JP2883688B2 - Solid oxide fuel cell - Google Patents
Solid oxide fuel cellInfo
- Publication number
- JP2883688B2 JP2883688B2 JP2156141A JP15614190A JP2883688B2 JP 2883688 B2 JP2883688 B2 JP 2883688B2 JP 2156141 A JP2156141 A JP 2156141A JP 15614190 A JP15614190 A JP 15614190A JP 2883688 B2 JP2883688 B2 JP 2883688B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- substrate
- oxide
- fuel cell
- cell substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Inert Electrodes (AREA)
- Fuel Cell (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 この発明は固体電解質型燃料電池のセル構成に係り、
特に基板の破損がなく信頼性に優れる平板型の固体電解
質型燃料電池に関する。The present invention relates to a cell configuration of a solid oxide fuel cell,
In particular, the present invention relates to a flat solid electrolyte fuel cell having excellent reliability without breakage of a substrate.
ジルコニア等の酸化物固体電解質型燃料電池を用いる
燃料電池はその作動温度が800〜1100℃と高温であるた
め、発電効率が高い上に触媒が不要であり、また電解質
が固体であるため取扱いが容易であるなどの特長を有
し、第三世代の燃料電池として期待されている。Fuel cells that use oxide solid oxide fuel cells such as zirconia have a high operating temperature of 800 to 1100 ° C, so they have a high power generation efficiency and do not require a catalyst. It has features such as simplicity and is expected as a third generation fuel cell.
しかしながら固体電解質型燃料電池は、セラミックが
主要な構造材料であるために、熱的に破損しやすく、ま
たガスの適切なシール方法がないため実現が困難であっ
た。そのため燃料電池として特殊な形状である円筒型の
ものが考え出され、上記2つの問題を解決し、電池の運
転試験に成功しているが、電池単位体積あたりの発電密
度が低く経済的に有利なものが得られる見通しはまだな
い。発電密度を高めるには平板型にすることが必要であ
る。平板型の電池には例えば、第1図,第2図に示す構
造のものが知られている。第1図,第2図はそれぞれ従
来の固体電解質型燃料電池の横切断面図,縦切断面図で
ある。ランタンマンガナイト系またはランタンコバルタ
イト系酸化物で多孔質のセパレート基板15にランタンク
ロマイト系酸化物で緻密質のインタコネクタ2が積層さ
れている。またニッケル−ジルコニアサーメットからな
る単セル基板11に単セルが積層されている。単セルは図
示しないがジルコニア固体電解質層と、その両主面に配
されたアノードとカソードから構成されている。アノー
ドはニッケル−ジルコニアサーメットであり、カソード
はランタンマンガナイトからなる。上記セパレート基板
15と単セル基板11とは交互に重合される。上記セパレー
ト基板15と単セル基板11はリブである案内羽3を有し、
反応ガスをチャンネル7を介してセルの中央部から周辺
部へと導き、排出口8より排出する。セルの中央部には
燃料ガス導入管4と酸化剤ガス導入管5があり、導入孔
6を介して反応ガスをチャンネル7に供給する。However, a solid oxide fuel cell has been difficult to be thermally broken because ceramic is a main structural material, and is difficult to realize because there is no appropriate gas sealing method. For this reason, a cylindrical fuel cell with a special shape has been devised as a fuel cell, and the above two problems have been solved. The operation test of the cell has been successful, but the power generation density per unit volume of the cell is low and it is economically advantageous. There is no prospect of obtaining something like that yet. To increase the power generation density, it is necessary to use a flat plate type. For example, a flat type battery having a structure shown in FIGS. 1 and 2 is known. 1 and 2 are a horizontal sectional view and a vertical sectional view of a conventional solid oxide fuel cell, respectively. A dense interconnector 2 made of a lanthanum chromite oxide is laminated on a porous separate substrate 15 made of a lanthanum manganite or lanthanum cobaltite oxide. Single cells are stacked on a single cell substrate 11 made of nickel-zirconia cermet. Although not shown, the single cell is composed of a zirconia solid electrolyte layer, and an anode and a cathode disposed on both main surfaces thereof. The anode is a nickel-zirconia cermet and the cathode is made of lanthanum manganite. The above separate substrate
15 and the single cell substrate 11 are polymerized alternately. The separate substrate 15 and the single cell substrate 11 have the guide wings 3 as ribs,
The reaction gas is guided from the central part of the cell to the peripheral part through the channel 7 and discharged from the outlet 8. A fuel gas introduction pipe 4 and an oxidizing gas introduction pipe 5 are provided at the center of the cell, and supply a reaction gas to a channel 7 through an introduction hole 6.
単セル基板11は酸化ニッケルとジルコニアの各粉体を
所定の割合で混合したのちプレス成型し、温度1400〜16
00℃で焼成して製造される。得られた単セル基板に固体
電解質層(図示せず)が直流減圧プラズマ溶射法により
形成される。続いてランタンストロンチウムマンガナイ
トLa0.9Sr0.1MnO3と溶剤からなるペーストが固体電解質
層の上に刷毛塗りされ乾燥後1200℃で焼成されカソード
(図示せず)が形成される。単セル基板11は使用に際し
て燃料ガスにより酸化ニッケルが還元され、ニッケル−
ジルコニアサーメットが形成される。生成したニッケル
が触媒として機能しアノードとしても働くようになる。The single-cell substrate 11 is prepared by mixing nickel oxide and zirconia powder at a predetermined ratio, and then press-molding the mixture.
It is manufactured by firing at 00 ° C. A solid electrolyte layer (not shown) is formed on the obtained single-cell substrate by a DC low-pressure plasma spray method. Subsequently, a paste composed of lanthanum strontium manganite La 0.9 Sr 0.1 MnO 3 and a solvent is brush-coated on the solid electrolyte layer, dried and fired at 1200 ° C. to form a cathode (not shown). When the single cell substrate 11 is used, nickel oxide is reduced by the fuel gas and nickel
A zirconia cermet is formed. The generated nickel functions as a catalyst and also functions as an anode.
しかしながら上述のような従来の燃料電池において
は、酸化ニッケルがニッケルに還元されるときに単セル
基板は大きな体積変化を受けるために、基板が変形した
り、割れるといった問題があった。またセルの運転中も
セル周辺からの空気浸入により周辺部で酸化還元の繰り
返しが起こり、単セル基板が破損しやすいといった問題
があった。However, in the conventional fuel cell as described above, the single cell substrate undergoes a large volume change when nickel oxide is reduced to nickel, and thus has a problem that the substrate is deformed or cracked. In addition, even during the operation of the cell, there is a problem that the oxidation and reduction occur repeatedly in the peripheral portion due to the intrusion of air from around the cell, and the single-cell substrate is easily damaged.
この発明は上述の点に鑑みてなされ、その目的は基板
の材料を改良することにより、セルの破損のない信頼性
にすぐれる固体電解質型燃料電池を提供することにあ
る。The present invention has been made in view of the above points, and an object of the present invention is to provide a solid electrolyte fuel cell having excellent reliability without cell breakage by improving the material of the substrate.
上述の目的は、多孔質の単セル基板上に少なくとも固
体電解質層とアノードとが順に形成されてなる単セルと
インタコネクタとを交互に積層し、かつ、前記多孔質単
セル基板側に酸化剤ガスを、前記アノード側に燃料ガス
を通流するものとすることにより達成される。The above-described object is to alternately laminate single cells and interconnectors in which at least a solid electrolyte layer and an anode are sequentially formed on a porous single cell substrate, and to provide an oxidizing agent on the porous single cell substrate side. This is achieved by passing a fuel gas through the anode side.
また、前記単セル基板にはランタンクロマイト系酸化
物、ランタンマンガナイト系酸化物、ランタンコバルタ
イト系酸化物材料等を用いることが出来る。単セル基板
材料としてランタンクロマイト系酸化物を用いた場合に
は、単セル基板上にカソード、固体電解質層およびアノ
ードを順に形成し、単セル基板材料としてランタンマン
ガナイト系酸化物もしくはランタンコバルタイト系酸化
物材料を用いた場合には、単セル基板がカソードを兼ね
ることが可能なので、単セル基板上に少なくとも固体電
解質層およびアノードを形成するものとする。Further, a lanthanum chromite-based oxide, a lanthanum manganite-based oxide, a lanthanum cobaltite-based oxide material, or the like can be used for the single cell substrate. When a lanthanum chromite-based oxide is used as a single-cell substrate material, a cathode, a solid electrolyte layer, and an anode are sequentially formed on a single-cell substrate, and a lanthanum-manganite-based oxide or a lanthanum cobaltite-based oxide is formed as a single-cell substrate material. When an oxide material is used, a single cell substrate can also serve as a cathode, and thus at least a solid electrolyte layer and an anode are formed on the single cell substrate.
従来はアノード側に単セル基板上が形成され、ニッケ
ル−ジルコニアサーメットからなる単セル基板に燃料ガ
スを通流する構成であったため、数mmと厚さの大きい単
セル基板が燃料ガスにより還元されることに起因して、
単セル基板が大きな体積変化を生じていたが、上記本発
明のごとく、単セル基板をカソード側として単セル基板
側に酸化剤ガスを通流する構成とすることにより、単セ
ル基板が還元されて体積変化を生じることがなくなり、
一方、アノードはわずか数十μmであるので、還元によ
り体積変化を生じてもわずかであり燃料電池の運転に支
障を生じることがない。Conventionally, a single-cell substrate was formed on the anode side, and the fuel gas flowed through the single-cell substrate made of nickel-zirconia cermet, so that the single-cell substrate having a thickness of several mm was reduced by the fuel gas. Due to
Although the single-cell substrate caused a large volume change, the single-cell substrate was reduced by using the single-cell substrate as the cathode side and flowing the oxidant gas to the single-cell substrate side as in the present invention. Will not cause a volume change,
On the other hand, since the size of the anode is only several tens of μm, even if the volume is changed by reduction, the change is slight and does not hinder the operation of the fuel cell.
次にこの発明の実施例を図面に基いて説明する。第1
図,第2図はそれぞれこの発明の実施例に係る固体電解
質型燃料電池の横切断面図、縦切断面図である。従来の
電池と構造は同一であるが、単セル基板とセパレート基
板の材料のみが異なる。セパレート基板15Aは酸化ラン
タンLa2O3,酸化カルシウムCaO,酸化クロムCr2O3の各粉
体を所定割合で混合し1300℃で反応させてランタンカル
シウムクロマイトLa0.8Ca0.2CrO3を生成させ、粉砕,造
粒後プレス成型し、酸化ふん囲気中1200℃において1〜
4mm厚さでかつ多孔質に焼成して調製される。次にLa0.8
Ca0.2CrO3を造粒したのち、直流減圧プラズマ溶射法で
緻密で1〜70μm厚のインタコネクタ2をセパレート基
板15Aの上に形成させる。単セル基板11Aは酸化ランタン
(La2O3)と酸化ストロンチウム(SrO)と二酸化マンガ
ン(MnO2)の各粉体を所定の割合で混合し1200℃の温度
で焼成して相互に反応させLa0.9Sr0.1MnO3を生成させ
る。得られたLa0.9Sr0.1MnO3を粉砕し、造粒したのちプ
レス成型し、酸化ふん囲気中1250℃で焼成して調製され
る。単セル基板11Aの上に8%イットリアで安定化され
たジルコニアが直流減圧法でプラズマ溶射され固体電解
質層(図示せず)が形成される。続いて酸化ニッケル−
ジルコニア粉体と溶剤からなるペーストが固体電解質層
の上に刷毛塗りされ乾燥後1200℃で焼成されアノード
(図示せず)が形成される。Next, an embodiment of the present invention will be described with reference to the drawings. First
FIG. 2 is a horizontal sectional view and a vertical sectional view of a solid oxide fuel cell according to an embodiment of the present invention. Although the structure is the same as that of the conventional battery, only the materials of the single cell substrate and the separate substrate are different. Separate substrate 15A is formed by mixing lanthanum oxide La 2 O 3 , calcium oxide CaO, and chromium oxide Cr 2 O 3 powder at a predetermined ratio and reacting at 1300 ° C. to form lanthanum calcium chromite La 0.8 Ca 0.2 CrO 3 , After pulverization and granulation, press molding is performed.
It is prepared by baking 4 mm thick and porous. Then La 0.8
After granulation of Ca 0.2 CrO 3 , a dense interconnector 2 having a thickness of 1 to 70 μm is formed on the separate substrate 15A by a DC reduced pressure plasma spraying method. The single cell substrate 11A is prepared by mixing lanthanum oxide (La 2 O 3 ), strontium oxide (SrO), and manganese dioxide (MnO 2 ) powder at a predetermined ratio, firing at 1200 ° C., and reacting with each other. Generates 0.9 Sr 0.1 MnO 3 . The obtained La 0.9 Sr 0.1 MnO 3 is prepared by pulverizing, granulating, pressing, and firing at 1250 ° C. in an oxidized atmosphere. Zirconia stabilized with 8% yttria is plasma-sprayed on the single-cell substrate 11A by a DC decompression method to form a solid electrolyte layer (not shown). Subsequently, nickel oxide
A paste composed of zirconia powder and a solvent is brush-coated on the solid electrolyte layer, dried and fired at 1200 ° C. to form an anode (not shown).
セパレート基板15Aは緻密に焼成することが困難であ
るので多孔質に形成され、緻密質のインタコネクタによ
って酸化剤ガスと燃料ガスの分離が行われる。Since it is difficult to fire the separate substrate 15A densely, it is formed porous, and the oxidizing gas and the fuel gas are separated by the dense interconnector.
本発明のごとく、多孔質の単セル基板上に少なくとも
固体電解質層とアノードとが順に形成されてなる単セル
とインタコネクタとを交互に積層し、かつ、前記多孔質
単セル基板側に酸化剤ガスを前記アノード側に燃料ガス
を通流するものとすることにより、厚さの大きい単セル
基板が還元されることに起因する大きな体積変化の発生
が回避されることとなり、割れがなく信頼性に優れる固
体電解質型燃料電池が得られる。As in the present invention, a single cell and an interconnector each having at least a solid electrolyte layer and an anode sequentially formed on a porous single cell substrate are alternately laminated, and an oxidizing agent is provided on the porous single cell substrate side. By allowing the gas to flow through the fuel gas to the anode side, a large volume change due to reduction of the single-cell substrate having a large thickness can be avoided, and the reliability can be improved without cracking. Thus, a solid oxide fuel cell having excellent performance can be obtained.
第1図は固体電解質型燃料電池の横切断面図、第2図は
固体電解質型燃料電池の縦切断面図である。 1:単セル、2:インタコネクタ、11,11A:単セル基板、15,
15A:セパレート基板。FIG. 1 is a horizontal sectional view of a solid oxide fuel cell, and FIG. 2 is a vertical sectional view of a solid oxide fuel cell. 1: Single cell, 2: Interconnector, 11, 11A: Single cell board, 15,
15A: Separate substrate.
Claims (2)
荷質層とアノードとが順に形成されてなる単セルとイン
タコネクタとが交互に積層され、かつ、前記多孔質単セ
ル基板側に酸化剤ガスを、前記アノード側に燃料ガスを
通流することを特徴とする支持膜型固体電解質型燃料電
池。1. A single cell comprising a porous single cell substrate and at least a solid charge layer and an anode formed in this order, and interconnectors are alternately laminated, and an oxidized film is formed on the porous single cell substrate side. A support membrane solid electrolyte fuel cell, wherein a fuel gas is passed through the anode gas to the anode side.
系酸化物またはランタンマンガナイト系酸化物からなる
ことを特徴とする請求項1に記載の支持膜型固体電解質
型燃料電池。2. The solid oxide fuel cell according to claim 1, wherein the single cell substrate is made of a lanthanum cobaltite-based oxide or a lanthanum manganite-based oxide.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2156141A JP2883688B2 (en) | 1990-06-14 | 1990-06-14 | Solid oxide fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2156141A JP2883688B2 (en) | 1990-06-14 | 1990-06-14 | Solid oxide fuel cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0448554A JPH0448554A (en) | 1992-02-18 |
JP2883688B2 true JP2883688B2 (en) | 1999-04-19 |
Family
ID=15621223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2156141A Expired - Fee Related JP2883688B2 (en) | 1990-06-14 | 1990-06-14 | Solid oxide fuel cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2883688B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63134764A (en) * | 1986-11-25 | 1988-06-07 | フクビ化学工業株式会社 | Hot air blow-off type snow melting apparatus |
US4770955A (en) * | 1987-04-28 | 1988-09-13 | The Standard Oil Company | Solid electrolyte fuel cell and assembly |
JPH02111632A (en) * | 1988-10-18 | 1990-04-24 | Agency Of Ind Science & Technol | Calcium doped lanthanum chromite and solid-electrolyte type fuel cell |
-
1990
- 1990-06-14 JP JP2156141A patent/JP2883688B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0448554A (en) | 1992-02-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009507356A (en) | Ceramic membrane with integral seal and support, and electrochemical cell and electrochemical cell stack structure including the same | |
JP2005514748A (en) | SOFCPEN | |
JPH04237962A (en) | Flat type solid electrolyte fuel cell | |
US12119526B2 (en) | Metal support for electrochemical element, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, solid oxide electrolytic cell, and method for manufacturing metal support | |
JPH0737595A (en) | Solid electrolyte type fuel cell | |
JPH10172590A (en) | Solid electrolyte type fuel cell | |
JP2004039573A (en) | Sealing material for low-temperature operation solid oxide fuel cell | |
JP2883688B2 (en) | Solid oxide fuel cell | |
KR20240024311A (en) | Substrate with electrode layer for metal support type electrochemical element, electrochemical element, electrochemical module, solid oxide fuel cell, and manufacturing method | |
JPH0355764A (en) | Solid electrolytic type fuel cell | |
JP3244310B2 (en) | Solid oxide fuel cell | |
WO2019189918A1 (en) | Metal plate, electrochemical element, electrochemical module, electrochemical device, energy system, solid oxide fuel cell, and method for manufacturing metal plate | |
JPH0479163A (en) | Solid electrolyte type fuel cell | |
JP7202060B2 (en) | Electrochemical elements, electrochemical modules, electrochemical devices, energy systems, and solid oxide fuel cells | |
JPH03116659A (en) | Solid electrolyte type fuel battery | |
KR101905499B1 (en) | Unit cell module and stack for solid oxide fuel cell | |
JP2980921B2 (en) | Flat solid electrolyte fuel cell | |
JPH02168568A (en) | Fuel battery with solid electrolyte | |
JPH0436962A (en) | Fuel cell with solid electrolyte | |
JP2002358980A (en) | Solid electrolyte fuel cell | |
JP2004200022A (en) | Solid oxide fuel cell | |
JPH05151982A (en) | Solid electrolyte fuel cell | |
JPH05205754A (en) | Solid electrolyte type fuel cell | |
JPH0562694A (en) | Solid electrolyte type fuel cell | |
JPH04249864A (en) | Solid electrolyte type fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |