JP2879846B2 - Separation and recovery method of gas by separation membrane - Google Patents

Separation and recovery method of gas by separation membrane

Info

Publication number
JP2879846B2
JP2879846B2 JP8232496A JP23249696A JP2879846B2 JP 2879846 B2 JP2879846 B2 JP 2879846B2 JP 8232496 A JP8232496 A JP 8232496A JP 23249696 A JP23249696 A JP 23249696A JP 2879846 B2 JP2879846 B2 JP 2879846B2
Authority
JP
Japan
Prior art keywords
gas
separation membrane
raw material
outlet
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8232496A
Other languages
Japanese (ja)
Other versions
JPH1057746A (en
Inventor
建次 高木
賢治 原谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Mitsubishi Chemical Engineering Corp
Original Assignee
Agency of Industrial Science and Technology
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Mitsubishi Chemical Engineering Corp filed Critical Agency of Industrial Science and Technology
Priority to JP8232496A priority Critical patent/JP2879846B2/en
Publication of JPH1057746A publication Critical patent/JPH1057746A/en
Application granted granted Critical
Publication of JP2879846B2 publication Critical patent/JP2879846B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、少なくとも3つの
成分からなる多成分系混合気体を分離膜と接触させてそ
の混合気体中から第2易透過成分を効率よく分離回収す
る方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for efficiently separating and recovering a second easily permeable component from a mixed gas by bringing a multi-component mixed gas comprising at least three components into contact with a separation membrane. .

【0002】[0002]

【従来の技術】3成分以上の多成分からなる混合気体を
分離膜モジュールを用いて分離処理する方法は広く行れ
ている。この分離膜モジュールは、原料混合気体の入口
Aと出口Bを有し、その分離膜を透過した気体の出口C
を有する分離膜装置である。発電所等から排出される、
水蒸気、二酸化炭素、酸素及び窒素等からなる排煙ガス
中から、二酸化炭素を分離するために、分離膜の両側に
接触する気体の圧力(分圧)差を利用して気体の分離を
行う分離膜モジュールを用いることは知られている。こ
の混合気体中の水蒸気及び二酸化炭素は、分離膜に対し
ては、それぞれ第1易透過成分及び第2易透過成分を形
成する。従って、この場合の分離膜モジュールは、第2
易透過成分である二酸化炭素を効率よく分離回収するに
は、第2易透過成分である二酸化炭素に対する分離性能
を向上させることが要求される。分離膜モジュールを用
いる従来の混合気体の分離処理においては、分離膜を透
過した気体は、原料混合気体の流れと向流として系外へ
抜出すことが好ましいことが知られている〔(株)アイ
ピーシー発行、「膜分離プロセスの理論と設計」〕。し
かしながら、透過した気体を原料混合気体流と向流とし
て抜出すことは、第2易透過成分をプロセス経済性よく
効率的に分離する観点からは好ましいことではないこと
が判明した。即ち、分離膜の気体供給側に対する気体透
過側の圧力比を低くして第2易透過成分の分離回収率を
向上させようとすると、ブロワーにより供給ガスの圧力
を高めたり、真空ポンプにより透過側の減圧度を高く保
持する必要があり、そのためにブロワーや真空ポンプの
消費動力が大きくなるという不都合が生じる。
2. Description of the Related Art A method of separating a mixed gas composed of three or more components using a separation membrane module is widely used. This separation membrane module has an inlet A and an outlet B for a raw material mixed gas, and an outlet C for a gas that has passed through the separation membrane.
Is a separation membrane device having: Emitted from power plants, etc.
Separation that uses gas pressure (partial pressure) difference in contact with both sides of the separation membrane to separate carbon dioxide from flue gas consisting of water vapor, carbon dioxide, oxygen, nitrogen, etc. It is known to use membrane modules. The water vapor and carbon dioxide in the mixed gas form a first easily permeable component and a second easily permeable component to the separation membrane, respectively. Therefore, the separation membrane module in this case is the second
In order to efficiently separate and recover carbon dioxide as an easily permeable component, it is required to improve the performance of separating carbon dioxide as a second easily permeable component. It is known that, in a conventional mixed gas separation process using a separation membrane module, it is preferable that the gas permeating the separation membrane be extracted out of the system as a countercurrent to the flow of the raw material mixed gas [Co., Ltd.] Published by IPC, "Theory and Design of Membrane Separation Process"]. However, it has been found that extracting the permeated gas as a countercurrent to the raw material mixed gas flow is not preferable from the viewpoint of efficiently separating the second easily permeated component with good process economy. That is, when the pressure ratio of the gas permeation side to the gas supply side of the separation membrane is reduced to improve the separation and recovery rate of the second easily permeable component, the pressure of the supply gas is increased by a blower, or the permeate side by a vacuum pump. Needs to be maintained at a high degree, and the power consumption of the blower and the vacuum pump is disadvantageously increased.

【0003】[0003]

【発明が解決しようとする課題】本発明は、分離膜モジ
ュールを用いる多成分からなる混合気体の分離処理にお
いて、混合気体中の第2易透過成分を経済性よく効率的
に分離回収する方法を提供することをその課題とする。
SUMMARY OF THE INVENTION The present invention relates to a method for separating and recovering the second easily permeable component in a mixed gas economically and efficiently in a multi-component mixed gas separation process using a separation membrane module. The task is to provide.

【0004】[0004]

【課題を解決する手段】本発明者らは、前記課題を解決
すべく鋭意研究を重ねた結果、本発明を完成するに至っ
た。即ち、本発明によれば、少なくとも3つの成分から
なる原料混合気体を分離膜と接触させて該混合気体中か
ら第2易透過成分を効率よく分離回収する方法におい
て、(i)該原料混合気体を、分離膜モジュールの原料
混合気体の入口A側からその出口B側に向けて流通させ
ること、(ii)該分離膜を透過した気体を、該原料混合
気体の入口Aとその出口Bとの間の中間部に対応する位
置に配設された透過気体出口Cから排出し、該透過気体
にその出口C側に向う流れを生じさせること、を特徴と
する前記方法が提供される。また、本発明によれば、少
なくとも3つの成分からなる原料混合気体を分離膜と接
触させて該原料混合気体中から第2易透過成分を効率よ
く分離回収する方法において、(i)2つの分離膜モジ
ュールを結合して用い、原料混合気体を第1分離膜モジ
ュールの原料混合気体の入口A側からその排出口B側に
向けて流通させた後、第2分離膜モジュールの原料混合
気体の入口A(2)側からその出口B(2)側に向けて
流通させること、(ii)第1分離膜モジュールの分離膜
を透過した気体を、原料混合気体の流れと並流にして透
過気体出口Cから排出させること、(iii)第2分離膜
モジュールの分離膜を透過した気体を、原料混合気体の
流れと向流にして透過気体出口C(2)から排出させる
こと、を特徴とする前記の方法が提供される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above problems, and as a result, have completed the present invention. That is, according to the present invention, there is provided a method for efficiently separating and recovering a second easily permeable component from a mixed gas by bringing a mixed gaseous raw material comprising at least three components into contact with a separation membrane. From the inlet A side of the raw material mixture gas of the separation membrane module to the outlet B side thereof. (Ii) The gas permeating the separation membrane is allowed to flow between the inlet A of the raw material mixture gas and the outlet B thereof. Exhausting from a permeated gas outlet C disposed at a position corresponding to an intermediate portion therebetween, and causing the permeated gas to flow toward the outlet C side. According to the present invention, there is provided a method for efficiently separating and recovering a second easily permeable component from a raw material gas mixture by bringing a raw material gas mixture comprising at least three components into contact with a separation membrane, wherein (i) The raw material gas mixture is allowed to flow from the raw material mixed gas inlet A side of the first separation membrane module to the discharge port B side thereof, and then the raw material mixed gas inlet of the second separation membrane module is used. A: flowing from the A (2) side to the outlet B (2) side; (ii) making the gas permeating the separation membrane of the first separation membrane module co-current with the flow of the raw material mixed gas, and the permeated gas outlet C, and (iii) discharging the gas permeated through the separation membrane of the second separation membrane module countercurrently to the flow of the raw material mixture gas from the permeated gas outlet C (2). Is provided.

【0005】[0005]

【発明の実施の形態】図1は、本発明で用いる分離膜モ
ジュール1つの例についての模式図を示す。図1におい
て、1は分離膜Mを包囲する筒体、2は筒体の先端部に
付設された先端部密閉板、3は筒体の後端部に付設され
た後端部密閉板、4は筒体の周壁、5は先端部密閉板3
に付設された原料気体供給管、6は後端部密閉板3に付
設された非透過気体排出管、7は透過気体排出管、Aは
原料気体入口、Bはその出口、Cは透過気体出口、Rは
原料気体収容室、Sは透過気体収容室を各示す。矢印は
気体の流れ方向を示す。図1に示した分離膜モジュール
を用いて原料混合気体の分離処理を行うには、透過気体
排出管7を真空ポンプに連結して透過気体収容室Sを減
圧に保持するとともに、大気圧又は加圧状態の原料混合
気体をその供給管5を介して気体入口Aから気体収容室
R内に導入し、その気体収容室R内を気体の入口A側か
ら気体の出口B側に流通させる。混合気体がその入口A
側から出口B側に流通する間に、混合気体の易透過成分
は分離膜Mを透過し、気体収容室Sに入る。気体収容室
R内を出口B側に流通した非透過気体はその出口Bから
その排出管6を介して系外へ排出される。一方、分離膜
Mを透過して気体収容室Sに入った透過気体は、周壁4
に付設された透過気体の出口Cを通り、その排出管7を
介して系外へ排出される。透過気体の出口Cは、気体入
口と、気体出口Bとの間の中間部に対応する位置に付設
されていることから、空間Sにおける気体の流れは、矢
印方向の流れとなる。即ち、透過気体は、その出口Cの
方向に向かう流れとなり、気体入口Aに対応する気体収
容室Sでの位置(筒体の先端)と透過気体の出口Cとの
間においては、原料混合気体の流れと並流となり、一
方、非透過気体の出口Bに対応する気体収容室Sでの位
置(筒体の後端)と透過気体の出口Cとの間において
は、原料混合気体の流れと向流となる。前記のようにし
て、原料混合気体を分離膜処理することにより、混合気
体中の第2易透過成分の分離効率を向上させることがで
きる。前記においては、分離膜モジュールの気体透過側
(気体収容室S)を減圧にする例を示した。その気体透
過側は大気圧又は加圧であってもよく、この場合には、
供給側(気体収容室R)をその気体透過側よりも高い圧
力に保持する。このようにして原料混合気体を分離膜処
理しても、混合気体中の第2易透過成分の分離効率を向
上させることができる。
FIG. 1 is a schematic view showing one example of a separation membrane module used in the present invention. In FIG. 1, reference numeral 1 denotes a cylindrical body surrounding the separation membrane M, 2 denotes a front end sealing plate provided at a front end of the cylindrical body, 3 denotes a rear end sealing plate provided at a rear end of the cylindrical body, 4. Is the peripheral wall of the cylindrical body, and 5 is the end sealing plate 3
, A non-permeate gas discharge pipe attached to the rear end sealing plate 3, 7 a permeate gas discharge pipe, A is a raw gas inlet, B is its outlet, and C is a permeate gas outlet. , R indicate a source gas storage chamber, and S indicates a permeated gas storage chamber. Arrows indicate the direction of gas flow. In order to carry out the separation process of the raw material gas mixture using the separation membrane module shown in FIG. 1, the permeated gas discharge pipe 7 is connected to a vacuum pump to maintain the permeated gas storage chamber S at a reduced pressure, and at the atmospheric pressure or the pressure. The pressurized raw material mixed gas is introduced from the gas inlet A through the supply pipe 5 into the gas storage chamber R, and is circulated through the gas storage chamber R from the gas inlet A side to the gas outlet B side. The mixed gas enters the inlet A
While flowing from the side to the outlet B side, the easily permeable component of the mixed gas permeates the separation membrane M and enters the gas storage chamber S. The non-permeate gas flowing through the gas storage chamber R to the outlet B side is discharged from the outlet B to the outside of the system through the discharge pipe 6. On the other hand, the permeated gas that has passed through the separation membrane M and entered the gas storage chamber S is
The gas passes through the outlet C of the permeated gas attached to the exhaust gas and is discharged out of the system through the discharge pipe 7. Since the outlet C of the permeated gas is provided at a position corresponding to an intermediate portion between the gas inlet and the gas outlet B, the gas flow in the space S is in the direction of the arrow. That is, the permeated gas flows in the direction of the outlet C, and between the position (the end of the cylindrical body) in the gas storage chamber S corresponding to the gas inlet A and the permeated gas outlet C, the raw material mixed gas On the other hand, between the position in the gas storage chamber S (the rear end of the cylindrical body) corresponding to the outlet B of the non-permeate gas and the outlet C of the permeate gas, It becomes countercurrent. As described above, the separation efficiency of the second easily permeable component in the mixed gas can be improved by subjecting the raw material mixed gas to the separation membrane treatment. In the above, the example which reduced the pressure of the gas permeation side (gas storage chamber S) of the separation membrane module was shown. The gas permeable side may be at atmospheric pressure or pressurized, in which case,
The supply side (gas storage chamber R) is maintained at a higher pressure than the gas permeation side. Thus, even if the raw material gas mixture is treated with the separation membrane, the separation efficiency of the second easily permeable component in the gas mixture can be improved.

【0006】図2は本発明で用いる2つの分離膜モジュ
ールを結合して用いる例についての模式図を示す。図2
において、1は分離膜Mを包囲する第1筒体、11は分
離膜M(2)を包囲する第2筒体、2、12はそれぞれ
各筒体1、11の先端に付設された先端部密閉板、3、
13はそれぞれ各筒体1、11の後端部に付設された後
端部密閉板、4、14はそれぞれ各筒体1、11の周
壁、5は第1筒体1の先端部密閉板3に付設された原料
混合気体供給管、16は第2筒体11の後端部密閉板1
3に付設された非透過気体排出管、7は透過気体排出
管、8は第1筒体1の気体収容室Rと第2筒体11の気
体収容室R(2)との間を連結する連結管、9は第1筒
体1の気体収容室Sと第2筒体の気体収容室S(2)と
を連結する連結管、A、A(2)はそれぞれ気体収容室
R、R(2)の気体の入口、B、B(2)はそれぞれ気
体収容室R、R(2)の非透過気体の出口、C、C
(2)はそれぞれ透過気体収容室S、S(2)の気体出
口、Rは、第1分離膜モジュールの第1筒体1内に形成
されている原料混合気体の第1収容室、R(2)は第2
分離膜モジュールの第2筒体11内に形成されている原
料混合気体の第2収容室、Sは第1分離膜モジュールの
第1筒体1内に形成されている第1透過気体収容室、S
(2)は第2分離膜モジュールの第2筒体11内に形成
されている第2透過気体収容室、M、M(2)はそれぞ
れ、第1筒体1及び第2筒体11に付設された分離膜を
各示す。
FIG. 2 is a schematic view showing an example in which two separation membrane modules used in the present invention are combined and used. FIG.
In the figure, 1 is a first cylindrical body surrounding the separation membrane M, 11 is a second cylindrical body surrounding the separation membrane M (2), and 2 and 12 are distal end portions attached to the distal ends of the cylindrical bodies 1 and 11, respectively. Sealing plate, 3,
13 is a rear end sealing plate attached to the rear end of each of the cylindrical bodies 1 and 11, respectively, 4 and 14 are peripheral walls of each of the cylindrical bodies 1 and 11, respectively, and 5 is a front end sealing plate 3 of the first cylindrical body 1. The mixed gas supply pipe 16 provided at the rear end of the second cylindrical body 11
3 is a non-permeate gas discharge pipe, 7 is a permeate gas discharge pipe, and 8 connects between the gas storage chamber R of the first cylinder 1 and the gas storage chamber R (2) of the second cylinder 11. The connecting pipe 9 is a connecting pipe connecting the gas storage chamber S of the first cylindrical body 1 and the gas storing chamber S (2) of the second cylindrical body, and A and A (2) are the gas storing chambers R and R (, respectively). 2) Gas inlet, B, B (2) are non-permeate gas outlets of gas storage chambers R, R (2), C, C, respectively.
(2) is a gas outlet of the permeated gas storage chambers S and S (2), respectively, and R is a first storage chamber of the raw material gas mixture formed in the first cylinder 1 of the first separation membrane module, R ( 2) is the second
A second storage chamber for the raw material gas mixture formed in the second cylindrical body 11 of the separation membrane module; S is a first permeable gas storage chamber formed in the first cylindrical body 1 of the first separation membrane module; S
(2) is a second permeable gas accommodating chamber formed in the second cylinder 11 of the second separation membrane module, and M and M (2) are attached to the first cylinder 1 and the second cylinder 11, respectively. Each of the separated membranes is shown.

【0007】図2に示した2つの分離膜モジュールを結
合して用いて原料混合気体の分離処理を行うには、透過
気体排出管7を真空ポンプに連結して気体収容室S及び
S(2)内を減圧に保持するとともに、大気圧又は加圧
状態の原料混合気体をその供給管5を介して入口Aから
第1気体収容室R内に導入し、その第1気体収容室R内
を気体入口A側から気体出口B側に流通させる。混合気
体がその入口A側から出口B側に流通する間に、混合気
体の易透過成分は分離膜Mを透過し、第1気体収容室S
に入る。第1気体収容室R内における非透過気体は、そ
の気体出口Bから連結管8を通り、第2気体収容室R
(2)内にその入口A(2)から入り、その出口B
(2)の方向に流通し、第2気体収容室R(2)内にお
ける非透過気体はその出口B(2)から排出管16を通
って系外へ排出される。第1分離膜Mを透過した気体は
第1透過気体収容室Sに入り、一方、第2分離膜M
(2)を透過した気体は第2透過気体収容室S(2)に
入る。これらの各気体収容室S及びS(2)に入った気
体は、それらの出口C及びC(2)を通って連結管9に
入り、その連結管9に付設された気体排出管7を介して
外部へ排出される。第1透過気体収容室の出口Cと、第
2透過気体収容室の出口C(2)とは、対向して配設さ
れていることから、各気体収容室における透過気体の流
れは、矢印方向の流れとなり、第1筒体1内における透
過気体の流れは原料混合気体に対して並流となり、第2
筒体2内における透過気体の流れは向流となる。前記の
ようにして、原料混合気体を分離膜処理することによ
り、混合気体中の第2易透過成分の分離効率を向上させ
ることができる。前記においては、分離膜モジュールの
気体透過側(気体収容室S)を減圧にする例を示した
が、その気体透過側は大気圧又は加圧であってもよく、
この場合には、供給側(気体収容室R)をその気体透過
側よりも高い圧力に保持する。このようにして原料混合
気体を分離膜処理しても、混合気体中の第2易透過成分
の分離効率を向上させることができる。
In order to perform the separation process of the raw material gas mixture by using the two separation membrane modules shown in FIG. 2, the permeated gas discharge pipe 7 is connected to a vacuum pump and the gas storage chambers S and S (2 ) Is maintained at a reduced pressure, and a raw material mixed gas at an atmospheric pressure or a pressurized state is introduced into the first gas storage chamber R from the inlet A through the supply pipe 5, and the inside of the first gas storage chamber R is The gas flows from the gas inlet A side to the gas outlet B side. While the mixed gas flows from the inlet A side to the outlet B side, the easily permeable component of the mixed gas permeates the separation membrane M and the first gas storage chamber S
to go into. The non-permeated gas in the first gas storage chamber R passes through the connecting pipe 8 from the gas outlet B and passes through the second gas storage chamber R
Enter (2) from its entrance A (2) and its exit B
The non-permeated gas flowing in the direction (2) in the second gas storage chamber R (2) is discharged from the outlet B (2) through the discharge pipe 16 to the outside of the system. The gas permeating the first separation membrane M enters the first permeated gas storage chamber S, while the second separation membrane M
The gas permeated through (2) enters the second permeated gas storage chamber S (2). The gas entering each of these gas storage chambers S and S (2) enters the connecting pipe 9 through the outlets C and C (2), and passes through the gas discharge pipe 7 attached to the connecting pipe 9. Is discharged to the outside. Since the outlet C of the first permeable gas storage chamber and the outlet C (2) of the second permeable gas storage chamber are disposed to face each other, the flow of the permeable gas in each gas storage chamber is in the direction of the arrow. The flow of the permeated gas in the first cylindrical body 1 becomes co-current with the raw material mixed gas,
The flow of the permeated gas in the cylinder 2 is countercurrent. As described above, the separation efficiency of the second easily permeable component in the mixed gas can be improved by subjecting the raw material mixed gas to the separation membrane treatment. In the above, the example in which the gas permeation side (gas storage chamber S) of the separation membrane module is depressurized has been described, but the gas permeation side may be at atmospheric pressure or pressurized.
In this case, the supply side (gas storage chamber R) is maintained at a higher pressure than the gas permeation side. Thus, even if the raw material gas mixture is treated with the separation membrane, the separation efficiency of the second easily permeable component in the gas mixture can be improved.

【0008】図3は、本発明で用いる分離膜モジュール
の他の例についての模式図を示す。この図3に示した分
離膜モジュールは、分離膜を筒状分離膜又は多数の中空
糸からなる中空糸束分離膜に変更した以外は、図1に示
した分離膜モジュールと同様の構造のものである。図3
において、M(3)は筒状分離膜又は中空糸束を示し、
その筒状分離膜又は中空糸束分離膜の先端は原料混合気
体供給管5の端部に連結され、その後端は非透過気体排
出管6の端部に連結されている。
FIG. 3 is a schematic view showing another example of the separation membrane module used in the present invention. The separation membrane module shown in FIG. 3 has the same structure as the separation membrane module shown in FIG. 1 except that the separation membrane is changed to a tubular separation membrane or a hollow fiber bundle separation membrane composed of a large number of hollow fibers. It is. FIG.
In M, (3) represents a tubular separation membrane or a hollow fiber bundle;
The tip of the tubular separation membrane or the hollow fiber bundle separation membrane is connected to the end of the raw material mixed gas supply pipe 5, and the rear end is connected to the end of the non-permeate gas discharge pipe 6.

【0009】図1に示した分離膜モジュールにおいて、
その透過気体の出口Cの位置は、筒体の先端から出口C
の距離L(1)と、筒体の長さL(2)との比L(1)
/L(2)が20〜95%、好ましくは25〜90%に
なるように規定するのがよい。分離膜としては、気体分
離性能を有するものであればどのようなものでも使用可
能であり、従来公知の各種の高分子系分離膜を使用する
ことができる。このような分離膜としては、例えば、ポ
リイミド、ポリアミド、ポリカーボネート、ポリエステ
ル、ポリスルホン、ポリシロキサン、セルロースアセテ
ート、それらの高分子を含む共重合体又は混合物等が挙
げられる。また、分離膜は、支持体上に高分子をコーテ
ィングして形成した膜であってもよいし、多孔質ガラス
膜や、カーボン膜の他、金属酸化物膜等のセラミックス
膜であってもよい。本発明で用いる分離膜の形状は、気
体分離に用いられている形状であれば制限されず、本発
明で用いられる分離膜は中空糸膜、スパイラル膜、平
膜、筒体膜等であることができるが、特に中空糸膜の使
用が好ましい。また、分離膜の膜構造上の制限も特にな
く、非対称膜や複合膜等であることができる。
In the separation membrane module shown in FIG.
The position of the outlet C of the permeated gas is determined from the tip of the cylindrical body to the outlet C.
L (1) between the distance L (1) of the cylinder and the length L (2) of the cylindrical body
/ L (2) should be defined so as to be 20 to 95%, preferably 25 to 90%. As the separation membrane, any one having gas separation performance can be used, and various conventionally known polymer separation membranes can be used. Examples of such a separation membrane include polyimide, polyamide, polycarbonate, polyester, polysulfone, polysiloxane, cellulose acetate, and copolymers or mixtures containing these polymers. Further, the separation membrane may be a membrane formed by coating a polymer on a support, or may be a porous glass membrane, a carbon membrane, or a ceramic membrane such as a metal oxide membrane. . The shape of the separation membrane used in the present invention is not limited as long as it is used for gas separation, and the separation membrane used in the present invention is a hollow fiber membrane, a spiral membrane, a flat membrane, a cylindrical membrane, or the like. However, the use of hollow fiber membranes is particularly preferred. There is no particular limitation on the membrane structure of the separation membrane, and an asymmetric membrane or a composite membrane can be used.

【0010】[0010]

【発明の効果】従来、混合気体中の第1易透過成分の膜
分離を目的とする場合には、供給側における原料混合気
体の流れと、透過側における透過気体の流れとは、向流
であることが好ましく、向流の流れ状態を形成すること
により、最も効率的に第1易透過成分を分離することが
できる。その理由を簡単に述べると、向流の流れ方式
は、他の流れの方式に比べて、分離膜モジュールの全長
範囲にわたって第1易透過成分の透過推進力(膜両面間
の分圧差)を高く保持できる方式であり、第1易透過成
分の高透過率を実現維持できるからである。しかしなが
ら、混合気体中からの分離を目的とする成分が第1易透
過成分よりも膜透過性の劣った第2易透過成分の場合に
は、いち早く透過する第1易透過成分による透過側での
第2易透過成分の希釈効果が、第2易透過成分の透過推
進力の大きさに直接影響する。向流の流れ状態では、第
1易透過成分の大半が分離膜モジュールの入口側に近い
ところで透過してしまい、モジュール大半の部分での透
過側に第1易透過成分が存在せずに希釈効果が発現しな
いために、第2易透過成分の膜透過率が大幅に悪化する
ようになる。即ち、気体透過側における第2易透過成分
の分圧が、第1易透過成分が存在しないために、その分
高くなってしまい、その第2易透過成分に関し、その膜
透過推進力となる供給側と透過側の分圧差が小さくな
り、その結果、第2易透過成分の膜透過率が悪化する。
一方、前記のような第2易透過成分の膜透過率の悪化
は、供給側の原料混合気体の流れと、透過側の透過気体
の流れの状態を、並流とすることにより改善することが
できるが、この場合においても、第2易透過成分の回収
率を高くするために、透過側の減圧度を高くして第2易
透過成分の分圧を低下させると、出口付近における供給
側の第1易透過成分濃度が大きく低下し、透過側の第1
易透過成分の濃度がゼロに近くなるため、出口付近にお
ける第2易透過成分の供給側と透過側の分圧差が小さく
なり、第2易透過成分の透過率は悪化する。
Conventionally, for the purpose of membrane separation of the first easily permeable component in the gas mixture, the flow of the raw material gas mixture on the supply side and the flow of the gas permeate on the permeation side are countercurrent. Preferably, by forming a counter-current flow state, the first easily permeable component can be separated most efficiently. Briefly explaining the reason, the counter-current flow method increases the permeation driving force (partial pressure difference between both surfaces of the membrane) of the first easily permeable component over the entire length range of the separation membrane module as compared with other flow methods. This is because the method can maintain the high transmittance of the first easily permeable component. However, in the case where the component intended for separation from the gas mixture is the second easily permeable component, which has lower membrane permeability than the first easily permeable component, the first easily permeable component that passes through the first easily permeable component on the permeate side will be used. The effect of diluting the second easily permeable component directly affects the magnitude of the permeation driving force of the second easily permeable component. In the counter-current flow state, most of the first easily permeable component permeates near the inlet side of the separation membrane module, and there is no first easily permeable component on the permeate side of most of the module. Does not appear, the membrane transmittance of the second easily permeable component is greatly deteriorated. That is, the partial pressure of the second easily permeable component on the gas permeable side is increased by the absence of the first easily permeable component, and the supply of the second easily permeable component becomes the membrane permeation driving force. The partial pressure difference between the side and the transmission side becomes small, and as a result, the membrane transmittance of the second easily permeable component deteriorates.
On the other hand, the deterioration of the membrane permeability of the second easily permeable component as described above can be improved by making the flow of the raw material mixed gas on the supply side and the flow of the permeated gas on the permeation side co-current. However, even in this case, in order to increase the recovery rate of the second easily permeable component, if the degree of decompression on the permeate side is increased and the partial pressure of the second easily permeable component is reduced, the supply side near the outlet is reduced. The concentration of the first easily permeable component is greatly reduced, and
Since the concentration of the easily permeable component is close to zero, the partial pressure difference between the supply side and the transmission side of the second easily permeable component near the outlet is reduced, and the transmittance of the second easily permeable component is deteriorated.

【0011】これに対し、本発明の場合は、入口付近に
おける原料混合気体の流れと透過気体の流れとが並流と
なっていることから、透過側の第2易透過成分の分圧
は、第1易透過成分の稀釈効果によって低く保持され、
その結果、第2易透過成分の膜透過率は高く保持され
る。一方、第1易透過成分濃度が低くなる出口付近にお
いては、原料混合気体と透過気体の流れ状態は膜透過率
の高い向流に保持されていることから、透過側における
第1易透過成分の稀釈による第2易透過成分の分圧の低
下効果がなくても、第2易透過成分の膜透過率を高く保
持することが可能になる。以上のことから、本発明の場
合には、第2易透過成分の全体的な膜透過率は高く保持
され、原料混合気体から、第2易透過成分を高い効率で
分離回収することができるようになる。
On the other hand, in the case of the present invention, since the flow of the raw material mixed gas and the flow of the permeated gas near the inlet are co-current, the partial pressure of the second easily permeated component on the permeation side is: Held low by the dilution effect of the first easily permeable component,
As a result, the membrane transmittance of the second easily permeable component is kept high. On the other hand, in the vicinity of the outlet where the concentration of the first easily permeable component is low, the flow state of the raw material mixture gas and the permeated gas is maintained in a countercurrent having a high membrane permeability. Even if there is no effect of lowering the partial pressure of the second easily permeable component due to the dilution, it is possible to keep the membrane permeability of the second easily permeable component high. From the above, in the case of the present invention, the overall membrane permeability of the second easily permeable component is kept high, and the second easily permeable component can be separated and recovered from the raw material gas mixture with high efficiency. become.

【0012】本発明の方法は、発電所等から排出される
排煙ガスからの二酸化炭素の分離回収法として有利に適
用することができる。排煙ガスは、水蒸気、二酸化炭
素、窒素及び酸素の主要成分からなり、その主要成分の
膜分離においては、水蒸気が第1易透過成分となり、最
も高い膜透過性を有し、二酸化炭素が第2易透過成分と
なり、水蒸気に次ぐ高い膜透過性を有する。本発明で
は、このような成分組成の混合気体から、二酸化炭素
を、プロセス経済性良くかつ高効率で分離回収すること
ができる。本発明の方法は、各種の混合気体から、その
第2易透過成分を高効率で分離回収することができ、特
に、水蒸気を第1易透過成分として含む混合気体(例え
ば、排煙ガスや天然ガス等)からその第2易透過成分を
高効率で分離回収することができる。
The method of the present invention can be advantageously applied as a method for separating and recovering carbon dioxide from flue gas discharged from a power plant or the like. The flue gas is composed of main components of water vapor, carbon dioxide, nitrogen and oxygen. In the membrane separation of the main components, water vapor is the first easily permeable component, has the highest membrane permeability, and carbon dioxide is the primary component. 2 It becomes an easily permeable component and has the highest membrane permeability next to water vapor. In the present invention, carbon dioxide can be separated and recovered from a mixed gas of such a component composition with high process economy and high efficiency. According to the method of the present invention, the second easily permeable component can be separated and recovered from various types of mixed gas with high efficiency. In particular, a mixed gas containing water vapor as the first easily permeable component (for example, flue gas or natural gas). Gas and the like) to separate and recover the second easily permeable component with high efficiency.

【0013】[0013]

【実施例】次に本発明を実施例によりさらに詳細に説明
する。
Next, the present invention will be described in more detail with reference to examples.

【0014】実施例1 図1に示した構造の分離膜モジュールを用いて、水蒸気
6.6%、二酸化炭素14.0%、窒素75.7%、酸
素3.7%(vol)からなる混合気体を膜分離処理し
た。この場合、分離膜としてはポリイミド膜を用い、透
過ガスの排出位置は、筒体1の先端からの距離L(1)
と筒体1の全長L(2)との比L(1)/L(2)が2
/3となる位置とした。また、供給側の圧力(気体収容
室Rの圧力)に対する透過側の圧力(気体収容室Sの圧
力)の比は0.1とし、膜分離温度は50℃とした。
Example 1 Using a separation membrane module having the structure shown in FIG. 1, a mixture composed of 6.6% water vapor, 14.0% carbon dioxide, 75.7% nitrogen, and 3.7% (vol) oxygen. The gas was subjected to membrane separation. In this case, a polyimide membrane is used as the separation membrane, and the discharge position of the permeated gas is set at a distance L (1) from the tip of the cylinder 1.
The ratio L (1) / L (2) of the length of the cylindrical body 1 to L (2) is 2
/ 3. The ratio of the pressure on the permeation side (the pressure in the gas storage chamber S) to the pressure on the supply side (the pressure in the gas storage chamber R) was 0.1, and the membrane separation temperature was 50 ° C.

【0015】比較例1 透過ガスの排出位置を筒体1の後端位置とし、原料混合
気体の流れと透過気体の流れの状態を並流とした以外
は、実施例1と同様にして実験を行なった。この場合、
膜面積は、その透過流量が実施例1の場合と同じになる
ように設定した。
Comparative Example 1 An experiment was performed in the same manner as in Example 1 except that the permeated gas discharge position was set to the rear end position of the cylinder 1 and the flow of the raw material mixed gas and the flow of the permeated gas were set to be cocurrent. Done. in this case,
The membrane area was set such that the permeation flow rate was the same as in Example 1.

【0016】比較例2 透過ガスの排出位置を筒体1の前端位置とし、原料混合
気体の流れと透過気体の流れの状態を向流とした以外
は、実施例1と同様にして実験を行なった。この場合、
膜面積はその透過流量が実施例1の場合と同じになるよ
うに設定した。以上の実験結果を表1に示す。なお、表
1に示した項目の具体的内容は以下の通りである。 (1)CO2回収率(%) 原料混合気体中に含まれるCO2に対する回収CO2の割
合を示す。 (2)相対消費動力 回収CO2の単位容積当たりの消費動力を実施例1の場
合を1.00とした相対消費動力を示す。 (3)相対膜面積 回収CO2の単位容積当りに必要とされる膜面積を実施
例1の場合を1.00とした所要膜面積を示す。 (4)回収CO2濃度(%) 膜を透過した気体中に含まれるCO2濃度を示す。但
し、この場合、水蒸気は除外され、CO2濃度の算出に
は含まれていない。即ち、ドライ基準のCO2濃度を示
す。
Comparative Example 2 An experiment was performed in the same manner as in Example 1 except that the permeated gas discharge position was set to the front end position of the cylinder 1 and the flow of the raw material mixture gas and the flow of the permeated gas were set to countercurrent. Was. in this case,
The membrane area was set so that the permeation flow rate was the same as in Example 1. Table 1 shows the results of the above experiments. The specific contents of the items shown in Table 1 are as follows. (1) CO 2 recovery rate (%) The ratio of recovered CO 2 to CO 2 contained in the raw material mixed gas is shown. (2) Relative power consumption Relative power consumption is shown assuming the power consumption per unit volume of recovered CO 2 as 1.00 in Example 1. (3) Relative membrane area The required membrane area is shown assuming that the membrane area required per unit volume of recovered CO 2 is 1.00 in the case of Example 1. (4) Concentration of recovered CO 2 (%) Indicates the concentration of CO 2 contained in the gas that has passed through the membrane. However, in this case, water vapor is excluded and is not included in the calculation of the CO 2 concentration. That is, it indicates the dry reference CO 2 concentration.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示した結果から、本発明の場合は、
比較例1及び比較例2に比べて良好な膜分離結果を示す
ことがわかる。
From the results shown in Table 1, in the case of the present invention,
It can be seen that the results of membrane separation are better than those of Comparative Examples 1 and 2.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明で用いる分離膜モジュールの1つの例に
ついての模式図を示す。
FIG. 1 is a schematic view showing one example of a separation membrane module used in the present invention.

【図2】本発明で用いる2つの分離膜モジュールを結合
した例についての模式図を示す。
FIG. 2 is a schematic view showing an example in which two separation membrane modules used in the present invention are combined.

【図3】本発明で用いる分離膜モジュールの他の例につ
いての模式図を示す。
FIG. 3 is a schematic view showing another example of the separation membrane module used in the present invention.

【符号の説明】[Explanation of symbols]

1、11 筒体 5 原料混合気体供給管 6、16 非透過気体排出管 7 透過気体排出管 8、9 連結管 A、A(2) 原料混合気体入口 B、B(2) 非透過気体出口 C、C(2) 透過気体出口 1, 11 cylinder 5 raw material mixed gas supply pipe 6, 16 non-permeable gas discharge pipe 7 permeated gas discharge pipe 8, 9 connecting pipe A, A (2) raw material mixed gas inlet B, B (2) non-permeable gas outlet C , C (2) permeated gas outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高木 建次 東京都港区西新橋2−8−11 第7東洋 海事ビル8階 財団法人地球環境産業技 術研究機構 CO2固定化等プロジェク ト室内 (72)発明者 原谷 賢治 茨城県つくば市東1丁目1番 工業技術 院物質工学工業技術研究所内 審査官 杉江 渉 (56)参考文献 特開 昭52−114476(JP,A) 特開 昭52−114477(JP,A) 特開 昭52−114574(JP,A) 特開 昭52−114575(JP,A) 特開 昭52−114576(JP,A) 特開 昭52−114577(JP,A) 特開 昭63−151332(JP,A) 特開 平2−111416(JP,A) 特開 平5−212253(JP,A) (58)調査した分野(Int.Cl.6,DB名) B01D 53/22 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Kenji Takagi 2-8-11 Nishi-Shimbashi, Minato-ku, Tokyo 7th Oriental Maritime Building 8th Floor Global Environmental Innovative Technology Research Organization CO2 fixation project room ( 72) Inventor Kenji Haraya 1-1-1 Higashi, Tsukuba City, Ibaraki Prefecture Examiner, Wataru Sugie, National Institute of Advanced Industrial Science and Technology (56) References JP-A-52-114476 (JP, A) JP, A) JP-A-52-114574 (JP, A) JP-A-52-114575 (JP, A) JP-A-52-114576 (JP, A) JP-A-52-114577 (JP, A) 63-151332 (JP, A) JP-A-2-111416 (JP, A) JP-A-5-212253 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) B01D 53 / twenty two

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくとも3つの成分からなる原料混合
気体を分離膜と接触させて該混合気体中から第2易透過
成分を効率よく分離回収する方法において、 (i)該原料混合気体を、分離膜モジュールの原料混合
気体の入口A側からその出口B側に向けて流通させるこ
と、 (ii)該分離膜を透過した気体を、該原料混合気体の入
口Aとその出口Bとの間の中間部に対応する位置に配設
された透過気体出口Cから排出し、該透過気体にその出
口C側に向う流れを生じさせること、を特徴とする前記
方法。
1. A method for efficiently separating and recovering a second easily permeable component from a mixed gas by bringing a raw material mixed gas comprising at least three components into contact with a separation membrane, wherein (i) separating the raw material mixed gas Flowing the raw material mixture gas of the membrane module from the inlet A side to the outlet B side thereof; (ii) passing the gas permeating the separation membrane between the inlet A of the raw material mixture gas and the outlet B thereof Discharging the gas from a permeated gas outlet C disposed at a position corresponding to the portion, and causing the permeated gas to flow toward the outlet C side.
【請求項2】 少なくとも3つの成分からなる原料混合
気体を分離膜と接触させて該原料混合気体中から第2易
透過成分を効率よく分離回収する方法において、 (i)2つの分離膜モジュールを結合して用い、原料混
合気体を第1分離膜モジュールの原料混合気体の入口A
側からその排出口B側に向けて流通させた後、第2分離
膜モジュールの原料混合気体の入口A(2)側からその
出口B(2)側に向けて流通させること、 (ii)第1分離膜モジュールの分離膜を透過した気体
を、原料混合気体の流れと並流にして透過気体出口Cか
ら排出させること、 (iii)第2分離膜モジュールの分離膜を透過した気体
を、原料混合気体の流れと向流にして透過気体出口C
(2)から排出させること、を特徴とする前記の方法。
2. A method for efficiently separating and recovering a second easily permeable component from a raw material mixture gas by bringing a raw material mixture gas comprising at least three components into contact with a separation membrane, comprising the steps of: The raw material mixed gas is used in combination with the raw material mixed gas inlet A of the first separation membrane module.
From the inlet side of the mixed gas of the second separation membrane module to the outlet B (2) side of the second separation membrane module, and (ii) (1) The gas that has passed through the separation membrane of the separation membrane module is discharged from the permeated gas outlet C in parallel with the flow of the raw material mixed gas, and (iii) the gas that has passed through the separation membrane of the second separation membrane module is converted into the raw material. Permeate gas outlet C countercurrent to mixed gas flow
(2) discharging from the above.
JP8232496A 1996-08-14 1996-08-14 Separation and recovery method of gas by separation membrane Expired - Lifetime JP2879846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8232496A JP2879846B2 (en) 1996-08-14 1996-08-14 Separation and recovery method of gas by separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8232496A JP2879846B2 (en) 1996-08-14 1996-08-14 Separation and recovery method of gas by separation membrane

Publications (2)

Publication Number Publication Date
JPH1057746A JPH1057746A (en) 1998-03-03
JP2879846B2 true JP2879846B2 (en) 1999-04-05

Family

ID=16940243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8232496A Expired - Lifetime JP2879846B2 (en) 1996-08-14 1996-08-14 Separation and recovery method of gas by separation membrane

Country Status (1)

Country Link
JP (1) JP2879846B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370596B (en) * 2021-12-08 2023-07-14 中国航空工业集团公司北京长城计量测试技术研究所 Air chamber for improving purity of alkali metal and implementation method

Also Published As

Publication number Publication date
JPH1057746A (en) 1998-03-03

Similar Documents

Publication Publication Date Title
JP2872521B2 (en) Two-stage membrane separation drying method and apparatus
EP0702995B1 (en) Membrane gas separation
KR950006633B1 (en) Improved process and system for the production of dry, high purity nitrogen
KR950006632B1 (en) Production of dry, high purity nitrogen
ES2388918T3 (en) Procedures using selective solids permeability membranes in multiple groups for simultaneous recovery of specific products from a fluid mixture
KR920007672A (en) Membrane Drying Method and System
JP2000262838A (en) Gas separating membrane module and gas separating method
EP0430304B1 (en) Separation of gas mixtures
JPH04227021A (en) Hybrid preliminary purifier for low temperature air separation plant
KR19980070495A (en) Separation of Multi-Component Gas Mixtures Using Shoe-Adsorbed Membranes
EP1647531B1 (en) Method for concentrating methane from sewage sludge and methane storage equipment
JP2006305463A (en) Gas separation apparatus and gas separation method
US5693121A (en) Semi-permeable membrane separation process for the production of very high purity nitrogen
JP2879846B2 (en) Separation and recovery method of gas by separation membrane
JP2765671B2 (en) Method for producing oxygen-enriched gas
JP2012236123A (en) Carbon dioxide separation and recovery system in exhaust gas by zeolite membrane
JPH0857243A (en) Separation of gas by partial purging for preliminary or after purification
JP2002363114A (en) Apparatus for separating and recovering perfluoro compound gas
JP6511912B2 (en) Gas separation system and method for producing enriched gas
US6478851B2 (en) Ethylene treatment by gas permeation
JPH03245812A (en) Separation of gas
JP2022184754A (en) Gas separation method
JPH0549841A (en) Recovering method of condensable organic vapor
JPWO2022044481A5 (en)
JPH04131118A (en) Continuous treatment of gas containing organic solvent vapor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term