JP2891025B2 - Slipper metal for rolling mill - Google Patents

Slipper metal for rolling mill

Info

Publication number
JP2891025B2
JP2891025B2 JP5877093A JP5877093A JP2891025B2 JP 2891025 B2 JP2891025 B2 JP 2891025B2 JP 5877093 A JP5877093 A JP 5877093A JP 5877093 A JP5877093 A JP 5877093A JP 2891025 B2 JP2891025 B2 JP 2891025B2
Authority
JP
Japan
Prior art keywords
alloy
compound
less
weight
rolling mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5877093A
Other languages
Japanese (ja)
Other versions
JPH06271960A (en
Inventor
馬場  昇
勝博 小室
養蔵 熊谷
正▲吉▼ 海沼
勝 坂倉
正輝 諏訪
充夫 近崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP5877093A priority Critical patent/JP2891025B2/en
Publication of JPH06271960A publication Critical patent/JPH06271960A/en
Application granted granted Critical
Publication of JP2891025B2 publication Critical patent/JP2891025B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は耐摩耗アルミニウム青銅
合金を用いた圧延機用スリッパメタルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a slipper metal for a rolling mill using a wear-resistant aluminum bronze alloy.

【0002】[0002]

【従来の技術】各種産業機械における摺動部品は、アル
ミニウム青銅,高力黄銅,青銅及びリン青銅等の耐摩耗
性を有する銅合金が用いられている。これは摺動部を構
成する部材が炭素鋼,Cr−Mo鋼,はだ焼鋼等の機械
構造用鋼あるいは軸受鋼,高速度鋼等の工具鋼同志では
ともがね摺動による摩耗が大きくなるためである。さら
に、部品に要求される特性に応じて銅合金が使い分けら
れている。
2. Description of the Related Art Abrasion-resistant copper alloys such as aluminum bronze, high-strength brass, bronze, and phosphor bronze are used for sliding parts in various industrial machines. This is because, when the members composing the sliding part are carbon steel, Cr-Mo steel, steel for mechanical structure such as hardened steel, or tool steel such as bearing steel and high speed steel, wear due to sliding is large. It is because it becomes. Further, copper alloys are properly used according to the characteristics required for components.

【0003】その一例として、硬さと機械的強度が要求
される歯車,ウォームホイールなどには高力黄銅やアル
ミニウム青銅,焼付きにくいこと並びにかじりにくいこ
とが要求される軸受には青銅やりん青銅が用いられてい
る。さらに、高強度,高耐摩耗性の要求から、Cu−Z
n系合金にMn−Si化合物を晶出分散したもの(特許
第882216号公報),Cu−Al系合金にFe−Si化合
物を晶出分散したもの(特許第1189793 号公報)が提案
されている。しかし、これらも耐摩耗銅合金部品として
十分とは云えず、更に高性能の合金部品の出現が望まれ
ている。
[0003] For example, gears and worm wheels which require hardness and mechanical strength are made of high-strength brass or aluminum bronze, and bronze or phosphor bronze are used for bearings which are required to be resistant to seizing and galling. Used. Further, from the demand for high strength and high wear resistance, Cu-Z
An Mn-Si compound crystallized and dispersed in an n-based alloy (Japanese Patent No. 882216), and a Fe-Si compound crystallized and dispersed in a Cu-Al-based alloy (Japanese Patent No. 1189793) have been proposed. . However, these cannot be said to be sufficient as wear-resistant copper alloy parts, and the appearance of alloy parts having higher performance is desired.

【0004】また、ステンレス鋼,チタン等の活性金属
の冷間加工用ダイス材料として高硬度耐摩耗性アルミニ
ウム青銅合金(特許第1374020 号公報)が提案されてい
る。これは過共析のAl(12%以上)を含み、かつ、
高Mn組成(Mn:6%以上)であるため、機械的性質の
伸び(伸び率約3%以下)が小さく、産業機械の摺動部
材としては不向きである。
Further, as a die material for cold working of an active metal such as stainless steel or titanium, a high-hardness abrasion-resistant aluminum bronze alloy (Japanese Patent No. 1374020) has been proposed. It contains hypereutectoid Al (12% or more), and
Since it has a high Mn composition (Mn: 6% or more), the elongation of mechanical properties (elongation percentage is about 3% or less) is small, and it is not suitable for a sliding member of industrial machinery.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、高い
靭性(伸び率5%以上)と高耐摩耗性とを兼ね備えたア
ルミニウム青銅合金を用いた圧延機用スリッパメタルを
提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a slipper metal for a rolling mill using an aluminum bronze alloy having both high toughness (elongation of 5% or more) and high wear resistance. .

【0006】[0006]

【課題を解決するための手段】前記目的を達成する本発
明の要旨は、Cu−Al系合金にMn−Si化合物を晶
出分散することで高靭性と高耐摩耗性を実現したもの
で、重量でAl:7〜12%,Mn:1.5〜5.5%,
Si:0.4〜2.7%,不純物:0.5% 以下、残部が
実質的にCuよりなり、MnとSiとの金属間化合物が
分散し、固溶Si量が0.1〜1% である鋳造合金より
なることを特徴とする圧延機用スリッパメタルにある。
The gist of the present invention to achieve the above object is to realize high toughness and high wear resistance by crystallizing and dispersing a Mn-Si compound in a Cu-Al alloy. Al: 7 to 12%, Mn: 1.5 to 5.5% by weight,
Si: 0.4 to 2.7%, impurity: 0.5% or less, the balance being substantially Cu, the intermetallic compound of Mn and Si is dispersed, and the amount of solid solution Si is 0.1 to 1%. % Of a slip alloy for a rolling mill, characterized in that the slipper metal is made of a cast alloy.

【0007】特に、MnとSiの比が1〜3.25 が望
ましい。また、前記合金にはZn:2%以下,Pb:1
%以下、Cr,V,Ti,Zrの一種以上を合計で1%
以下、不純物0.5% 以下(主としてFe,Ni)を含
有することができる。
In particular, it is desirable that the ratio of Mn to Si is 1-32. The alloy contains Zn: 2% or less and Pb: 1%.
%, One or more of Cr, V, Ti, Zr in total of 1%
In the following, impurities can be contained at 0.5% or less (mainly Fe, Ni).

【0008】[0008]

【作用】Cu−Al系合金は一般にアルミニウム青銅と
称され、アブレシブな摩耗に対しては優れた性質を有す
るが、凝着し易いためにかじりを生じ易いと云う欠点が
ある。しかし、前記本発明の組成の合金は、これを解消
することができる。これは、Cu−Al系合金の固溶体
中にMn−Si化合物が晶出して、摩耗に対し高い抵抗
力を有するためである。
The Cu-Al alloy is generally referred to as aluminum bronze and has excellent properties against abrasive wear, but has a drawback that it is liable to adhere and easily seize. However, the alloy having the composition of the present invention can solve this problem. This is because the Mn-Si compound is crystallized in the solid solution of the Cu-Al alloy and has a high resistance to abrasion.

【0009】Mn−Si化合物の上記の作用効果をCu
−Al系合金に対して有効に発揮させるためには、次の
点を考慮することが重要である。
The above-mentioned effects of the Mn-Si compound are expressed by Cu
It is important to consider the following points in order to effectively exert the effect on -Al alloys.

【0010】1.Mn−Si化合物は溶融状態のCu合
金を凝固する過程で固溶体中に晶出するが、そのMn−
Si化合物が過共晶組成領域(初晶として存在する領
域)のとき耐摩耗性が改善される。
[0010] 1. The Mn-Si compound crystallizes in the solid solution during the process of solidifying the molten Cu alloy.
When the Si compound is in the hypereutectic composition region (region existing as a primary crystal), the wear resistance is improved.

【0011】2.Mn−Si化合物量の増加に伴って合
金の伸びが低下するので、前記過共晶組成領域が得られ
る添加量は極力少なくする。
2. Since the elongation of the alloy decreases with an increase in the amount of the Mn-Si compound, the amount of addition in which the hypereutectic composition region is obtained is minimized.

【0012】3.Mn−Si化合物はCu−Zn系合金
中では棒状に晶出(化合物構造:Mn5Si3の六方晶)
するが、合金の伸びの低下を防止するためには、塊状に
晶出させ、それを微細化する。
3. Crystallized Mn-Si compound is a rod in the Cu-Zn based alloy (Compound Structure: hexagonal Mn 5 Si 3)
However, in order to prevent a reduction in the elongation of the alloy, the alloy is crystallized in a lump and refined.

【0013】次に本発明の合金の組成とその量的範囲に
ついて説明する。
Next, the composition of the alloy of the present invention and its quantitative range will be described.

【0014】(1)Al Al量は合金の強度と関係が深く、7〜12%がよい。
7%未満では鋳造のままで機械部品としての目標強度が
40kgf/mm2を満足せず、125を超えるとγ2 相が析
出するため脆弱となり、機械用部品として実用に不向き
となる。特に7〜11%、最も7.0〜9.0%より7.
8〜8.5%が好ましい。
(1) Al The Al content is closely related to the strength of the alloy, and is preferably 7 to 12%.
If it is less than 7%, the target strength as a machine component does not satisfy 40 kgf / mm 2 as cast, and if it exceeds 125, a γ 2 phase is precipitated and becomes brittle, making it unsuitable for practical use as a machine component. Especially 7 to 11%, most 7.0 to 9.0% to 7.
8 to 8.5% is preferred.

【0015】(2)MnおよびSi MnとSiは合金組織中にMn−Si化合物として均一
に分散し、耐摩耗性向上のための必須元素である。特
に、Cu−Al固溶体中に晶出する化合物はX線マイク
ロアナライザによる分析結果から化学量論組成でMn5
Si3に近いものであることが判明した。この化合物は
重量比でMn:Si≒3.25:1である。耐摩耗性向
上には、Mn−Si化合物が初晶で晶出することが望ま
れるが、Cu−Al合金の場合必要なMn−Si化合物
量は2%以上であり、純Cu,Cu−Sn,Cu−Zn
合金の24%,10%,3%に比べて添加量は比較的小
量でよい。本発明においては、Mnは1.5〜5.5%,
Siは0.45〜2.7%でよい。特に、引張り強度と耐
摩耗性との両面からは、Mnは3.8〜5.4%より4.
3〜5.4%およびSiは1.0〜2.0%より1.3〜
1.6%が好ましい。耐摩耗性はMn−Si化合物の量
と共に向上するが、7.2% を超えると合金の伸びが目
標の5%を達成できなくなる。従って、Mnが5.5%
のとき、Siは1.7%以下でよい。しかし、Mn−S
i化合物(化学量論組成のMn5Si3)の形成に必要な量
より過剰のSi(固溶Si)を0.1% 以上1%以下含
むことは耐摩耗性および強度の向上に有利に作用する。
従って、本発明ではSiを最大2.7%まで含むことが
できる。
(2) Mn and Si Mn and Si are uniformly dispersed in the alloy structure as a Mn-Si compound and are essential elements for improving wear resistance. In particular, the compound crystallized in the Cu-Al solid solution has a stoichiometric composition of Mn 5
It turned out to be close to Si 3 . This compound has a weight ratio of Mn: Si ≒ 3.25: 1. In order to improve the wear resistance, it is desired that the Mn-Si compound be crystallized as primary crystals. In the case of a Cu-Al alloy, the required amount of the Mn-Si compound is 2% or more, and pure Cu, Cu-Sn , Cu-Zn
The amount of addition may be relatively small compared to 24%, 10% and 3% of the alloy. In the present invention, Mn is 1.5 to 5.5%,
Si may be 0.45 to 2.7%. In particular, from both aspects of tensile strength and wear resistance, Mn is 3.8 to 5.4% to 4.
3 to 5.4% and Si is 1.0 to 2.0% to 1.3 to
1.6% is preferred. The wear resistance improves with the amount of the Mn-Si compound, but if it exceeds 7.2%, the elongation of the alloy cannot reach the target of 5%. Therefore, Mn is 5.5%
In this case, Si may be 1.7% or less. However, Mn-S
Inclusion of 0.1% or more and 1% or less of Si (solid solution Si) in excess of the amount necessary for the formation of the i-compound (Mn 5 Si 3 of stoichiometric composition) is advantageous for improving wear resistance and strength. Works.
Therefore, the present invention can contain up to 2.7% of Si.

【0016】更に、MnとSiの組成比はMn−Si化
合物の形成および固溶Si量との関係から、Mn/Si
は1〜3.25 より2.0〜3.0が望ましい。特に、S
iの固溶量は伸び率を下げるので、全部がMn5Si3
作るとし、残ったSiが固溶するものとして計算で求め
られる値が1.0% 以下とする。特に、0.01 〜0.
6% が好ましく、より0.1〜0.6%が好ましく、最
も0.3〜0.5%が好ましい。
Further, the composition ratio of Mn to Si is determined by the relationship between the formation of a Mn-Si compound and the amount of solid solution Si, and the ratio of Mn / Si
Is preferably 2.0 to 3.0 from 1 to 3.25. In particular, S
Since the solid solution amount of i lowers the elongation percentage, it is assumed that the whole forms Mn 5 Si 3 , and the value obtained by calculation assuming that the remaining Si forms a solid solution is 1.0% or less. In particular, 0.01 to 0.1.
6% is preferable, 0.1 to 0.6% is more preferable, and 0.3 to 0.5% is most preferable.

【0017】(3)Pb Pbの添加は耐焼付き性および被切削性を向上させるも
のであり、特に、潤滑油のきれ易い状況下での耐摩耗性
の確保には有効である。添加量は1%以下で十分であ
り、それより多くなると合金の機械的強度の低下につな
がる。従って、0.2〜0.6%が好ましい。
(3) Pb The addition of Pb improves seizure resistance and machinability, and is particularly effective in ensuring wear resistance under conditions in which lubricating oil is easily removed. The addition amount of 1% or less is sufficient, and if it is more than 1%, the mechanical strength of the alloy is reduced. Therefore, 0.2 to 0.6% is preferable.

【0018】(4)Zn Znは溶解作業時において溶湯の脱ガス作用があり、ま
た、鋳造時の湯流れも改善する効果がある。更に、合金
の摺動下でのなじみ性を改善する効果もあるが、2%を
超えると摺動特性の低下を招く。従って、0.5〜1.5
%が好ましい。 (5)Cr,V,TiおよびZr Cr,V,TiおよびZrはSiと共存して化合物(ケ
イ化物)を形成する。これらの元素は強度を高める効果
があり、CrおよびVはMn−Si化合物を微細化する
作用がある。しかし、これらの量が合計で1%を超える
と靭性を低下させる。0.05〜0.5%が好ましい。
(4) Zn Zn has a degassing effect on the molten metal during the melting operation, and also has an effect of improving the molten metal flow during casting. Furthermore, there is an effect of improving the conformability of the alloy under sliding, but if it exceeds 2%, the sliding characteristics are reduced. Therefore, 0.5 to 1.5
% Is preferred. (5) Cr, V, Ti and Zr Cr, V, Ti and Zr coexist with Si to form a compound (silicide). These elements have the effect of increasing the strength, and Cr and V have the effect of making the Mn-Si compound finer. However, if the total amount exceeds 1%, the toughness is reduced. 0.05-0.5% is preferable.

【0019】(6)FeおよびNi FeおよびNiは不純物として0.5% 以下であれば許
容できる。特に、FeはMn−Si化合物に固溶して該
化合物を微細化する作用がある。しかし、前記許容量を
超えると融点の高いFe−Si化合物が生成し、鋳造性
が悪くなる。また、NiはMn−Si化合物の生成を抑
制する作用があるので少ないほうがよい。不純物として
も0.01〜0.1%が好ましい。
(6) Fe and Ni Fe and Ni are acceptable if they are 0.5% or less as impurities. In particular, Fe has the effect of forming a solid solution in the Mn-Si compound to refine the compound. However, when the amount exceeds the above-mentioned allowable amount, a Fe-Si compound having a high melting point is generated, and castability is deteriorated. Further, since Ni has an effect of suppressing the generation of the Mn-Si compound, it is preferable that Ni is small. As an impurity, 0.01 to 0.1% is preferable.

【0020】本発明のアルミニウム青銅合金は、一般の
アルミニウム青銅合金と同様に溶解鋳造法により製造さ
れる。しかし、大気溶解法では、酸素,水素等のガスを
溶湯中に巻き込むため、出湯前にスラグの除去並びにア
ルゴンガス,窒素ガス,Arガスまたは窒素ガスとフッ
化物との混合ガス(例えばN2 +NaFガス)による溶
湯の脱ガスのためのバブリングを行った後、鋳造する。
これらによって鍛造欠陥のない鋳造を得ることができ
る。鋳造は、金型,砂型等の鋳型で行う場合の他、連続
鋳造方式で棒,中空パイプ,板等の半加工品を得られ
る。
The aluminum bronze alloy of the present invention is produced by a melting casting method in the same manner as a general aluminum bronze alloy. However, in the atmospheric dissolution method, since gases such as oxygen and hydrogen are involved in the molten metal, slag is removed before tapping, and argon gas, nitrogen gas, Ar gas or a mixed gas of nitrogen gas and fluoride (for example, N 2 + NaF) is used. After performing bubbling for degassing the molten metal by gas, casting is performed.
As a result, a casting free from forging defects can be obtained. Casting can be performed using a mold such as a mold or a sand mold, or a semi-finished product such as a rod, a hollow pipe, or a plate can be obtained by a continuous casting method.

【0021】一方、鋳造後、鍛造加工、更には押出加工
を施すことは有意義であり、これらによって晶出したM
n−Si化合物粒子が微細化された半加工品が得られ
る。溶解鋳造合金のMn−Si化合物粒子の大きさは、
主として凝固完了温度以上の温度領域における冷却速度
に依存し、冷却速度が遅いほど粒子が大きくなり易い。
なお、本発明の合金は熱処理を施すことによって、引張
強さ400N/mm2 以上,伸び率10%以上,硬さHB
120以上、機械的強度,耐摩耗性等を向上させること
ができる。
On the other hand, it is significant to perform forging and further extruding after casting.
A semi-finished product in which the n-Si compound particles are miniaturized is obtained. The size of the Mn-Si compound particles of the molten cast alloy is
It mainly depends on the cooling rate in the temperature range equal to or higher than the solidification completion temperature, and the slower the cooling rate, the larger the particles tend to be.
The alloy of the present invention is subjected to heat treatment to have a tensile strength of 400 N / mm 2 or more, an elongation of 10% or more, and a hardness of H B
When it is 120 or more, the mechanical strength, abrasion resistance and the like can be improved.

【0022】[0022]

【実施例】(実施例1) 表1に本発明に係る合金の組成の一例を、また表2にそ
の機械的特性を示す。合金中、No.1〜3,5及び6が
比較例、No.4,7〜9が本発明に係る合金である。
EXAMPLES (Example 1) Table 1 shows an example of the composition of the alloy according to the present invention, and Table 2 shows its mechanical properties. Among the alloys, Nos. 1-3, 5, and 6 are comparative examples, and Nos. 4, 7-9 are alloys according to the present invention.

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【表2】 [Table 2]

【0025】溶解手順は、基本合金No.4を例にとる
と、まずCuを溶解後Mn,Siを添加し、最後にAl
を添加して均一溶湯にした。その後、脱スラグ,溶湯中
に窒素ガスを吹き込みバブリングによる脱ガスを行い、
あらかじめ形成した砂型に鋳込み凝固させた。鋳込み温
度は1150℃であり、溶解炉はエレマ炉,ルツボは黒
鉛を用いた。鋳塊の大きさは直径50mm×長さ200mm
で重量は約3kgである。本実施例の合金は、基本的には
Cu−Al合金にMn−Si化合物が均一分散したもの
である。これは、各種産業用機械の動力伝導機構及び摺
動機構部材に要求される靭性に対しても、伸び率で5%
以上と満足すべき値を示した。
The melting procedure is as follows. Taking the basic alloy No. 4 as an example, Cu is first melted, then Mn and Si are added, and finally, Al is melted.
Was added to make a homogeneous molten metal. Then, nitrogen gas is blown into the slag and the molten metal to perform degassing by bubbling.
It was cast into a previously formed sand mold and solidified. The casting temperature was 1150 ° C., the melting furnace was an Elema furnace, and the crucible was graphite. The size of the ingot is 50mm in diameter x 200mm in length
And weighs about 3 kg. The alloy of this embodiment is basically an alloy in which a Mn-Si compound is uniformly dispersed in a Cu-Al alloy. This is an elongation of 5% for the toughness required for power transmission mechanisms and sliding mechanism members of various industrial machines.
The above values were satisfactory.

【0026】表2より、固溶Si量と引張強さの関係を
見ると、固溶Si量が0.1% 未満のNo.1〜3,5及
び6は低い強度を有し、本発明に係る固溶Si量が0.
1%以上のものは高い引張強さを有していることが明ら
かである。
Looking at the relationship between the amount of dissolved Si and the tensile strength from Table 2, Nos. 1-3, 5, and 6 having less than 0.1% of dissolved Si have low strengths, and the present invention has a low strength. The amount of dissolved Si according to
It is clear that those with 1% or more have high tensile strength.

【0027】図1に本実施例の合金のうち、Mn/Si
比を1.96〜3.10の範囲で変えるとともに、Mn5
Si3として計算し、固溶Si量を約0.2% として、
Cu−9%Alに添加し、Mn−Si化合物を晶出分散
した鋳物のMn量と伸び率との関係を示す。
FIG. 1 shows the Mn / Si alloy of the present embodiment.
While changing the ratio in the range of 1.96 to 3.10, Mn 5
Calculated as Si 3 and assuming the amount of solid solution Si to be about 0.2%
The relationship between the Mn content and the elongation of a casting in which a Mn-Si compound is crystallized and dispersed by adding to Cu-9% Al is shown.

【0028】図1から明らかなようにMn量の増加に伴
い伸びは減少する。特に、Mn量が5.5% を超えると
伸び率5%を満足しなくなるので、動力伝導及び摺動機
構部材への適用は素材の特性をよく見て選定する必要が
ある。
As is apparent from FIG. 1, the elongation decreases as the Mn content increases. In particular, if the Mn content exceeds 5.5%, the elongation percentage is not satisfied with 5%. Therefore, it is necessary to select the power transmission and the application to the sliding mechanism members by carefully observing the characteristics of the material.

【0029】本実施例の合金の代表的な顕微鏡組織を観
察の結果、白地部分がα相,黒地部分がβ相の2相素地
に塊状のMn−Si化合物が均一分散しており、該Mn
−Si化合物の粒子の大きさは20〜30μmのものが
多く観察された。
As a result of observing a typical microstructure of the alloy of the present embodiment, a massive Mn-Si compound was uniformly dispersed in a two-phase base material having an α phase on a white background and a β phase on a black background.
Many particles of the -Si compound having a size of 20 to 30 m were observed.

【0030】なお、該組織に及ぼす添加元素の影響は、
Znの場合、Alと同様にβ相が増加し、Cr,V,T
i,Zrの場合、Mn−Si化合物が微細化する傾向を
示す。Pbの場合は、組織的に変化はなく、素地に固溶
しないため数μm以下の大きさで点存する形となる。
The effect of the added element on the structure is as follows.
In the case of Zn, the β phase increases like Al, and Cr, V, T
In the case of i and Zr, the Mn-Si compound tends to be fine. In the case of Pb, there is no change in the structure, and it does not form a solid solution in the substrate, so that it is dotted in a size of several μm or less.

【0031】本実施例で得られた鋳塊から30mm×30
mm×5mmの板状試料を採取し、無潤滑下で合金の耐焼付
き性を評価した。評価方法は板状試料に軸受鋼球(SU
J−2,直径10mm)を押付け、速度8mm/sで往復運
動の摩擦試験を行い、摩擦係数が急激に上昇(目安:摩
擦係数が0.5 以上)する荷重および摺動回数で耐焼付
き性を評価した。ここで、往復動は40mm/1ストロー
クであり、荷重100kgで200回摺動後も摩擦係数に
変化が見られない場合は、荷重を200g,300gと
順次上げて測定した。
From the ingot obtained in this example, 30 mm × 30
A plate sample of mm × 5 mm was collected, and the seizure resistance of the alloy was evaluated without lubrication. The evaluation method used a bearing steel ball (SU
J-2, diameter 10 mm), perform a reciprocating friction test at a speed of 8 mm / s. Was evaluated. Here, the reciprocation was 40 mm / 1 stroke, and when no change was observed in the friction coefficient even after sliding 200 times with a load of 100 kg, the load was sequentially increased to 200 g and 300 g for measurement.

【0032】図2に合金の耐焼付き性の評価結果を示
す。一般のアルミニウム青銅合金No.1(JIS AL
BC2)およびCu−Zn系合金にMn−Si化合物を
分散した耐摩耗性高力黄銅合金No.2は、荷重100kg
の摩擦初期で焼付きが生じた。これらの比較に対して、
本実施例の合金No.4〜No.7は優れた耐焼付き性を示
している。
FIG. 2 shows the evaluation results of the seizure resistance of the alloy. General aluminum bronze alloy No.1 (JIS AL
BC2) and a wear-resistant high-strength brass alloy No. 2 in which a Mn-Si compound is dispersed in a Cu-Zn-based alloy have a load of 100 kg.
Occurred in the initial stage of friction. For these comparisons,
The alloys No. 4 to No. 7 of this embodiment show excellent seizure resistance.

【0033】図3に油中での合金の耐摩耗性を示す。こ
の測定には直径10mm×長さ25mmの円柱状固定試片を
銅合金で作成し、これを120mm×15mm×10mmの炭
素鋼(JIS S45C)からなる可動片上に押圧し、
タービン潤滑油中で往復摺動させて、摩擦距離に対する
該合金の摩耗量を測定した。面圧は500kgf/cm2,摺
動速度は0.2m/sとした。
FIG. 3 shows the wear resistance of the alloy in oil. For this measurement, a cylindrical fixed specimen having a diameter of 10 mm and a length of 25 mm was prepared from a copper alloy, and this was pressed onto a movable piece made of 120 mm x 15 mm x 10 mm carbon steel (JIS S45C).
The alloy was slid reciprocally in turbine lubricating oil, and the wear amount of the alloy with respect to the friction distance was measured. The surface pressure was 500 kgf / cm 2 and the sliding speed was 0.2 m / s.

【0034】Mn−Si化合物を分散した本発明に係る
アルミニウム青銅合金(No.4,No.8)の耐摩耗性
は、一般的なアルミニウム青銅合金(No.1)および耐
摩耗性高力黄銅合金(No.2)をはるかに上回るもので
あった。摺動部材としては、摺動相手材の摩耗が軽減で
きても長寿命につながる。比較例である合計No.1の相
手材の摩耗量は、摩擦距離5kmで10mgであったのに対
して、本実施例のNo.4では上記No.1の約1/2,N
o.8では約1/5と格段に低減できることも分かった。
The abrasion resistance of the aluminum bronze alloy (No. 4, No. 8) according to the present invention in which the Mn-Si compound is dispersed is determined by the general aluminum bronze alloy (No. 1) and the wear-resistant high-strength brass. It far exceeded the alloy (No. 2). As a sliding member, even if the abrasion of the sliding partner material can be reduced, it leads to a long life. The wear amount of the mating material having a total No. 1 of the comparative example was 10 mg at a friction distance of 5 km, whereas the wear amount of No. 4 of the present embodiment was about 2 , of the above No. 1 and N
In the case of o.8, it was also found that the reduction was remarkably reduced to about 1/5.

【0035】図4は製鉄機械の圧延機用スリッパメタル
に前述の本発明に係る合金No.8を用いた組立図であ
る。図5及び図6はスリッパメタルの正面図及び平面図
である。尚、圧延機ワークロール用ガイドメタルも同様
に製作し、従来材の高力黄銅や青銅と比較したが、交換
頻度は従来の1/2以下であった。特に、冷却水が摺動
環境下に存在するところでは摩耗が少ない部品として有
効であった。
FIG. 4 is an assembly diagram in which the aforementioned alloy No. 8 according to the present invention is used as a slipper metal for a rolling mill of an iron making machine. 5 and 6 are a front view and a plan view of the slipper metal. A guide metal for a work roll of a rolling mill was manufactured in the same manner, and compared with conventional high-strength brass or bronze, the frequency of replacement was 1/2 or less of the conventional frequency. In particular, where cooling water exists in a sliding environment, it was effective as a component with little wear.

【0036】[0036]

【発明の効果】本発明のアルミニウム青銅合金からなる
圧延機用スリッパメタルは、従来のアルミニウム青銅,
Cu−Zn系合金にMn−Si化合物を分散した耐摩耗
性銅合金を用いたものに比べ、伸び率が5%以上で優れ
た高耐摩耗性を有する。従って、圧延機用スリッパメタ
ルの寿命を顕著に向上させることができる。
The slipper metal for a rolling mill comprising the aluminum bronze alloy of the present invention is a conventional aluminum bronze,
Compared to a wear-resistant copper alloy in which a Mn-Si compound is dispersed in a Cu-Zn-based alloy, the alloy has an excellent elongation rate of 5% or more and high wear resistance. Therefore, the life of the slipper metal for a rolling mill can be significantly improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るアルミニウム青銅合金のMn量と
機械的伸び率との関係を示すグラフ。
FIG. 1 is a graph showing the relationship between the Mn content and the mechanical elongation of the aluminum bronze alloy according to the present invention.

【図2】無潤滑下での摺動試験による耐焼付き性を示す
棒グラフ。
FIG. 2 is a bar graph showing seizure resistance in a sliding test under no lubrication.

【図3】油中での耐摩耗性試験による摩擦距離と摩耗量
との関係を示すグラフ。
FIG. 3 is a graph showing a relationship between a friction distance and a wear amount in a wear resistance test in oil.

【図4】圧延機のモータとロールとを結合する結合状態
を示す斜視図。
FIG. 4 is a perspective view showing a combined state in which a motor and a roll of a rolling mill are combined.

【図5】スリッパメタルの正面図。FIG. 5 is a front view of the slipper metal.

【図6】スリッパメタルの平面図。FIG. 6 is a plan view of the slipper metal.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 海沼 正▲吉▼ 茨城県勝田市堀口832番地の2 株式会 社 日立製作所 素形材事業部内 (72)発明者 坂倉 勝 茨城県勝田市堀口832番地の2 株式会 社 日立製作所 素形材事業部内 (72)発明者 諏訪 正輝 東京都千代田区神田駿河台四丁目6番地 株式会社 日立製作所内 (72)発明者 近崎 充夫 茨城県日立市大みか町七丁目1番1号 株式会社 日立製作所 日立研究所内 (56)参考文献 特開 昭51−47518(JP,A) 特開 昭51−71819(JP,A) 特開 平2−50928(JP,A) 特公 昭53−47209(JP,B2) (58)調査した分野(Int.Cl.6,DB名) C22C 9/00 - 9/10 B21B 35/14 C22C 1/00 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Tadashi Kainuma ▲ 2, 832 Horiguchi, Katsuta-shi, Ibaraki Pref. Hitachi, Ltd. Inside the Shaped Materials Division (72) Inventor Masaru Sakakura 832-Horiguchi, Katsuta-shi, Ibaraki (2) Inventor Masaki Suwa 4-6-6 Kanda Surugadai, Chiyoda-ku, Tokyo Inside Hitachi, Ltd. (72) Inventor Mitsuo Chizaki 7-omikamachi, Hitachi City, Ibaraki Prefecture No. 1 Hitachi, Ltd. Hitachi Research Laboratory (56) References JP-A-51-47518 (JP, A) JP-A-51-71819 (JP, A) JP-A-2-50928 (JP, A) No. 53-47209 (JP, B2) (58) Fields investigated (Int. Cl. 6 , DB name) C22C 9/00-9/10 B21B 35/14 C22C 1/00

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量でAl:7〜12%,Mn:1.5〜
5.5%,Si:0.45〜2.7%、および残部が実質
的にCuよりなり、MnとSiとの金属間化合物が分散
し、固溶Si量が0.1〜1% である鋳造合金よりなる
ことを特徴とする圧延機用スリッパメタル。
(1) Al: 7 to 12% by weight, Mn: 1.5 to 5% by weight
5.5%, Si: 0.45 to 2.7%, and the balance substantially consisting of Cu, the intermetallic compound of Mn and Si is dispersed, and the amount of solid solution Si is 0.1 to 1%. A slipper metal for a rolling mill, comprising a certain casting alloy.
【請求項2】重量でAl:7〜12%,Mn:3.8〜
5.4%,Si:0.45〜2.7%、および残部が実質
的にCuよりなり、MnとSiとの金属間化合物が分散
し、固溶Si量が0.1〜1% である鋳造合金よりなる
ことを特徴とする圧延機用スリッパメタル。
2. Al: 7-12% by weight, Mn: 3.8-% by weight.
5.4%, Si: 0.45 to 2.7%, and the balance substantially consisting of Cu, in which the intermetallic compound of Mn and Si is dispersed and the amount of solid solution Si is 0.1 to 1%. A slipper metal for a rolling mill, comprising a certain casting alloy.
【請求項3】重量でAl:7〜12%,Mn:1.5〜
5.5%,Si:0.45〜2.7%、および残部が実質
的にCuよりなり、Mn/Si比が1〜3.25であ
り、MnとSiとの金属間化合物が分散し、固溶Si量
が0.1〜1% である鋳造合金よりなることを特徴とす
る圧延機用スリッパメタル。
3. Al: 7 to 12% by weight, Mn: 1.5 to 5 by weight
5.5%, Si: 0.45 to 2.7%, and the balance substantially consisting of Cu, the Mn / Si ratio is 1 to 3.25, and the intermetallic compound of Mn and Si is dispersed. A slipper metal for a rolling mill, comprising a cast alloy having a solid solution Si content of 0.1 to 1%.
【請求項4】重量でAl:7〜12%,Mn:1.5〜
5.5%,Si:0.45〜2.7%,Zn:2%以下,
Pb:1%以下と、Cr,V,Ti,Zrの一種以上を
合計で1%以下および残部が実質的にCuよりなり、M
n/Si比が1〜3.25 であり、MnとSiとの金属
間化合物が分散し、固溶Si量が0.1〜1% である鋳
造合金よりなることを特徴とする圧延機用スリッパメタ
ル。
4. Al: 7 to 12% by weight, Mn: 1.5 to 5 by weight
5.5%, Si: 0.45 to 2.7%, Zn: 2% or less,
Pb: 1% or less, one or more of Cr, V, Ti, Zr in total of 1% or less, and the balance substantially consisting of Cu;
a cast alloy having an n / Si ratio of 1 to 3.25, an intermetallic compound of Mn and Si dispersed therein, and a solid solution Si content of 0.1 to 1%. Slipper metal.
【請求項5】重量でAl:7〜12%,Mn:3.8〜
5.4%,Si:0.45〜2.7%,Zn:2%以下,
Pb:1%以下、Cr,V,Ti,Zrの一種以上を合
計で1%以下および残部が実質的にCuよりなり、Mn
/Si比が1〜3.25 であり、MnとSiとの金属間
化合物が分散し、固溶Si量が0.1〜1% である鋳造
合金よりなることを特徴とする圧延機用スリッパメタ
ル。
5. Al: 7-12% by weight, Mn: 3.8-by weight
5.4%, Si: 0.45 to 2.7%, Zn: 2% or less,
Pb: 1% or less, one or more of Cr, V, Ti, Zr in total of 1% or less, and the balance substantially consisting of Cu;
Characterized by a cast alloy having an / Si ratio of 1 to 3.25, an intermetallic compound of Mn and Si dispersed therein, and a solid solution Si content of 0.1 to 1%. metal.
JP5877093A 1993-03-18 1993-03-18 Slipper metal for rolling mill Expired - Fee Related JP2891025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5877093A JP2891025B2 (en) 1993-03-18 1993-03-18 Slipper metal for rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5877093A JP2891025B2 (en) 1993-03-18 1993-03-18 Slipper metal for rolling mill

Publications (2)

Publication Number Publication Date
JPH06271960A JPH06271960A (en) 1994-09-27
JP2891025B2 true JP2891025B2 (en) 1999-05-17

Family

ID=13093790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5877093A Expired - Fee Related JP2891025B2 (en) 1993-03-18 1993-03-18 Slipper metal for rolling mill

Country Status (1)

Country Link
JP (1) JP2891025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6839468B1 (en) * 2020-09-30 2021-03-10 三協オイルレス工業株式会社 Manganese aluminum bronze cast alloy

Also Published As

Publication number Publication date
JPH06271960A (en) 1994-09-27

Similar Documents

Publication Publication Date Title
JP2738999B2 (en) High wear-resistant aluminum bronze casting alloy, sliding member using the alloy
CN111032897A (en) Method of forming cast aluminum alloy
CN104894430B (en) Wear-resistant easy-to-cut brass pipe material and method of using same to manufacture brass pipe
JPH09316570A (en) End bearing for one-way clutch and other sliding part
WO2020261636A1 (en) Free-cutting copper alloy casting, and method for producing free-cutting copper alloy casting
JP2506115B2 (en) High-strength, wear-resistant aluminum alloy with good shear cutability and its manufacturing method
JP4806823B2 (en) Bronze alloy and manufacturing method thereof, sliding member using bronze alloy
US5494540A (en) Abrasion-resistant aluminum alloy and method of preparing the same
CN102899525A (en) High strength and toughness wear-resisting complex brass and production method thereof
US5845560A (en) Swash-plate type compressor with an abrasion resistant projecting portion on the cylinder block
US5512242A (en) Tin-base white metal bearing alloy excellent in heat resistance and fatigue resistance
JPS6263637A (en) Aluminum bearing alloy
US5000915A (en) Wear-resistant copper alloy
JPH07107183B2 (en) Wear resistant Cu alloy with high strength and toughness
JP3279109B2 (en) Copper alloy synchronizer ring with excellent wear resistance
JP2891025B2 (en) Slipper metal for rolling mill
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JP3769646B2 (en) Processing method of Al-Zn-Si alloy
JP2905241B2 (en) Manufacturing method of bearing material with excellent rolling fatigue life
US5069874A (en) Method for reducing high-load, low-speed wear resistance in sliding members
JP2003293068A (en) FREE-MACHINABLE HYPER-EUTECTIC Al-Si ALLOY
JPS6086237A (en) Cu-alloy for slide member
JPH07116537B2 (en) Wear resistant Cu alloy with high strength and toughness
JPH0832937B2 (en) Wear resistant Cu alloy with high strength and toughness
JPH0913133A (en) Aluminum bronze and sliding member using the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20080226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090226

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20100226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20110226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120226

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20120226

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees