JP2880154B1 - Pulse tube refrigerator - Google Patents

Pulse tube refrigerator

Info

Publication number
JP2880154B1
JP2880154B1 JP8547998A JP8547998A JP2880154B1 JP 2880154 B1 JP2880154 B1 JP 2880154B1 JP 8547998 A JP8547998 A JP 8547998A JP 8547998 A JP8547998 A JP 8547998A JP 2880154 B1 JP2880154 B1 JP 2880154B1
Authority
JP
Japan
Prior art keywords
regenerator
pulse tube
pressure side
fluid
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8547998A
Other languages
Japanese (ja)
Other versions
JPH11281179A (en
Inventor
康正 萩原
真一 八束
Original Assignee
株式会社移動体通信先端技術研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社移動体通信先端技術研究所 filed Critical 株式会社移動体通信先端技術研究所
Priority to JP8547998A priority Critical patent/JP2880154B1/en
Application granted granted Critical
Publication of JP2880154B1 publication Critical patent/JP2880154B1/en
Publication of JPH11281179A publication Critical patent/JPH11281179A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/14Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle
    • F25B9/145Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the cycle used, e.g. Stirling cycle pulse-tube cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1407Pulse-tube cycles with pulse tube having in-line geometrical arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1413Pulse-tube cycles characterised by performance, geometry or theory
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1417Pulse-tube cycles without any valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1418Pulse-tube cycles with valves in gas supply and return lines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1423Pulse tubes with basic schematic including an inertance tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/14Compression machines, plants or systems characterised by the cycle used 
    • F25B2309/1424Pulse tubes with basic schematic including an orifice and a reservoir
    • F25B2309/14241Pulse tubes with basic schematic including an orifice reservoir multiple inlet pulse tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/10Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point with several cooling stages

Abstract

【要約】 【課題】 蓄冷器内の熱移動による低温部への不要な熱
流入を低減することにより、冷凍能力に優れた小型・軽
量かつ構成の簡素なパルス管冷凍機を提供する。 【解決手段】 バッファタンク16内の流体を圧縮作業室
の低圧側14cに還流させ、蓄冷器12およびパルス管13内
に作動流体の微少な定常流を生じさせる循環手段14c,
21,22を設けるとともに、定常流の流れ方向の所定位置
で蓄冷器12に接続され、定常流により蓄冷器12に与えら
れた熱を前記所定位置で蓄冷器12から放出させる予冷冷
凍手段30を設けている。
An object of the present invention is to provide a small, lightweight, and simple pulse tube refrigerator excellent in refrigeration capacity by reducing unnecessary heat flow into a low-temperature portion due to heat transfer in a regenerator. SOLUTION: Circulating means 14c, which circulates a fluid in a buffer tank 16 to a low pressure side 14c of a compression working chamber and generates a small steady flow of a working fluid in a regenerator 12 and a pulse tube 13.
A pre-cooling and refrigeration unit 30 is provided, which is provided with 21 and 22 and is connected to the regenerator 12 at a predetermined position in the flow direction of the steady flow, and releases the heat given to the regenerator 12 by the steady flow from the regenerator 12 at the predetermined position. Provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、パルス管冷凍機、
特に赤外線センサや高温超伝導デバイス等の低温で動作
するデバイスの冷却装置として用いられるパルス管冷凍
機に関する。
TECHNICAL FIELD The present invention relates to a pulse tube refrigerator,
In particular, the present invention relates to a pulse tube refrigerator used as a cooling device for low-temperature devices such as infrared sensors and high-temperature superconducting devices.

【0002】[0002]

【従来の技術】従来、高温超伝導デバイス等の低温で動
作するデバイスの冷却装置として、例えばスターリング
冷凍機が用いられていたが、構造が複雑で長時間の運転
が難しいという不都合があったため、それに代わる構造
の簡素な冷凍機としてパルス管冷凍機が注目されてい
る。
2. Description of the Related Art Hitherto, for example, a Stirling refrigerator has been used as a cooling device for a device operating at a low temperature such as a high-temperature superconducting device. However, there has been an inconvenience that the structure is complicated and long-term operation is difficult. A pulse tube refrigerator has been attracting attention as a simple refrigerator having an alternative structure.

【0003】このパルス管冷凍機は、真空断熱容器内に
設けた蓄冷器およびパルス管と、真空断熱容器外から前
記蓄冷機内の作動流体に周期的な圧力変動を加える圧縮
機とを含んで構成された蓄冷式のサイクル冷凍機であ
り、真空断熱容器内でパルス管の低温端に設置した低温
ヘッドにより、被冷却物(赤外線センサや高温超伝導デ
バイス等)を冷却するようになっている。具体的には、
例えばパルス管の高温端にオリフィスを介してバッファ
タンクを接続し、パルス管内の作動流体(ガス)の圧縮
・膨張に寄与しないガスの変位(熱音響理論などでは進
行波成分とよばれている)を与えることによって、熱移
送を促進するようにしたオリフィス型パルス管冷凍機も
知られている。このオリフィス型は、パルス管内部の高
圧ガスの圧力振動(圧縮・膨張)に対し、オリフィスに
よってそのガスの変位の位相差を制御することができ、
これによって前記圧力変動に関与しない進行波成分の変
位を増加させることで、いわゆるbasic型よりも大
きな冷凍能力が期待できる。
[0003] The pulse tube refrigerator includes a regenerator and a pulse tube provided in a vacuum insulated container, and a compressor for applying a periodic pressure change to a working fluid in the regenerator from outside the vacuum insulated container. This is a regenerative type cycle refrigerator in which an object to be cooled (such as an infrared sensor or a high-temperature superconducting device) is cooled by a low-temperature head installed at a low-temperature end of a pulse tube in a vacuum insulated container. In particular,
For example, a buffer tank is connected to the high-temperature end of the pulse tube via an orifice, and the displacement of the gas that does not contribute to the compression and expansion of the working fluid (gas) in the pulse tube (called a traveling wave component in thermoacoustic theory, etc.) An orifice-type pulse tube refrigerator is also known which promotes heat transfer by imparting heat. This orifice type can control the phase difference of the displacement of the gas against the pressure vibration (compression / expansion) of the high-pressure gas inside the pulse tube by the orifice.
By increasing the displacement of the traveling wave component that does not contribute to the pressure fluctuation, a greater refrigeration capacity than that of the so-called basic type can be expected.

【0004】さらに、図5に示すように、圧縮機1の吐
出口とパルス管3の高温端部3aとの間に蓄冷器2およ
びパルス管3をバイパスする通路6を設けるとともに、
この通路6に設けたバルブ7によって通路6の絞りの程
度を調節するようにした、いわゆるダブルインレット型
と呼ばれるパルス管冷凍機もある。このダブルインレッ
ト型のパルス管冷凍機では、蓄冷器2およびパルス管3
の内部に充填されたガスが両側から圧縮・膨張および変
位させられる。また、バルブ7の開度を調節すること
で、ガス変位の振幅を最適化し、冷凍能力を高めること
ができる。
Further, as shown in FIG. 5, a passage 6 for bypassing the regenerator 2 and the pulse tube 3 is provided between the discharge port of the compressor 1 and the high-temperature end 3a of the pulse tube 3.
There is also a so-called double inlet type pulse tube refrigerator in which the degree of restriction of the passage 6 is adjusted by a valve 7 provided in the passage 6. In this double inlet type pulse tube refrigerator, the regenerator 2 and the pulse tube 3
The gas filled inside is compressed, expanded and displaced from both sides. Further, by adjusting the opening of the valve 7, the amplitude of the gas displacement can be optimized, and the refrigeration capacity can be increased.

【0005】[0005]

【発明が解決しようとする課題】上述のパルス管冷凍機
はスターリング冷凍機とほぼ同様な原理で冷却される。
具体的には、パルス管の低温端の気体があたかもスター
リング冷凍機の低温側ピストンのように動作すると理解
されている。しかしながら、低温側のピストンの動力は
スターリング機関では圧縮ピストンと同じシャフトに固
定されているために動力の回生が可能であるが、パルス
管冷凍機ではオリフィス等から熱として捨てているため
に原理的に冷凍能力及び効率が劣るという問題がある。
The above-described pulse tube refrigerator is cooled by substantially the same principle as the Stirling refrigerator.
Specifically, it is understood that the gas at the cold end of the pulse tube behaves like the cold piston of a Stirling refrigerator. However, the power of the low-temperature side piston is regenerable because it is fixed to the same shaft as the compression piston in a Stirling engine, but it is fundamental in a pulse tube refrigerator because it is discarded as heat from an orifice or the like. However, there is a problem that refrigeration capacity and efficiency are inferior.

【0006】本発明は、かかる冷凍能力及び効率が劣る
という問題を解消すべくなされたものである。
The present invention has been made to solve such a problem that the refrigerating capacity and efficiency are inferior.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに、第1の発明は、作動流体(気体)が充填された蓄
冷器と、蓄冷器に連通するパルス管と、蓄冷器に連通す
る圧縮作業室を有し該圧縮作業室の容積変化により蓄冷
器内の作動流体を圧縮・膨張および変位させる流体駆動
手段と、絞り通路を有する細管を介して前記パルス管に
連通するバッファタンクと、を備えたパルス管冷凍機で
あって、前記バッファタンク内の流体を前記圧縮作業室
の低圧側に還流させ、前記蓄冷器およびパルス管内に前
記作動流体の微少な定常流を生じさせる循環手段を設け
るとともに、前記定常流の流れ方向の所定位置で前記蓄
冷器に接続され、前記定常流により前記蓄冷器に与えら
れた熱を前記所定位置で前記蓄冷器から放出させる予冷
冷凍手段を設けたことを特徴とする。
According to a first aspect of the present invention, there is provided a regenerator filled with a working fluid (gas), a pulse tube communicating with the regenerator, and a regenerator communicating with the regenerator. Fluid driving means for compressing, expanding and displacing the working fluid in the regenerator by a change in volume of the compression working chamber, and a buffer tank communicating with the pulse tube via a narrow tube having a throttle passage. Circulating means for circulating the fluid in the buffer tank to the low-pressure side of the compression working chamber and generating a minute steady flow of the working fluid in the regenerator and the pulse tube. And a pre-cooling refrigeration unit connected to the regenerator at a predetermined position in the flow direction of the steady flow and configured to release heat given to the regenerator by the steady flow from the regenerator at the predetermined position. And wherein the door.

【0008】この発明では、パルス管内の作動流体(以
下、気体という)を圧縮・膨張および変位させてパルス
管の低温端部側の熱を高温端部側に運び、高温端部でそ
の熱を除去することにより、低温端部の連続的な冷却効
果が得られる。このとき、循環手段によって、蓄冷器お
よびパルス管の内部に蓄冷器側からパルス管側に向かう
極めて流れの遅い定常流を生じさせているので、蓄冷器
内で温度の高いところから低い方、すなわち低温端側に
向かう熱の流れが生じるが、気体の平均温度が蓄冷器お
よびパルス管の管壁とほぼ一致する状態で、気体が蓄冷
器に放出する熱のうち大半の熱量が予冷冷凍手段による
蓄冷器の予冷位置において除去され、これによって定常
流が蓄冷器の低温端で前記除去した熱量分だけの冷凍能
力を生み出したのと同様な作用を生じる。このように、
予冷冷凍手段という別の冷凍手段によって、蓄冷器の低
温端側への不要な熱流入を低温端より高温の所定位置で
予冷することによって十分に抑制し、低温端での見かけ
上の冷凍能力を生み出すことができるので、排熱温度と
吸熱温度だけで決まる冷凍機の冷却効率の向上に大きく
寄与するものとなる。
According to the present invention, the working fluid (hereinafter, referred to as gas) in the pulse tube is compressed, expanded and displaced to carry the heat at the low-temperature end of the pulse tube to the high-temperature end, and to dissipate the heat at the high-temperature end. The removal provides a continuous cooling effect at the cold end. At this time, the circulation means generates a very slow steady flow from the regenerator to the pulse tube side in the regenerator and the pulse tube inside the regenerator and the pulse tube. A heat flow toward the low-temperature end occurs, but most of the heat released from the gas to the regenerator by the pre-cooling refrigeration means in a state where the average temperature of the gas substantially matches the tube wall of the regenerator and the pulse tube. It is removed at the pre-cooling position of the regenerator, which has the same effect as producing a steady flow at the cold end of the regenerator by the removed heat. in this way,
Unnecessary heat inflow to the low-temperature end of the regenerator is sufficiently suppressed by pre-cooling at a predetermined position higher than the low-temperature end by another refrigeration means called pre-cooling refrigeration means, and the apparent refrigeration capacity at the low-temperature end is reduced. Since it can be produced, it greatly contributes to the improvement of the cooling efficiency of the refrigerator determined only by the exhaust heat temperature and the heat absorption temperature.

【0009】前記循環手段は、前記圧縮作業室の高圧側
と低圧側を連通させるよう前記ピストンに形成された連
通路と、前記バッファタンク内の流体を前記圧縮作業室
の低圧側に還流させる還流通路と、前記連通路に設けら
れ前記低圧側から高圧側への流れを許容しこれと逆方向
の流れを阻止する逆止弁と、を有するのが好ましい。そ
のようにすると、構成が簡素で耐久性のある循環手段を
低コストに実現することができる。
The circulating means includes a communication passage formed in the piston for communicating the high pressure side and the low pressure side of the compression working chamber, and a reflux for returning the fluid in the buffer tank to the low pressure side of the compression working chamber. It is preferable to have a passage, and a check valve provided in the communication passage to allow a flow from the low pressure side to the high pressure side and prevent a flow in the opposite direction. By doing so, a durable circulating means having a simple configuration can be realized at low cost.

【0010】また、前記予冷冷凍手段が、前記所定位置
で前記蓄冷器に接続された熱ブリッジ部材を有し、前記
定常流により前記所定位置より上流側で前記蓄冷器に与
えられた熱を、該熱ブリッジ部材を介して前記蓄冷器か
ら放出させるようにすると、定常流の流れ方向における
熱ブリッジ部材の接続位置を適宜設定するだけで、同一
の予冷冷凍手段により多仕様の冷凍機に対応することが
できる。
Further, the pre-cooling / refrigeration means has a heat bridge member connected to the regenerator at the predetermined position, and heat given to the regenerator upstream from the predetermined position by the steady flow, When the regenerator is discharged from the regenerator through the heat bridge member, it is possible to cope with a multi-specification refrigerator by using the same pre-cooling and freezing means by simply setting the connection position of the heat bridge member in the flow direction of the steady flow as appropriate. be able to.

【0011】さらに、第2の発明は、作動流体が充填さ
れた蓄冷器と、蓄冷器に連通するパルス管と、蓄冷器に
連通する圧縮作業室内にピストンを有し該ピストンによ
り前記圧縮作業室の高圧側で蓄冷器内の作動流体を圧縮
・膨張および変位させる流体駆動手段と、絞り通路を有
する細管を介して前記パルス管に連通するバッファタン
クと、を備えたパルス管冷凍機であって、前記バッファ
タンク内の流体を前記圧縮作業室の低圧側に還流させ、
前記ピストンを通して前記蓄冷器およびパルス管内に前
記作動流体の微少な定常流を生じさせる循環手段を設け
るとともに、前記蓄冷器を、前記定常流の流れ方向に隣
接する第1蓄冷器および第2蓄冷器から構成し、前記定
常流の流れ方向に対する直交方向で該第1蓄冷器の断面
積が第2蓄冷器の断面積より大きくなるようにしたこと
を特徴とする。
Further, a second invention provides a regenerator filled with a working fluid, a pulse tube communicating with the regenerator, and a piston in a compression working chamber communicating with the regenerator. A pulse tube refrigerator comprising: fluid driving means for compressing, expanding and displacing a working fluid in a regenerator on a high pressure side of the regenerator; and a buffer tank communicating with the pulse tube through a narrow tube having a throttle passage. Refluxing the fluid in the buffer tank to the low pressure side of the compression working chamber,
Circulating means for generating a small steady flow of the working fluid in the regenerator and the pulse tube through the piston is provided, and the regenerator is connected to a first regenerator and a second regenerator adjacent in the flow direction of the steady flow. Wherein the cross-sectional area of the first regenerator is larger than the cross-sectional area of the second regenerator in a direction perpendicular to the flow direction of the steady flow.

【0012】このようにすると、第1蓄冷器の蓄冷能力
が第2蓄冷器より大きくなることから、定常流による熱
流入量とその蓄冷能力の差による冷凍能力差とがつり合
う状態で、第1蓄冷器および第2蓄冷器が隣合う所定位
置において上記予冷冷凍手段による予冷を行ったのと同
様な効果を得ることができる。
With this configuration, the first regenerator has a higher regenerative storage capacity than the second regenerator, so that the first heat regenerator has a balance between the heat inflow due to the steady flow and the refrigerating capacity difference due to the difference in the regenerative power. The same effect can be obtained as in the case where the precooling is performed by the precooling / freezing means at a predetermined position where the regenerator and the second regenerator are adjacent to each other.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施の形態につい
て添付図面に基づいて説明する。図1は第1の発明に係
るパルス管冷凍機の一実施形態を示す図であり、本発明
を超伝導フィルタシステムに適用した例を示している。
同図において、11は真空断熱容器であり、真空断熱容
器11には、内部に複数本の流体通路(詳細は図示して
いない)を有する蓄冷器12と、図示しない低温部を介
して蓄冷器12に連結されたパルス管13と、が収納さ
れている。蓄冷器12は、円筒状のケーシング内に例え
ばステンレス、銅又は銅合金等からなる多数枚のプレー
ト状の蓄冷材を積層し、その蓄冷材にそれぞれ多数形成
された孔によって多数(複数)本の流体通路を形成した
ものであるが、多数の粒状の蓄冷材を収納したものでも
よい。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram showing one embodiment of a pulse tube refrigerator according to the first invention, and shows an example in which the present invention is applied to a superconducting filter system.
In the figure, reference numeral 11 denotes a vacuum heat insulating container. The vacuum heat insulating container 11 has a regenerator 12 having a plurality of fluid passages (details not shown) therein and a regenerator via a low-temperature part (not shown). And a pulse tube 13 connected to the pulse tube 12. The regenerator 12 has a plurality of plate-shaped regenerators made of, for example, stainless steel, copper, or a copper alloy stacked in a cylindrical casing, and a plurality (a plurality) of regenerators are formed by holes formed in the regenerators. Although the fluid passage is formed, the fluid passage may contain a large number of granular cold storage materials.

【0014】蓄冷器12の流体通路とパルス管13の内
部空間は、一つの作業空間を形成するように連通してお
り、この作業空間内に所定の作動流体(例えば不活性ガ
ス、具体的にはヘリウム、アルゴン又は窒素等)が充填
されている。蓄冷器12の前記流体通路は、真空断熱容
器11の外部に設けたピストン型の圧縮機14(流体駆
動手段)の高圧側作業室14b(圧縮作業室の高圧側)
に連通しており、この圧縮機14のピストン14aが蓄
冷器12を介して前記作動流体を周期的に圧縮・膨張お
よび変位させるようになっている。なお、ここで作動流
体を圧縮・膨張させるとは、作業流体に周期的な圧力変
化を加えて、その体積を周期的に変化させる(微小空間
についてみれば、周期的に加わる圧力変化と同位相成分
の流体変位が生じる)ことをいい、作動流体を変位させ
るとは、作業流体をパルス管13の軸方向に単に移動さ
せる(作動流体の圧縮・膨張に関与しない、圧力変化と
位相の異なる流体変位が生じる)ことをいう。
The fluid passage of the regenerator 12 and the internal space of the pulse tube 13 communicate with each other so as to form one working space, and a predetermined working fluid (for example, an inert gas, specifically, Is filled with helium, argon or nitrogen). The fluid passage of the regenerator 12 is provided with a high-pressure side working chamber 14b (high-pressure side of the compression working chamber) of a piston-type compressor 14 (fluid driving means) provided outside the vacuum heat insulating container 11.
The piston 14 a of the compressor 14 periodically compresses, expands and displaces the working fluid via the regenerator 12. The term “compressing / expanding the working fluid” as used herein means that the volume of the working fluid is changed periodically by applying a periodic pressure change (in the case of a small space, the same phase as the pressure change applied periodically is applied). Displacement of the working fluid means that the working fluid is simply moved in the axial direction of the pulse tube 13 (fluid having a phase different from the pressure change, which does not participate in the compression / expansion of the working fluid). Displacement occurs).

【0015】蓄冷器12は、作動流体の圧縮時には作動
流体の熱を吸収し、作動流体を等温圧縮させるように機
能し、一方、作動流体の膨張時には蓄積した熱を作動流
体に与えて、作動流体を等温膨張させるように機能す
る。また、蓄冷器12とパルス管13の間の前記低温部
はいわゆるコールドヘッドを構成しており、この低温部
に取り付けられた所定の被冷却物、例えばパルス管13
の周りに周方向所定間隔に設置された複数の超伝導フィ
ルタが冷却されるようになっている。なお、超伝導フィ
ルタは、例えば移動体通信系の基地局においてアンテナ
で受けた微弱電波を受信するためにバンドパスフィルタ
として使用されるものである。勿論、低雑音増幅器を含
むフィルタモジュール等であってもよい。
The regenerator 12 functions to absorb the heat of the working fluid when the working fluid is compressed and to compress the working fluid isothermally, while providing the accumulated heat to the working fluid when the working fluid is expanded, It functions to expand the fluid isothermally. The low-temperature portion between the regenerator 12 and the pulse tube 13 constitutes a so-called cold head, and a predetermined object to be cooled attached to the low-temperature portion, for example, the pulse tube 13
A plurality of superconducting filters provided at predetermined intervals in the circumferential direction are cooled. The superconducting filter is used as a bandpass filter for receiving a weak radio wave received by an antenna in a base station of a mobile communication system, for example. Of course, a filter module or the like including a low noise amplifier may be used.

【0016】パルス管13は、例えばステンレス、チタ
ン等からなる薄肉の金属製パイプによって蓄冷器12側
で開口する一端開口形状に形成されており、内部の作動
流体(気体)が蓄冷器12の低温端側でピストンのよう
に働くようになっている。また、パルス管13はオリフ
ィス15a(絞り通路)を有する細管15を介してバッ
ファタンク16に接続されており、この細管15により
パルス管13の高温端側で放熱を行うようになってい
る。
The pulse tube 13 is formed by a thin metal pipe made of, for example, stainless steel, titanium or the like, and has an open end at the regenerator 12 side. It works like a piston at the end. The pulse tube 13 is connected to a buffer tank 16 via a thin tube 15 having an orifice 15a (throttle passage), and the thin tube 15 radiates heat on the high-temperature end side of the pulse tube 13.

【0017】また、バッファタンク16は絞り通路とな
る還流通路21を介して圧縮機14の低圧側作業室14
c(圧縮作業室の低圧側)に連通しており、バッファタ
ンク16から圧縮機14の低圧側作業室14cに作動流
体を還流させることができるようになっている。さら
に、圧縮機14のピストン14aには連通路14dが形
成されているとともに、低圧側作業室14cから高圧側
作業室14bへの流れを許容しこれと逆方向の流れを阻
止する逆止弁22が装着されている。これら連通路14
d、還流通路21および逆止弁22は、蓄冷器12およ
びパルス管13内に作動流体の微少な定常流を生じさせ
る循環手段を構成している。
The buffer tank 16 is connected to a low-pressure side working chamber 14 of the compressor 14 through a return passage 21 serving as a throttle passage.
c (the low pressure side of the compression working chamber), so that the working fluid can be recirculated from the buffer tank 16 to the low pressure side working chamber 14 c of the compressor 14. Further, a communication passage 14d is formed in the piston 14a of the compressor 14, and a check valve 22 that allows a flow from the low-pressure side working chamber 14c to the high-pressure side working chamber 14b and prevents a flow in the opposite direction. Is installed. These communication paths 14
d, the return passage 21 and the check valve 22 constitute a circulating means for generating a minute steady flow of the working fluid in the regenerator 12 and the pulse tube 13.

【0018】31は、前記定常流の流れ方向の所定位置
で蓄冷器12に接続された、例えば銅製の熱ブリッジ部
材である。この熱ブリッジ部材31は、前記作動流体の
定常流によって前記所定位置より上流側で蓄冷器12に
与えられた熱を、蓄冷器12から放出させるための高熱
伝導率の部材で、前記定常流により前記所定位置より上
流側で蓄冷器12に与えられた熱を蓄冷器12から放出
させるよう、予冷冷凍機30の低温部30aに接続され
ている。この予冷冷凍機30は、例えば所定の周波数で
往復動するピストン34aを有する圧縮機34と、一端
で圧縮機34に接続された蓄冷器32と、蓄冷器32の
他端に接続された先端閉塞形状のパルス管33と、パル
ス管33の高温端に接続された細管35と、この細管3
5内の絞り通路を介してパルス管33に連通するバッフ
ァタンク37と、を備えたオリフィス型のものである。
Reference numeral 31 denotes a heat bridge member made of, for example, copper and connected to the regenerator 12 at a predetermined position in the flow direction of the steady flow. The heat bridge member 31 is a member having a high thermal conductivity for releasing the heat given to the regenerator 12 upstream from the predetermined position by the steady flow of the working fluid from the regenerator 12, and The regenerator 12 is connected to the low-temperature section 30a of the pre-cooling refrigerator 30 so that heat given to the regenerator 12 is released from the regenerator 12 upstream of the predetermined position. The pre-cooling refrigerator 30 includes, for example, a compressor 34 having a piston 34a that reciprocates at a predetermined frequency, a regenerator 32 connected to the compressor 34 at one end, and a tip block connected to the other end of the regenerator 32. A pulse tube 33 having a shape, a thin tube 35 connected to a high-temperature end of the pulse tube 33, and a thin tube 3
5 and a buffer tank 37 which communicates with the pulse tube 33 through the throttle passage in the orifice 5.

【0019】次に、このパルス管冷凍機の動作について
説明する。まず、圧縮機14が駆動され、蓄冷器12お
よびパルス管13内の高圧の作動流体(気体)が所定サ
イクル数で圧縮・膨張および変位させられ、その内部の
作動流体がパルス管13の低温端部側の熱を高温端部側
へ運ぶとともに、パルス管13の内部に一定の温度勾配
が形成される。
Next, the operation of the pulse tube refrigerator will be described. First, the compressor 14 is driven, and the high-pressure working fluid (gas) in the regenerator 12 and the pulse tube 13 is compressed / expanded and displaced by a predetermined number of cycles. The heat of the part side is transferred to the high-temperature end side, and a constant temperature gradient is formed inside the pulse tube 13.

【0020】この状態においては、蓄冷器12およびパ
ルス管13の内部において、作動流体(気体)の平均温
度は蓄冷器12およびパルス管13のそれぞれの内壁温
度とほぼ一致するから、圧縮機14から蓄冷器12に流
れ込んだ気体は低温部に到達するまでは熱を蓄冷器12
に与えていき、この気体が蓄冷器12の低温端から出て
パルス管13の高温端に向かうときには、この気体はパ
ルス管13の管壁から熱を奪っていく。
In this state, the average temperature of the working fluid (gas) inside the regenerator 12 and the pulse tube 13 substantially matches the respective inner wall temperatures of the regenerator 12 and the pulse tube 13. The gas flowing into the regenerator 12 transfers heat until it reaches the low-temperature part.
When the gas exits from the low-temperature end of the regenerator 12 and moves toward the high-temperature end of the pulse tube 13, the gas takes heat from the tube wall of the pulse tube 13.

【0021】したがって、この気体の温度は、図2の上
側に示すように、蓄冷器12の入口温度Ta(真空断熱
容器内の室温)から蓄冷器12内で徐々に減少して低温
部の冷却温度Tcまで下がり、そこからパルス管13の
高温端まで徐々に上昇する。この状態においては、同図
の下側に示すように、気体の内部エネルギが蓄冷器12
内で徐々に減少して低温部で最低になり、そこからパル
ス管13の高温端まで徐々に増加する。この系が完全に
可逆であると仮定すれば、定常流がパルス管13の内部
を通過しても、気体の内部エネルギは蓄冷器12の高温
端とパルス管13の高温端とで同じになる。なお、同図
において、Tbは真空断熱容器11内の室温Taより低
温でかつ低温部温度Tcより高温の予冷位置温度(所定
位置の温度)である。
Therefore, as shown in the upper part of FIG. 2, the temperature of the gas gradually decreases in the regenerator 12 from the inlet temperature Ta of the regenerator 12 (room temperature in the vacuum insulated container), and the temperature of the low-temperature part is reduced. The temperature drops to the temperature Tc, and then gradually rises to the high temperature end of the pulse tube 13. In this state, as shown in the lower part of FIG.
And gradually decreases in the low-temperature portion, and gradually increases from there to the high-temperature end of the pulse tube 13. Assuming that the system is completely reversible, the internal energy of the gas will be the same at the hot end of the regenerator 12 and the hot end of the pulse tube 13 even if a steady flow passes through the inside of the pulse tube 13. . In the figure, Tb is a pre-cooling position temperature (temperature at a predetermined position) lower than the room temperature Ta and higher than the low-temperature portion temperature Tc in the vacuum insulated container 11.

【0022】また、蓄冷器12内において温度の高いと
ころから低い方に熱が流れることを考えると、気体が蓄
冷器12に捨てた熱の熱量は、前記所定位置までは下流
側(低温端側)ほど大きくなる。この状態において、気
体温度がTbとなる所定位置、すなわち、蓄冷器12の
途中で、熱量Q1分の熱が熱ブリッジ部材31を介した
予冷冷凍機30の予冷によって放出される。したがっ
て、定常流が見かけ上は蓄冷器12の低温端で熱量Q1
の冷凍能力を生み出すことになり、その分だけ冷凍能力
が高まることになる。換言すれば、蓄冷器12内の定常
流により、前記所定位置より上流側で気体から蓄冷器1
2に放出された熱を、その気体が温度Tbとなる前記所
定位置で、効率良く外部に取り出すことができることに
なる。したがって、パルス管13の低温端側から高温端
側への熱移送のみを行いながら、低温部への熱流入を熱
量Q1より十分に少ない熱量Q2に抑えることができ、
冷凍能力を大幅に向上させることができる。
Considering that heat flows from a high temperature to a low temperature in the regenerator 12, the amount of heat discarded by the gas to the regenerator 12 is reduced to the predetermined position on the downstream side (low-temperature end side). ) Becomes larger. In this state, in the predetermined position where the gas temperature becomes Tb, that is, in the middle of the regenerator 12, heat of the heat amount Q1 is released by the pre-cooling of the pre-cooling refrigerator 30 via the heat bridge member 31. Therefore, the steady flow apparently has the heat quantity Q1 at the low temperature end of the regenerator 12.
Refrigeration capacity, and the refrigeration capacity will increase accordingly. In other words, due to the steady flow in the regenerator 12, the gas is stored in the regenerator 1 from the gas upstream of the predetermined position.
2 can be efficiently extracted to the outside at the predetermined position where the gas reaches the temperature Tb. Therefore, while performing only heat transfer from the low-temperature end side to the high-temperature end side of the pulse tube 13, the heat inflow to the low-temperature portion can be suppressed to the heat amount Q2 sufficiently smaller than the heat amount Q1,
The refrigeration capacity can be greatly improved.

【0023】このように、本発明では、循環手段によっ
て、蓄冷器12およびパルス管13の内部に蓄冷器12
側からパルス管13側に向かう極めて流れの遅い定常流
を生じさせ、気体の平均温度が蓄冷器12およびパルス
管13の管壁とほぼ一致する状態で、圧縮器14側から
蓄冷器12に流れ込んだ気体が低温部に到達するまで熱
を蓄冷器12に与え、低温部からでた気体がパルス管1
3の高温端に達するまでパルス管13の管壁から熱を奪
っていくようにしておき、更に気体が蓄冷器12に放出
した熱のうち大半の熱量Q1を、予冷冷凍機30による
予冷位置において確実に放出させ除去する。このよう
に、定常流が上前記除去した熱量分だけの冷凍能力を生
み出したのと同様な作用をさせているので、パルス管冷
凍機の冷凍能力を低温部より温度の高い所定位置におけ
る予冷によって容易に高めることができ、排熱温度と吸
熱温度だけで決まる冷凍機の冷却効率を容易かつ大幅に
向上させることができる。
As described above, according to the present invention, the regenerator 12 and the pulse tube 13 are provided inside the regenerator 12 and the pulse tube 13 by the circulating means.
A steady flow with a very slow flow from the side toward the pulse tube 13 is generated, and the gas flows into the regenerator 12 from the compressor 14 side in a state where the average temperature of the gas substantially matches the tube wall of the regenerator 12 and the pulse tube 13. Heat is supplied to the regenerator 12 until the gas reaches the low-temperature part, and the gas emitted from the low-temperature part is supplied to the pulse tube 1.
Heat is taken from the tube wall of the pulse tube 13 until the high temperature end of 3 is reached. Further, most of the heat Q1 of the heat released from the gas to the regenerator 12 is transferred to the precooling position by the precooling refrigerator 30. Release and remove reliably. As described above, since the steady flow has the same effect as generating the refrigeration capacity only for the amount of heat removed above, the refrigeration capacity of the pulse tube refrigerator is increased by pre-cooling at a predetermined position higher in temperature than the low temperature part. The cooling efficiency can be easily increased, and the cooling efficiency of the refrigerator determined only by the exhaust heat temperature and the heat absorption temperature can be easily and significantly improved.

【0024】これに加えて、圧縮作業室の高圧側と低圧
側を連通させるようピストンに連通路を形成し、前記バ
ッファタンク内の流体を圧縮作業室の低圧側に還流させ
る還流通路と、前記連通路で低圧側から高圧側への流れ
を許容しこれと逆方向の流れを阻止する逆止弁と、を設
けるようにすれば、構成が簡素で耐久性のある循環手段
を低コストに実現することができる。
In addition to this, a communication passage is formed in the piston so as to communicate the high pressure side and the low pressure side of the compression working chamber, and a recirculation passage for returning the fluid in the buffer tank to the low pressure side of the compression working chamber; By providing a check valve that allows the flow from the low pressure side to the high pressure side in the communication passage and blocks the flow in the opposite direction, a durable circulating means with a simple structure can be realized at low cost. can do.

【0025】また、本実施形態においては、予冷冷凍機
30が、前記所定位置で蓄冷器12に接続された熱ブリ
ッジ部材31を有し、前記定常流により前記所定位置よ
り上流側で蓄冷器12に与えられた熱を、その熱ブリッ
ジ部材31を介して蓄冷器12から放出させるようにし
ているので、定常流の流れ方向における熱ブリッジ部材
31の接続位置を適宜設定するだけで、同一の予冷冷凍
手段30により多仕様の冷凍機に対応することができ
る。
In this embodiment, the pre-cooling refrigerator 30 has a heat bridge member 31 connected to the regenerator 12 at the predetermined position, and the regenerator 12 is located upstream from the predetermined position by the steady flow. Is released from the regenerator 12 via the heat bridge member 31. Therefore, the same precooling can be performed simply by appropriately setting the connection position of the heat bridge member 31 in the flow direction of the steady flow. The refrigerating means 30 can support a multi-specification refrigerator.

【0026】なお、上述の実施形態においては、圧縮機
を2つ設けていたが、1つの圧縮機によって駆動するこ
とができるのはいうまでもない。図3は、第2の発明に
係るパルス管冷凍機の一実施形態を示す図である。この
実施形態においては、蓄冷器50が、前記定常流の流れ
方向に隣接する第1蓄冷器51および第2蓄冷器52か
らなり、前記定常流の流れ方向に対する直交方向(径方
向)でその第1蓄冷器51の断面積が第2蓄冷器52の
断面積より所定倍率だけ大きくなっている。
In the above-described embodiment, two compressors are provided, but it goes without saying that the compressor can be driven by one compressor. FIG. 3 is a diagram showing one embodiment of a pulse tube refrigerator according to the second invention. In this embodiment, the regenerator 50 includes a first regenerator 51 and a second regenerator 52 that are adjacent to each other in the flow direction of the steady flow. The cross-sectional area of one regenerator 51 is larger than the cross-sectional area of second regenerator 52 by a predetermined magnification.

【0027】したがって、理想的な蓄冷器、かつ、圧力
及びガス変位の位相を仮定すると、蓄冷器51と52で
は、断面積にほぼ比例した熱輸送量が得られる。定常流
がなければ、温度勾配は蓄冷器52の方が大きくなる。
定常流による熱流入量と蓄冷器51,52の間の冷凍能
力の差がつり合うように設計できれば、2つの冷凍機を
用いた上述例と同様な効果が得られる。ただし、実際に
は、圧力とガス変位の位相は理想的ではないので、多少
効率が落ちる。
Therefore, assuming an ideal regenerator and phases of pressure and gas displacement, the regenerators 51 and 52 can obtain a heat transport amount substantially proportional to the cross-sectional area. If there is no steady flow, the regenerator 52 has a larger temperature gradient.
If the design can be such that the difference between the heat inflow by the steady flow and the refrigerating capacity between the regenerators 51 and 52 is balanced, the same effect as the above-described example using two refrigerators can be obtained. However, in practice, the phases of the pressure and the gas displacement are not ideal, so that the efficiency is somewhat reduced.

【0028】なお、上述の実施形態では、ピストン14
aに逆止弁22(チェック弁)を装着していたが、これ
に代えて、図4(a)に示すように、ピストン14aの
連通路を適度な絞り機能のある連通路14e(循環手
段)としたり、図4(b)に示すように、圧縮機14の
ピストン14aを連通路のない高圧側および低圧側の圧
縮作業室14b,14cを完全に仕切る形状にし、か
つ、両圧縮作業室14b,14cを連通するオリフィス
62付きの配管61(循環手段)を圧縮機14のケース
に付設したりするようにしてもよい。
In the above embodiment, the piston 14
4A, a check valve 22 (check valve) is mounted on the piston 14a. Alternatively, as shown in FIG. 4A, the communication passage of the piston 14a is ), Or as shown in FIG. 4 (b), the piston 14a of the compressor 14 is formed so as to completely separate the high-pressure side and the low-pressure side compression working chambers 14b and 14c having no communication passage, and both compression working chambers are formed. A pipe 61 (circulation means) with an orifice 62 communicating with 14b and 14c may be attached to the case of the compressor 14.

【0029】これらの場合、逆止弁に代わる機能をダブ
ルインレット型などでよく起こる循環流(定常流)が果
してしる。この定常流は、音響質量流などにより引き起
こされるもので、この音響質量流は代表的な非線形音響
現象として知られている。ある現象が整えば、逆止弁が
なくとも図4(a)および図4(b)にそれぞれ示すよ
うな一方向流が起こり、その質量はピストンに配した絞
り機能をもつ連通14eや、配管61およびオリフィス
62がコントロールすることになる。
In these cases, a circulating flow (steady flow) often performed by a double-inlet type or the like performs a function replacing the check valve. The steady flow is caused by an acoustic mass flow or the like, and the acoustic mass flow is known as a typical nonlinear acoustic phenomenon. If a certain phenomenon is completed, a unidirectional flow as shown in FIGS. 4 (a) and 4 (b) occurs without the check valve, and the mass thereof is determined by a communication 14e having a throttle function disposed on the piston and a pipe. 61 and orifice 62 will control.

【0030】[0030]

【発明の効果】上述のように、第1の発明によれば、蓄
冷器およびパルス管内に作動流体の微少な定常流を生じ
させる循環手段を設けるとともに、定常流の流れ方向の
所定位置で前記定常流により蓄冷器に与えられた熱を蓄
冷器から放出させる予冷冷凍手段を設けているので、気
体が蓄冷器に放出する熱のうち大半の熱量を低温部より
高温の所定位置で予冷によって容易に除去しながら、定
常流によって蓄冷器の低温端で前記除去した熱量分だけ
の冷凍能力を生み出すのと同様の作用をさせることがで
き、排熱温度と吸熱温度だけで決まる冷凍機の冷却効率
の向上に大きく寄与することができる。
As described above, according to the first aspect of the present invention, the regenerator and the pulse tube are provided with a circulating means for generating a small steady flow of the working fluid, and the circulating means is provided at a predetermined position in the flow direction of the steady flow. Precooling refrigeration means for releasing the heat given to the regenerator by the steady flow from the regenerator is provided, so most of the heat released from the gas to the regenerator can be easily precooled at a predetermined position higher than the low temperature part. The same effect as generating the refrigeration capacity by the amount of heat removed at the low temperature end of the regenerator by the steady flow while removing the refrigerant can be obtained, and the cooling efficiency of the refrigerator determined only by the exhaust heat temperature and the endothermic temperature Can greatly contribute to the improvement of

【0031】また、前記圧縮作業室の高圧側と低圧側を
連通させるようピストンに連通路を形成し、前記バッフ
ァタンク内の流体を圧縮作業室の低圧側に還流させる還
流通路と、前記連通路で低圧側から高圧側への流れを許
容しこれと逆方向の流れを阻止する逆止弁と、を設ける
ようにすれば、構成が簡素で耐久性のある循環手段を低
コストに実現することができる。
Also, a communication passage is formed in the piston so as to communicate the high pressure side and the low pressure side of the compression working chamber, and a recirculation passage for returning the fluid in the buffer tank to the low pressure side of the compression working chamber; And a check valve that allows the flow from the low pressure side to the high pressure side and prevents the flow in the opposite direction, to realize a durable circulating means with a simple configuration at low cost. Can be.

【0032】また、前記予冷冷凍手段が、前記所定位置
で前記蓄冷器に接続された熱ブリッジ部材を有し、前記
定常流により前記所定位置より上流側で前記蓄冷器に与
えられた熱を、該熱ブリッジ部材を介して前記蓄冷器か
ら放出させるようにすれば、定常流の流れ方向における
熱ブリッジ部材の接続位置を適宜設定するだけで、同一
の予冷冷凍手段により多仕様の冷凍機に対応することが
できる。
Further, the pre-cooling / refrigerating means has a heat bridge member connected to the regenerator at the predetermined position, and transfers heat given to the regenerator upstream of the predetermined position by the steady flow. If the regenerator is discharged from the regenerator through the heat bridge member, the same precooling and refrigeration means can be used for a multi-specific refrigerator by simply setting the connection position of the heat bridge member in the flow direction of the steady flow. can do.

【0033】さらに、第2の発明によれば、前記蓄冷器
を、前記定常流の流れ方向に隣接する第1蓄冷器および
第2蓄冷器から構成し、前記定常流の流れ方向に対する
直交方向で該第1蓄冷器の断面積が第2蓄冷器の断面積
より大きくなるようにしているので、定常流による熱流
入量とその蓄冷能力の差による冷凍能力差とがつり合う
状態で、上記予冷冷凍手段による予冷を行ったのと同様
な効果を得ることができ、その結果、高冷凍能力でかつ
コンパクトなパルス管冷凍機とすることができる。
Further, according to the second invention, the regenerator comprises a first regenerator and a second regenerator which are adjacent to each other in the flow direction of the steady flow, and are arranged in a direction orthogonal to the flow direction of the steady flow. Since the cross-sectional area of the first regenerator is made larger than the cross-sectional area of the second regenerator, the pre-cooled refrigeration is performed in a state where the heat inflow due to the steady flow and the refrigerating capacity difference due to the difference in the regenerative capacity are balanced. The same effect as the effect of pre-cooling by means can be obtained, and as a result, a pulse tube refrigerator with high refrigerating capacity and compactness can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の発明に係るパルス管冷凍機の一実施形態
を示すその概略構成図である。
FIG. 1 is a schematic configuration diagram showing one embodiment of a pulse tube refrigerator according to a first invention.

【図2】一実施形態における定常流の内部エネルギ変化
とパルス管への影響を示すグラフである。
FIG. 2 is a graph showing a change in internal energy of a steady flow and an influence on a pulse tube in one embodiment.

【図3】第2の発明に係るパルス管冷凍機の一実施形態
を示すその概略構成図である。
FIG. 3 is a schematic configuration diagram showing one embodiment of a pulse tube refrigerator according to a second invention.

【図4】(a)は第2の発明に係るパルス管冷凍機の他
の実施形態を示すその要部構成図であり、(b)は第2
の発明に係るパルス管冷凍機の更なる他の実施形態を示
すその要部構成図である。
FIG. 4 (a) is a main part configuration diagram showing another embodiment of the pulse tube refrigerator according to the second invention, and FIG. 4 (b) is a second embodiment.
It is a principal part block diagram which shows further another embodiment of the pulse tube refrigerator which concerns on 1st invention.

【図5】従来のダブルインレット型のパルス管冷凍機の
概略構成図である。
FIG. 5 is a schematic configuration diagram of a conventional double inlet type pulse tube refrigerator.

【符号の説明】[Explanation of symbols]

11 真空断熱容器 12 蓄冷器 13 パルス管 14 圧縮機(流体駆動手段) 14b 高圧側作業室(圧縮作業室の高圧側) 14c 低圧側作業室(圧縮作業室の低圧側) 14d、14e 連通路(循環手段) 15 細管 15a オリフィス(絞り通路) 16 バッファタンク 21 還流通路(循環手段) 22 逆止弁(循環手段) 30 予冷冷凍機(予冷冷凍水段) 30a 低温部 31 熱ブリッジ部材 50 蓄冷器 51 第1蓄冷器 52 第2蓄冷器 61 配管(循環手段) 62 オリフィス(循環手段) Reference Signs List 11 Vacuum insulated container 12 Regenerator 13 Pulse tube 14 Compressor (fluid driving means) 14b High-pressure side working chamber (high-pressure side of compression working chamber) 14c Low-pressure side working chamber (low-pressure side of compression working chamber) 14d, 14e Communication passage ( Circulation means) 15 Thin tube 15a Orifice (throttle passage) 16 Buffer tank 21 Reflux passage (Circulation means) 22 Check valve (Circulation means) 30 Pre-cooling refrigerator (Pre-cooling water stage) 30a Low-temperature section 31 Heat bridge member 50 Regenerator 51 First regenerator 52 Second regenerator 61 Piping (circulation means) 62 Orifice (circulation means)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】作動流体が充填された蓄冷器と、蓄冷器に
連通するパルス管と、蓄冷器に連通する圧縮作業室内に
ピストンを有し該ピストンにより前記圧縮作業室の高圧
側で蓄冷器内の作動流体を圧縮・膨張および変位させる
流体駆動手段と、絞り通路を有する細管を介して前記パ
ルス管に連通するバッファタンクと、を備えたパルス管
冷凍機であって、 前記バッファタンク内の流体を前記圧縮作業室の低圧側
に還流させ、前記ピストンを通して前記蓄冷器およびパ
ルス管内に前記作動流体の微少な定常流を生じさせる循
環手段を設けるとともに、 前記定常流の流れ方向の所定位置で前記蓄冷器に接続さ
れ、前記定常流により前記蓄冷器に与えられた熱を前記
所定位置で前記蓄冷器から放出させる予冷冷凍手段を設
けたことを特徴とするパルス管冷凍機。
1. A regenerator filled with a working fluid, a pulse tube communicating with the regenerator, a piston in a compression working chamber communicating with the regenerator, and a regenerator on the high pressure side of the compression working chamber by the piston. A pulse tube refrigerator comprising: a fluid driving means for compressing, expanding and displacing a working fluid in the buffer tube; and a buffer tank communicating with the pulse tube through a thin tube having a throttle passage. Circulating means for returning the fluid to the low pressure side of the compression working chamber and generating a small steady flow of the working fluid in the regenerator and the pulse tube through the piston is provided, and at a predetermined position in the flow direction of the steady flow. A pallet connected to the regenerator and provided with a pre-cooling refrigeration means for releasing the heat given to the regenerator by the steady flow from the regenerator at the predetermined position. Tube refrigerator.
【請求項2】前記循環手段が、前記圧縮作業室の高圧側
と低圧側を連通させるよう前記ピストンに形成された連
通路と、前記バッファタンク内の流体を前記圧縮作業室
の低圧側に還流させる還流通路と、前記連通路に設けら
れ前記低圧側から高圧側への流れを許容しこれと逆方向
の流れを阻止する逆止弁と、を有することを特徴とする
請求項1に記載のパルス管冷凍機。
2. A communication passage formed in said piston so as to communicate between a high pressure side and a low pressure side of said compression working chamber, and a fluid in said buffer tank is returned to a low pressure side of said compression working chamber. The recirculation passage for allowing a flow from the low-pressure side to the high-pressure side provided in the communication passage, and a check valve for preventing a flow in the opposite direction to the non-return side, and having a check valve. Pulse tube refrigerator.
【請求項3】前記予冷冷凍手段が、前記所定位置で前記
蓄冷器に接続された熱ブリッジ部材を有し、前記定常流
により前記所定位置より上流側で前記蓄冷器に与えられ
た熱を、該熱ブリッジ部材を介して前記蓄冷器から放出
させることを特徴とする請求項1に記載のパルス管冷凍
機。
3. The pre-cooling refrigeration means has a heat bridge member connected to the regenerator at the predetermined position, and heat supplied to the regenerator upstream from the predetermined position by the steady flow. The pulse tube refrigerator according to claim 1, wherein the regenerator is discharged from the regenerator through the heat bridge member.
【請求項4】作動流体が充填された蓄冷器と、蓄冷器に
連通するパルス管と、蓄冷器に連通する圧縮作業室内に
ピストンを有し該ピストンにより前記圧縮作業室の高圧
側で蓄冷器内の作動流体を圧縮・膨張および変位させる
流体駆動手段と、絞り通路を有する細管を介して前記パ
ルス管に連通するバッファタンクと、を備えたパルス管
冷凍機であって、 前記バッファタンク内の流体を前記圧縮作業室の低圧側
に還流させ、前記ピストンを通して前記蓄冷器およびパ
ルス管内に前記作動流体の微少な定常流を生じさせる循
環手段を設けるとともに、 前記蓄冷器を、前記定常流の流れ方向に隣接する第1蓄
冷器および第2蓄冷器から構成し、前記定常流の流れ方
向に対する直交方向で該第1蓄冷器の断面積が第2蓄冷
器の断面積より大きくなるようにしたことを特徴とする
パルス管冷凍機。
4. A regenerator filled with a working fluid, a pulse tube communicating with the regenerator, and a piston in a compression working chamber communicating with the regenerator, the regenerator on the high pressure side of the compression working chamber by the piston. A pulse tube refrigerator comprising: a fluid driving means for compressing, expanding and displacing a working fluid in the buffer tube; and a buffer tank communicating with the pulse tube through a thin tube having a throttle passage. Circulating means for returning a fluid to the low-pressure side of the compression working chamber and generating a small steady flow of the working fluid in the regenerator and the pulse tube through the piston is provided. A first regenerator and a second regenerator adjacent to each other in a direction, wherein the cross-sectional area of the first regenerator is larger than the cross-sectional area of the second regenerator in a direction orthogonal to the flow direction of the steady flow. Pulse tube refrigerator, characterized in that had Unishi.
JP8547998A 1998-03-31 1998-03-31 Pulse tube refrigerator Expired - Lifetime JP2880154B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8547998A JP2880154B1 (en) 1998-03-31 1998-03-31 Pulse tube refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8547998A JP2880154B1 (en) 1998-03-31 1998-03-31 Pulse tube refrigerator

Publications (2)

Publication Number Publication Date
JP2880154B1 true JP2880154B1 (en) 1999-04-05
JPH11281179A JPH11281179A (en) 1999-10-15

Family

ID=13860055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8547998A Expired - Lifetime JP2880154B1 (en) 1998-03-31 1998-03-31 Pulse tube refrigerator

Country Status (1)

Country Link
JP (1) JP2880154B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085935A1 (en) * 2003-03-26 2004-10-07 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004085935A1 (en) * 2003-03-26 2004-10-07 Aisin Seiki Kabushiki Kaisha Pulse tube refrigerating machine

Also Published As

Publication number Publication date
JPH11281179A (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US7363767B2 (en) Multi-stage pulse tube cryocooler
US5107683A (en) Multistage pulse tube cooler
JP4942897B2 (en) Hybrid two-stage pulse tube refrigerator
JPH10132404A (en) Pulse pipe freezer
US7114341B2 (en) Cryopump with two-stage pulse tube refrigerator
CN100371657C (en) Pulse tube refrigerator
CN107940790A (en) A kind of mixing circulation Cryo Refrigerator
JP2783112B2 (en) Cryogenic refrigerator
JP5882110B2 (en) Regenerator type refrigerator, regenerator
CN109556318B (en) Thermoacoustic refrigerator
JP2650437B2 (en) Cold storage cryogenic refrigerator
KR100454271B1 (en) Heat-Driving Acoustic Orifice Pulse Tube Cryocooling Device
JP3936117B2 (en) Pulse tube refrigerator and superconducting magnet system
JP2880154B1 (en) Pulse tube refrigerator
JP2609327B2 (en) refrigerator
JP2003139427A (en) Cooling device
JP2001248927A (en) Low-temperature device using pulse tube refrigeration unit
JP6087168B2 (en) Cryogenic refrigerator
JPH0452468A (en) Cryogenic refrigerator
Al-lami et al. Systematic review for comparison type of pulse tube refrigerator
JP2004301445A (en) Pulse pipe refrigerating machine
JP3284484B2 (en) Refrigeration liquefaction method and apparatus by regenerative refrigerator
US5697219A (en) Cryogenic refrigerator
JP2005283026A (en) Cold storage type refrigerating machine
JP2698477B2 (en) Cryogenic refrigerator