JPH01174101A - Microwave circuit - Google Patents

Microwave circuit

Info

Publication number
JPH01174101A
JPH01174101A JP62333426A JP33342687A JPH01174101A JP H01174101 A JPH01174101 A JP H01174101A JP 62333426 A JP62333426 A JP 62333426A JP 33342687 A JP33342687 A JP 33342687A JP H01174101 A JPH01174101 A JP H01174101A
Authority
JP
Japan
Prior art keywords
magnetic field
line
state
superconducting
microwave circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62333426A
Other languages
Japanese (ja)
Inventor
Mitsuyoshi Kegasa
光容 毛笠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62333426A priority Critical patent/JPH01174101A/en
Publication of JPH01174101A publication Critical patent/JPH01174101A/en
Pending legal-status Critical Current

Links

Landscapes

  • Waveguides (AREA)

Abstract

PURPOSE:To vary the line constant in a non-contact state by constituting part of a microstrip line by a superconducting material, applying a magnetic field thereto to bring the part of the superconducting material into the normal conducting state, bringing the other part into the superconducting state and moving the region of the superconducting state in response to the strength of the magnetic field. CONSTITUTION:When a current flows to a coil 14, since a magnetic field H in the range of hatched lines as A-B in figure exceeds a critical magnetic field Hc of the superconducting material, the range A-B represents the normal conducting state. Thus, a loss depending on the superconducting material is caused in the range AB. As the current flowing to the coil 14 is increased, the magnetic field is increased, the area broken with the superconducting state is widened and the transmission loss is increased. Conversely, when the current flowing to the coil 14 is decreased, since the magnetic field is weakened, the area with broken superconducting state is made narrow and the transmission loss is decreased. Thus, the transmission loss is made variable in response to the current.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、マイクロ波回路に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to microwave circuits.

〔従来の技術〕[Conventional technology]

この種、従来におけるマイクロ波回路としては、例えば
第4図に示すような構成のものがあった。
A conventional microwave circuit of this type has a configuration as shown in FIG. 4, for example.

第4図(、) (b) (o)はそれぞn従来のマイク
ロ波回路の側面図、正面図及び断面図である。
4(a), (b), and (o) are a side view, a front view, and a sectional view of a conventional microwave circuit, respectively.

第4図において、(1)は金属などで作られたストリッ
プ導体、(2)はセラミックなどの、WllE体、(3
)は接地導体である。
In Figure 4, (1) is a strip conductor made of metal etc., (2) is a WllE body made of ceramic etc., (3) is a strip conductor made of metal etc.
) is the ground conductor.

第5図は、従来のマイクロストリップ線路を利用したλ
/4オーブンの共振回路、第6図は従来のマイクロスト
リップ線路2つを密着させた方向性カブラ回路である0
図において(5)は742のストリップ線路を示す。
Figure 5 shows λ using a conventional microstrip line.
/4 Oven resonant circuit, Figure 6 is a directional coupler circuit in which two conventional microstrip lines are closely connected.
In the figure, (5) shows 742 strip lines.

次に動作について説明する。第4図において、ストリッ
プ導体(1)と接地導体(3)は誘電体(2)をはさん
で平行平板線路を形成している。第4図(c)は第4図
(b)中C−σ線で切断したときの断面図であり、スト
リップ導体(1)と接地導体(3)との間の電界を破線
で示す、このような平行平板線路は第4図(b)におい
て上下方向に直流乃至マイクロ波帯域にわたる広帯域の
[磁波を送ることができる。これを−般にマイクロスト
リップ線路と呼んでいる。
Next, the operation will be explained. In FIG. 4, a strip conductor (1) and a ground conductor (3) form a parallel plate line with a dielectric (2) in between. FIG. 4(c) is a cross-sectional view taken along the C-σ line in FIG. 4(b), and the electric field between the strip conductor (1) and the ground conductor (3) is shown by the broken line. As shown in FIG. 4(b), such a parallel plate line can send a wide band of magnetic waves ranging from direct current to microwave bands in the vertical direction. This is generally called a microstrip line.

マイクロストリップ線路の損失は主に誘電体の損失と導
体の損失により決まるので、導体の導電率を変えれば、
その通過損失を変化させることができる。導電率の高い
導体を使えば通過損失は小さくなり、導電率の低い導体
を使えば通過損失は大きくなる。
The loss of a microstrip line is mainly determined by the loss of the dielectric and the loss of the conductor, so if you change the conductivity of the conductor,
Its passing loss can be varied. If a conductor with high conductivity is used, the passing loss will be small, and if a conductor with low conductivity is used, the passing loss will be large.

又第5図のような長さしのマイクロストリップ線路は、
左端から見て波長λ=4・Lとなるようt電磁波に対し
て低インピーダンス(ショート)に見える共振器となる
Also, a long microstrip line as shown in Figure 5 is
When viewed from the left end, the resonator appears to have a low impedance (short circuit) with respect to electromagnetic waves with wavelength λ=4·L.

又、t@6図に示すようにストリップ線路(1)及び(
5)を距idだけ離しておくと、dの長さに応じた結合
態の方向性結合器が得らnる。
In addition, as shown in Figure t@6, strip lines (1) and (
5) are separated by a distance id, a directional coupler with a coupling state corresponding to the length of d is obtained.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来のマイクロ波回路は、以上のように構成されている
ため、例えば通過損失を変えるには導体の種類を変える
必要があり、共振波長λを変えるには、線路長りを変え
ねばならず、カブラの結合態を変えたければ、線路間の
距離dを変えねばならないため、可変の素子が得られな
いという問題点があった。
Conventional microwave circuits are configured as described above, so for example, to change the transmission loss, it is necessary to change the type of conductor, and to change the resonant wavelength λ, the line length must be changed. If you want to change the coupling state of the coupler, you have to change the distance d between the lines, so there is a problem that a variable element cannot be obtained.

この発明は上記のような問題点を解消するためになされ
たもので、マイクロストリップ線路の損失や、線路長や
カブラの線路間の距離を容易に可変できるマイクロ波回
路を得ることを目的とする。
This invention was made to solve the above-mentioned problems, and aims to provide a microwave circuit that can easily change the loss of the microstrip line, the line length, and the distance between the double line lines. .

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係るマイクロ波回路は、マイクロストリップ
線路を超伝導体で構成しこfl1cm界を加えて、その
磁界を印加した1部の領域を常伝導状態に転移させ、磁
界の強度に応じて所望の領域を常伝導状態とし、残りの
領域を超伝導状態とすることにより、線路の損失1寸法
などを可変にできるようにしだも、のである。
In the microwave circuit according to the present invention, a microstrip line is made of a superconductor, a fl1cm field is applied thereto, a part of the region to which the magnetic field is applied is transferred to a normal conduction state, and a desired state is achieved according to the strength of the magnetic field. However, it is possible to make the loss dimension of the line variable by making the region normal conductive and the remaining region superconducting.

〔作用〕[Effect]

この発明におけるマイクロ波回路は、超伝導体が所定の
磁界の強さHe と以上の磁界Hを受けると通常の導体
もしくは半導体になる現象を利用して、マイクロストリ
ップ線路に適当な磁界を加えることにより、線路を超伝
導体領域と通常の導体又は半導体領域に任意位置で切り
替えることにより、線路の損失1寸法等を可変にする。
The microwave circuit of this invention applies an appropriate magnetic field to a microstrip line by utilizing the phenomenon that a superconductor becomes a normal conductor or semiconductor when subjected to a predetermined magnetic field strength He and a magnetic field H greater than that. By switching the line between a superconductor region and a normal conductor or semiconductor region at an arbitrary position, the line loss dimension etc. can be made variable.

超伝導状態は磁界のかわりに熱を加えても破ることがで
きるが磁界の方が可変しやすい上、高速で変化できると
いう特長があるので磁界を用いた。
Although the superconducting state can be broken by applying heat instead of a magnetic field, we used a magnetic field because it is easier to change and can change at a higher speed.

以下、この発明の一実施例を図を用いて詳細に説明する
Hereinafter, one embodiment of the present invention will be described in detail using the drawings.

t@1図(a) (b) (e)は、この発明の一実施
例であるマイクロ波回路の側面図、正面図及びc −c
’線で切断したときの断面図である。
t@1 Figures (a), (b), and (e) are a side view, a front view, and c-c of a microwave circuit that is an embodiment of the present invention.
It is a cross-sectional view when cut along the ' line.

第1図において、α0は超伝導体で構成したストリップ
線路、@は誘電体、側は超伝導体で構成した接地板、a
4は磁界を発生するための環状のコイルである。環状の
コイルQ4に電流を流していない時は、ストリップ線路
αOは全長にわたって超伝導状態となり、導電率は■と
なるため、通過損失はほぼ零となる。
In Figure 1, α0 is a strip line made of a superconductor, @ is a dielectric, and the side is a ground plate made of a superconductor, a
4 is a ring-shaped coil for generating a magnetic field. When no current is flowing through the annular coil Q4, the strip line αO is in a superconducting state over its entire length, and the conductivity is ■, so the passing loss is almost zero.

次に、コイルα◆にある程度の電流を流すと、第1図(
b)中A−Bで示す斜線の範囲の磁界Hは超伝導体の臨
界磁界Hoを越えるため、A−Bの範囲は常伝導状態と
なる。このため、A−Bの範囲では、超伝導材料により
決まる損失を生じるようになる。又、コイル04に流す
電流を増加すれば磁界は強くなり、超伝導状態の破れる
領域が広まり、通過損失は増加する。逆に、コイルα◆
に流す[iを減らせば、磁界は弱くなるため、超伝導状
態の破れる領域は狭くなり、通過損失は少なくなる。
Next, when a certain amount of current is passed through the coil α◆, as shown in Figure 1 (
b) Since the magnetic field H in the diagonally shaded range indicated by A-B in the middle exceeds the critical magnetic field Ho of the superconductor, the range A-B becomes a normal conduction state. Therefore, in the range A-B, a loss determined by the superconducting material occurs. Furthermore, if the current flowing through the coil 04 is increased, the magnetic field becomes stronger, the region where the superconducting state is broken becomes wider, and the passing loss increases. On the contrary, coil α◆
[If i is reduced, the magnetic field becomes weaker, the region where the superconducting state is broken becomes narrower, and the passing loss decreases.

このようにして、電流に応じて通過損失を可変できる可
変減衰器が実現できる。
In this way, a variable attenuator whose passing loss can be varied depending on the current can be realized.

第1図に示す実施例では、ストリップラインαQを超伝
導体のみで構成したが、超伝導体の常伝導棒状態におけ
る導電率が低すぎ、損失が大きくなりすぎる場合には、
超伝導体の上面もしくは誘電体側の面に適当な導電率を
持つ導体を置いても良い。
In the embodiment shown in FIG. 1, the strip line αQ is made of only a superconductor, but if the conductivity of the superconductor in the normal rod state is too low and the loss becomes too large,
A conductor having an appropriate conductivity may be placed on the top surface of the superconductor or the surface on the dielectric side.

又、常伝導棒状態における導電率が十分低い、半導体的
な超伝導体を十分薄い薄膜としたストリップ導体を使用
すると、超伝導状態においては極めて損失の小さいマイ
クロストリップ線路となり、磁界などで超伝導状態が破
n常伝導状態となるとほとんど絶縁体となるようなマイ
クロストリップ線路が実現できる。この様なマイクロス
トリップ線路の応用例を第2図及び第3図を用いて説明
する。
Furthermore, if we use a strip conductor made of a sufficiently thin film of a semiconducting superconductor that has sufficiently low conductivity in the normal conductive state, it becomes a microstrip line with extremely low loss in the superconducting state, and superconductivity can be achieved by a magnetic field, etc. When the state becomes a broken n-normal conduction state, a microstrip line that is almost an insulator can be realized. An application example of such a microstrip line will be explained with reference to FIGS. 2 and 3.

第2図は長さLのマイクロストリップを上記の超伝導薄
膜で構成した例である。コイルα◆はストリップ線路Q
Oの、上部にWi1図の(、)と同じように固定されて
いる。コイルQ4に電流を流さない時は、ストリップ線
路aCt全体が超伝導状態であるため、長さしのマイク
ロストリップ線路共振器として働く、コイルQ4にある
電流を流すと図中A−Bの間斜線部分の磁界Hが臨界磁
界Heを越えるため、超広、導状態が破れる。この超伝
導体は常伝導状態における導電率が極めて低く膜厚も薄
いため、A−Bの範囲は絶縁体とみなせるようになるた
め、見掛−ヒマイクロストリップ線路の長さはL′と短
くなる。このようにして、コイルa4に流す電流に応じ
てマイクロストリップ線路の長さしを可変にし1部4人
共振器の共振波長を可変することができる。
FIG. 2 shows an example of a microstrip having a length L made of the above-mentioned superconducting thin film. Coil α◆ is strip line Q
It is fixed to the top of O in the same way as (,) in Figure Wi1. When no current is passed through the coil Q4, the entire strip line aCt is in a superconducting state, so it acts as a long microstrip line resonator.When a certain current is passed through the coil Q4, the diagonal line between A and B in the figure appears. Since the magnetic field H in that part exceeds the critical magnetic field He, the ultra-wide conductive state is broken. Since this superconductor has extremely low conductivity and thin film thickness in the normal state, the range A-B can be regarded as an insulator, so the apparent length of the microstrip line is short L'. Become. In this way, the length of the microstrip line can be varied in accordance with the current flowing through the coil a4, and the resonant wavelength of the four-person resonator can be varied.

又、第3図に示すようなカブラにおいても、第1図(a
)のコイルo4と同じようにカブラの上部におかれたコ
イルαQに流す電流に応じて超伝導状態の領域の1部を
同図の斜線で示す範囲だけ、常伝導状態、つまり準絶縁
状態とすることができ、コイルαQに流す電流に応じて
カブラの間隔dを可変しカブラの結合量を可変すること
ができる。
In addition, even in the case of a turntable as shown in Fig. 3, Fig. 1 (a
), depending on the current flowing through the coil αQ placed at the top of the turntable, a part of the superconducting state becomes a normal conductive state, that is, a quasi-insulating state, only within the area indicated by the diagonal lines in the same figure. The distance d between the couplers can be varied in accordance with the current flowing through the coil αQ, and the amount of coupling between the couplers can be varied.

又以−ヒの実施例においては接地板−を超伝導体で構成
していたが、接地板(3)を通常の導体としても同様の
効果が得られる。又この場合コイルQ4又は0時は、接
地板0の下面に置いて全く同様の効果が得らnる。この
場合、コイルα◆又はQ帖よ接地板(3)に直接接着剤
等で固定すれば良い。
Further, in the embodiment described below, the grounding plate (3) is made of a superconductor, but the same effect can be obtained even if the grounding plate (3) is made of a normal conductor. In this case, the coil Q4 or 0 can be placed on the lower surface of the ground plate 0 to obtain exactly the same effect. In this case, the coil α◆ or the Q sheet may be directly fixed to the ground plate (3) with adhesive or the like.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、マイクロストリップ
線路の1部を超伝導体で構成し、こnに磁界を加えて、
超伝導体の1部を常伝導状態とし、他の部分を超伝導状
態とし、磁界の強さに応じて超伝導状態の領域を動かす
ことができるため、線路の定数を非接触で可変できるマ
イクロ波回路が得られる。
As described above, according to the present invention, a part of the microstrip line is made of a superconductor, and a magnetic field is applied to the superconductor.
One part of the superconductor is in a normal conductive state and the other part is in a superconducting state, and the superconducting region can be moved according to the strength of the magnetic field, making it possible to change the line constant without contact. A wave circuit is obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) (b) (a)はこの発明による実施例
を示す側面図、正面図及び断面図、第2図はこの発明の
他の実施例を示す正面図、第3図はこの発明の更に他の
実施例を示す正面図、第4図(a) (b) (e)は
従来のマイクロ波回路を示す側面図、正面図及び断面図
、第5図及び第6図はいずれも従来のマイクロ波回路を
示す正面図である。 図中、αQはストリップ導体、@はWsN体、(至)は
接地導体、a4α・はコイル、(至)はストリップ導体
である。 なお、図中同一符号は同−又は相当部分を示す。
Figure 1 (a) (b) (a) is a side view, front view and sectional view showing an embodiment of the present invention, Figure 2 is a front view showing another embodiment of the invention, and Figure 3 is a front view of this embodiment. 4(a), 4(b) and 4(e) are side views, front views and sectional views showing a conventional microwave circuit, and FIGS. 5 and 6 are front views showing still another embodiment of the invention. 1 is a front view showing a conventional microwave circuit. In the figure, αQ is a strip conductor, @ is a WsN body, (to) is a ground conductor, a4α· is a coil, and (to) is a strip conductor. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (7)

【特許請求の範囲】[Claims] (1)超伝導マイクロストリップ線路に磁界を加えるこ
とによりその1部の領域を常伝導状態とし、残りの部分
を超伝導状態として線路の定数を可変するようにしたこ
とを特徴としたマイクロ波回路。
(1) A microwave circuit characterized in that by applying a magnetic field to a superconducting microstrip line, a part of the line is made into a normal conduction state, and the remaining part is made into a superconducting state so that the constant of the line can be varied. .
(2)超伝導体の膜厚をきわめて薄くすることにより、
常伝導状態の部分がほとんど絶縁体とみなせるようにし
たことを特徴とする特許請求の範囲第1項記載のマイク
ロ波回路。
(2) By making the superconductor film extremely thin,
2. The microwave circuit according to claim 1, wherein most of the normally conductive portion can be regarded as an insulator.
(3)超伝導体の上もしくは下の層に導体を設けたこと
を特徴とする特許請求の範囲第1項記載のマイクロ波回
路。
(3) The microwave circuit according to claim 1, characterized in that a conductor is provided in a layer above or below the superconductor.
(4)接地導体を導体とすることにより、基板裏面から
磁界を加えるようにしたことを特徴とする特許請求の範
囲第1項記載のマイクロ波回路。
(4) The microwave circuit according to claim 1, wherein the ground conductor is a conductor so that a magnetic field is applied from the back surface of the substrate.
(5)線路の定数のうち、主として線路の減衰量を可変
できるようにしたことを特徴とする特許請求の範囲第1
項記載のマイクロ波回路。
(5) Among the constants of the line, mainly the amount of attenuation of the line can be varied.
Microwave circuit described in section.
(6)線路の定数のうち主として線路の長さを可変でき
るようにしたことを特徴とする特許請求の範囲第2項記
載のマイクロ波回路。
(6) The microwave circuit according to claim 2, wherein among the constants of the line, mainly the length of the line can be varied.
(7)2つの超伝導マイクロストリップラインの間隔を
可変できるようにしたことを特徴とする特許請求の範囲
第2項記載のマイクロ波回路。
(7) The microwave circuit according to claim 2, characterized in that the interval between the two superconducting microstrip lines is variable.
JP62333426A 1987-12-28 1987-12-28 Microwave circuit Pending JPH01174101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62333426A JPH01174101A (en) 1987-12-28 1987-12-28 Microwave circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62333426A JPH01174101A (en) 1987-12-28 1987-12-28 Microwave circuit

Publications (1)

Publication Number Publication Date
JPH01174101A true JPH01174101A (en) 1989-07-10

Family

ID=18265978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62333426A Pending JPH01174101A (en) 1987-12-28 1987-12-28 Microwave circuit

Country Status (1)

Country Link
JP (1) JPH01174101A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000720A1 (en) * 1991-06-24 1993-01-07 Superconductor Technologies Inc. Active superconductive devices
JPH0715241A (en) * 1993-06-23 1995-01-17 Nec Corp Amplitude modulator
FR2748859A1 (en) * 1996-05-15 1997-11-21 Bosch Gmbh Robert HIGH FREQUENCY, PLANAR, SWITCHABLE RESONATOR AND FILTER PRODUCED USING SUCH A RESONATOR AND MANUFACTURING METHOD
US7307045B2 (en) 2002-11-07 2007-12-11 Ntt Docomo, Inc. Signal switching device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993000720A1 (en) * 1991-06-24 1993-01-07 Superconductor Technologies Inc. Active superconductive devices
JPH0715241A (en) * 1993-06-23 1995-01-17 Nec Corp Amplitude modulator
FR2748859A1 (en) * 1996-05-15 1997-11-21 Bosch Gmbh Robert HIGH FREQUENCY, PLANAR, SWITCHABLE RESONATOR AND FILTER PRODUCED USING SUCH A RESONATOR AND MANUFACTURING METHOD
US7307045B2 (en) 2002-11-07 2007-12-11 Ntt Docomo, Inc. Signal switching device
US7774034B2 (en) 2002-11-07 2010-08-10 Ntt Docomo, Inc. Signal switching device

Similar Documents

Publication Publication Date Title
Hyltin Microstrip transmission on semiconductor dielectrics
US3560893A (en) Surface strip transmission line and microwave devices using same
Yang et al. A novel low-loss slow-wave microstrip structure
US3784933A (en) Broadband balun
JPS606567B2 (en) suspended microstrip circuit
US5008639A (en) Coupler circuit
US3174116A (en) Trough line microstrip circulator with spaced ferrite surrounding transverse conductive rod
US4150345A (en) Microstrip coupler having increased coupling area
US3659228A (en) Strip-type directional coupler having elongated aperture in ground plane opposite coupling region
Queck et al. Microstrip and stripline ferrite-coupled-line (FCL) circulator's
JPH07105642B2 (en) Superconducting variable phase shifter
US3946339A (en) Slot line/microstrip hybrid
US3448409A (en) Integrated microwave circulator and filter
JPH05218711A (en) Transition section from wide-band microstrip to strip line
US4135170A (en) Junction between two microwave transmission lines of different field structures
US2773242A (en) Microwave switching arrangements
JPH01174101A (en) Microwave circuit
US4288760A (en) Strip line directional coupler
US2749519A (en) Directional couplers for microwave transmission systems
US3585531A (en) Magnetically variable microstrip directional coupler deposited on ferrite substrate
US5426400A (en) Broadband coplanar waveguide to slotline transition having a slot cavity
US3599121A (en) Microstrip latched ferrite phase shifter wherein latching pulses pass through ground plane
US3967218A (en) Edge-guided wave directional combiner
JP2894245B2 (en) High frequency transmission line
US7774034B2 (en) Signal switching device