411475B2 (en) Superconductor filter
US7183874B2 (en) Casing contained filter
JP3391271B2 (en) Low loss electrode for high frequency
JP3379471B2 (en) Transmission line, resonator, filter, duplexer, and communication device
US3967223A (en) Resonant ring transmission line having a high Q mode
JPH09232820A (en) Microstrip line
US6381478B2 (en) Superconductive high-frequency circuit element with smooth contour
Yan et al. Finite-element analysis of generalized V-and W-shaped edge and broadside-edge-coupled shielded microstrip lines on anisotropic medium
JPH1127015A (en) Superconductive element
JPH05267908A (en) High frequency filter
KR100396922B1 (en) Magnetostatic Wave Filter
JPH01198804A (en) Meander line
JPH01174101A (en) Microwave circuit
Cristal et al. " Microguide" A New Microwave Integrated Circuit Transmission Line
JPH09275306A (en) High frequency transmission line
GB2218853A (en) Microwave directional coupler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees