JP2874598B2 - Rectifier - Google Patents

Rectifier

Info

Publication number
JP2874598B2
JP2874598B2 JP17851995A JP17851995A JP2874598B2 JP 2874598 B2 JP2874598 B2 JP 2874598B2 JP 17851995 A JP17851995 A JP 17851995A JP 17851995 A JP17851995 A JP 17851995A JP 2874598 B2 JP2874598 B2 JP 2874598B2
Authority
JP
Japan
Prior art keywords
tower
rectifier
temperature
concentrated solution
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17851995A
Other languages
Japanese (ja)
Other versions
JPH0926230A (en
Inventor
隆仁 石井
敬 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17851995A priority Critical patent/JP2874598B2/en
Publication of JPH0926230A publication Critical patent/JPH0926230A/en
Application granted granted Critical
Publication of JP2874598B2 publication Critical patent/JP2874598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、作動媒体としてアンモ
ニア、水等を用いる一般家庭向けの吸収式ヒートポンプ
の精溜器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rectifier for an absorption heat pump for general households using ammonia, water or the like as a working medium.

【0002】[0002]

【従来の技術】従来この種の吸収式ヒートポンプは、一
般家庭向けのものはなく業務用であり、そこに用いる精
溜器としては、図6に示したように、大口径(塔外径φ
200mm以上)の精溜塔31内に、上方より、精溜ガス
取り出し管32と、金属管をコイル状に巻いた構造(一
般に、蛇管式熱交換器と呼ばれる)の分縮熱交換器33
ならびにその周囲に充填材34が配置された分縮部D
と、濃溶液流入管35ならびに希溶液取り出し管36と
を備えた気液分離部Eとを配置して構成されていた。
2. Description of the Related Art Conventionally, this type of absorption heat pump is not for general households but is for business use, and as a rectifier used therein, as shown in FIG.
In a rectification tower 31 having a diameter of 200 mm or more, a rectification gas extraction pipe 32 and a partial heat exchanger 33 having a structure in which a metal pipe is wound in a coil shape (generally called a coiled pipe heat exchanger) from above.
And a shrinking portion D in which a filler 34 is disposed around the
And a gas-liquid separation section E provided with a concentrated solution inflow pipe 35 and a dilute solution take-out pipe 36.

【0003】吸収式サイクル構成の中で、精溜器と他の
要素部品との関係について、図7に示した発生・精溜回
路部を用いて説明する。吸収式サイクルの発生・精溜回
路部は、溶液ポンプ40、溶液熱交換器41、精溜器3
0、発生器42より構成されている。吸収式サイクルは
これ以外に、凝縮器、過冷却器、蒸発器、吸収器、濃溶
液タンク、膨張弁、減圧弁、及び各要素部品を接続する
配管より構成されるが、省略している。
The relationship between the rectifier and other component parts in the absorption cycle configuration will be described with reference to the generation / rectification circuit section shown in FIG. The generation / rectification circuit of the absorption cycle includes a solution pump 40, a solution heat exchanger 41, and a rectifier 3.
0, a generator 42. In addition, the absorption cycle includes a condenser, a subcooler, an evaporator, an absorber, a concentrated solution tank, an expansion valve, a pressure reducing valve, and piping connecting each component, but is omitted.

【0004】溶液ポンプ40によりアンモニア水濃溶液
は、精溜器30の分縮部Dに送られそこで分縮熱により
加熱される(分縮熱回収)。次に、溶液熱交換器41で
精溜器の希溶液取り出し管36より戻ってくる高温の希
溶液と熱交換し昇温する。続いて、濃溶液は、発生器4
2に導入され、所定の2相状態まで加熱される。そし
て、濃溶液流入管35を通って精溜器30内に流入す
る。高温濃溶液の平衡蒸気は、分縮部Dに至り、そこに
ある分縮熱交換器33で冷却される。その時、蒸気中の
水蒸気の方がアンモニア蒸気よりも凝縮し易く、ほとん
どの水蒸気と一部のアンモニア蒸気は液体として滴下す
る。一方、ほとんどのアンモニア蒸気はそのまま上昇し
てゆく。こうした分縮熱交換器33の冷却によるアンモ
ニア蒸気の濃縮過程が分縮部Dの中で繰り返し行われる
結果、塔頂部の精溜ガス取り出し管32からは純度の高
いアンモニア蒸気を取り出すことができる。
[0004] The ammonia water concentrated solution is sent by the solution pump 40 to the splitting section D of the rectifier 30, where it is heated by the splitting heat (split heat recovery). Next, the solution heat exchanger 41 exchanges heat with a high-temperature dilute solution returned from the dilute solution take-out pipe 36 of the rectifier to raise the temperature. Subsequently, the concentrated solution is supplied to the generator 4
2 and heated to a predetermined two-phase state. Then, it flows into the rectifier 30 through the concentrated solution inflow pipe 35. The equilibrium vapor of the high-temperature concentrated solution reaches the condensing section D and is cooled by the condensing heat exchanger 33 located there. At that time, the water vapor in the vapor is more easily condensed than the ammonia vapor, and most of the water vapor and a part of the ammonia vapor are dropped as a liquid. On the other hand, most of the ammonia vapor rises as it is. As a result of the process of concentrating the ammonia vapor by the cooling of the partial heat exchanger 33 being repeatedly performed in the partial condensing section D, high-purity ammonia vapor can be extracted from the rectified gas extraction pipe 32 at the top of the tower.

【0005】一方、高温・低濃度の平衡液体(希溶液)
は、精溜器30の希溶液取り出し管36より溶液熱交換
器41に至り、そこで濃溶液と熱交換することにより冷
却される。その後、減圧弁を経て吸収器に入る。また、
低温・高濃度のアンモニア蒸気は、精溜器の精溜ガス取
り出し管32より凝縮器、過冷却器、膨張弁、蒸発器、
過冷却器を経て吸収器に入る。吸収器内では、吸収熱が
奪われることにより、希溶液にアンモニアガスが吸収さ
れ濃溶液が再生される。
On the other hand, a high-temperature and low-concentration equilibrium liquid (dilute solution)
Reaches the solution heat exchanger 41 from the dilute solution outlet pipe 36 of the rectifier 30, where it is cooled by heat exchange with the concentrated solution. After that, it enters the absorber via the pressure reducing valve. Also,
The low-temperature and high-concentration ammonia vapor is supplied to the condenser, subcooler, expansion valve, evaporator,
It enters the absorber via the subcooler. In the absorber, the ammonia gas is absorbed by the dilute solution and the concentrated solution is regenerated by removing the heat of absorption.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記従
来の精溜器30を用いたサイクルの場合(以下、基本方
式と呼ぶ)には、溶液熱交換器41に流入する濃溶液の
温度は、精溜器30で回収する分縮熱により高くなるた
め、精溜器30より流出する希溶液(吸収器内でアンモ
ニアガスを吸収するための吸収液となる)の温度を濃溶
液の温度以下にすることができず、吸収器内で希溶液に
よりアンモニアガスを吸収するためには希溶液の温度を
下げる必要があり、吸収熱はもとより多量の熱を系外に
廃棄しなければならない。その結果、吸収式システムの
成績係数が低かった。
However, in the case of a cycle using the above-described conventional rectifier 30 (hereinafter, referred to as a basic system), the temperature of the concentrated solution flowing into the solution heat exchanger 41 is increased. The temperature of the dilute solution (which becomes an absorbing solution for absorbing ammonia gas in the absorber) flowing out of the rectifying device 30 is set to be lower than the temperature of the concentrated solution because the temperature becomes higher due to the partial heat of condensation recovered in the reservoir 30. In order to absorb the ammonia gas with the dilute solution in the absorber, it is necessary to lower the temperature of the dilute solution, and a large amount of heat as well as the heat of absorption must be discarded outside the system. As a result, the coefficient of performance of the absorption system was low.

【0007】また、従来の精溜器を用いたシステムは、
業務用でサイズが大きかった。従来の精溜器構成のまま
でサイズ、特に塔径を小さくしようとすると、分縮熱交
換器33の小型化はもとより、精溜性能を高めなければ
ならない。分縮部Dにおいて、分縮熱交換器33に充填
材34を併用して分縮性能を高めてはいるが、そこに用
いる充填材34としてはより高い精溜性能を有する充填
材を用いる必要がある。しかしながら、精溜性能の高い
充填材というものは、一般に比表面積が大きく空間率が
小さい。同じ精溜ガス量を得る場合に、塔径を小さくす
ると精溜塔内の通過ガス流速が増す。そのために、分縮
熱交換器33で凝縮した液を持ち出す現象、いわゆるフ
ラッディングを起こし易くなる。フラッディングは、S
awistowskiの実験式により算出できるが、経
験上、充填長さも関係がありそうである。さらに、塔径
が小さいとフラッッディングに到らないまでも、精溜塔
壁をつたって塔内の液を持ち出すことがあり、精溜ガス
濃度の低下による成績係数の低下、溶液ポンプのサクシ
ョン側濃溶液の液不足というサイクルの液バランスの悪
化を招いていた。
Also, a system using a conventional rectifier is:
It was large for business use. If the size, especially the column diameter, is reduced with the conventional rectifier configuration, the rectification performance must be enhanced, as well as the size reduction of the partial heat exchanger 33. In the shrinking section D, although the shrinking performance is enhanced by using the packing 34 in combination with the shrinking heat exchanger 33, it is necessary to use a packing having a higher rectifying performance as the packing 34 used therein. There is. However, a filler having a high rectification performance generally has a large specific surface area and a small void ratio. In order to obtain the same amount of rectified gas, if the column diameter is reduced, the flow velocity of gas passing through the rectification column increases. Therefore, the phenomenon of taking out the liquid condensed in the partial heat exchanger 33, that is, so-called flooding, is likely to occur. Flooding is S
Although it can be calculated by the experimental formula of awistowski, the filling length seems to be related from experience. Furthermore, if the tower diameter is small, the liquid in the tower may be taken out through the rectification tower wall even before flooding occurs, the coefficient of performance decreases due to the reduction in rectification gas concentration, and the concentration on the suction side of the solution pump is reduced. This has led to a deterioration in the liquid balance of the cycle due to a shortage of the solution.

【0008】本発明は、上記課題を解決するもので、サ
イクル成績係数を高め、小型で安定した精溜性能を有
し、一般家庭向けの吸収式ヒートポンプに適する精溜器
を提供することを目的としたものである。
An object of the present invention is to solve the above-mentioned problems and to provide a rectifier having a high cycle coefficient of performance, having a small and stable rectification performance, and suitable for an absorption heat pump for general households. It is what it was.

【0009】[0009]

【課題を解決するための手段】本発明の精溜器は、上記
目的を達成するために、精溜塔内にその上方より、精溜
ガス取り出し管と、下方端に濃溶液の一部を蒸気発生温
度で塔内下方向に流出させる開口部を有する分縮熱交換
器ならびに該分縮熱交換器の周囲に充填された充填材と
からなる分縮部と、充填材が充填された熱回収部と、高
温濃溶液流入管ならびに希溶液取り出し管とを備えた気
液分離部を配置し、かつ前記分縮部と熱回収部との間に
空隙を設けてなる。
In order to achieve the above object, a rectifier according to the present invention has a rectification gas extraction pipe in the rectification tower from above and a part of the concentrated solution in the lower end. A decompression heat exchanger having an opening for flowing downward in the tower at the steam generation temperature, a decompression unit comprising a filler filled around the degeneration heat exchanger, and heat filled with the filler. A gas-liquid separation section having a recovery section, a high-temperature concentrated solution inflow pipe and a dilute solution removal pipe is arranged, and a gap is provided between the decompression section and the heat recovery section.

【0010】また、前述した同様の構成で、分縮部に充
填された充填材よりも高い空間率を有する異なる充填材
より熱回収部を構成してなる。
[0010] Further, in the same configuration as described above, the heat recovery section is constituted by a different filler having a higher porosity than the filler filled in the decompression section.

【0011】さらに、塔頂部に、塔内部に取り出し口を
有する精溜ガス取り出し管と、塔壁より内側下方に張り
出し少なくとも中央に塔本体より小さい開口部を有する
液跳ね返し板とを備えてなる。
[0011] Further, a rectified gas outlet pipe having an outlet inside the tower is provided at the top of the tower, and a liquid rebound plate having an opening smaller than the tower body at least in the center is formed to project downward from the inside of the tower wall.

【0012】[0012]

【作用】本発明は、分縮熱交換器の下方端開口部より濃
溶液の一部を蒸気発生温度で塔内下方向に流出させるこ
とにより、熱回収部では分縮熱交換器を経て流下する濃
溶液と、高温濃溶液流入管を通って塔内に流入し上昇し
てくる高温濃溶液の平衡蒸気とを熱交換させることがで
きる。そして、高温濃溶液の平衡蒸気の熱で分縮熱交換
器を経て流下する濃溶液を加熱して、分縮部下付近で高
温濃溶液よりも低い温度でかつアンモニア濃度の高い平
衡蒸気を所定量発生させることができる。高温でアンモ
ニア濃度の低い平衡蒸気は、その熱エネルギーを分縮部
を経て塔内に流出する濃溶液から低温でアンモニア濃度
の高い蒸気を発生するために用いる(熱回収)ととも
に、自らも低温でアンモニア濃度の高い蒸気となる。そ
して、その際、分縮部と熱回収部との間に空隙を設けて
各部の充填材を不連続としているので、それぞれの充填
長さを短くすることができ、フラッディングを生じ難く
できる。
According to the present invention, a part of the concentrated solution is caused to flow downward in the tower at the steam generation temperature from the opening at the lower end of the partial heat exchanger, so that the heat is recovered through the partial heat exchanger at the heat recovery part. Heat exchange between the concentrated solution and the equilibrium vapor of the high-temperature concentrated solution flowing into the column through the high-temperature concentrated solution inflow pipe and rising. Then, the concentrated solution flowing through the partial heat exchanger is heated by the heat of the equilibrium vapor of the high-temperature concentrated solution, and a predetermined amount of the equilibrium vapor having a lower temperature and a higher ammonia concentration than the high-temperature concentrated solution near the lower part of the condensing section is heated. Can be generated. The equilibrium vapor with a high temperature and a low ammonia concentration is used to generate a low-temperature, high-ammonia concentration vapor from the concentrated solution flowing into the tower through the decomposing section (heat recovery). It becomes steam with high ammonia concentration. At this time, since a gap is provided between the decompression part and the heat recovery part to make the filler in each part discontinuous, the filling length of each part can be shortened, and flooding can hardly occur.

【0013】また、分縮部充填材よりも高い空間率を有
する異なる充填材より熱回収部を構成した場合には、熱
回収部での液の保持量をより少なくできて、よりフラッ
デングを生じ難くできる。
In the case where the heat recovery section is made of a different filler having a higher porosity than the filler in the decompression section, the amount of liquid retained in the heat recovery section can be reduced, and more flooding occurs. Can be difficult.

【0014】さらに、塔頂部に、塔内部に取り出し口を
有する精溜ガス取り出し管と、塔壁より内側下方に張り
出し少なくとも中央に塔本体より小さい開口部を有する
液跳ね返し板とを備えた構成としているので、塔内ガス
流速が増した場合でも塔壁を伝わって流出しようとする
液の塔外流出を防止して、塔頂ガス平衡温度に見合う精
溜ガス濃度を確保することができる。
Further, a configuration is provided in which a rectified gas outlet pipe having an outlet inside the tower is provided at the top of the tower, and a liquid splashing plate which projects inward and downward from the tower wall and has an opening smaller than the tower body at least at the center. Therefore, even if the gas flow velocity in the tower is increased, it is possible to prevent the liquid flowing along the tower wall from flowing out of the tower, and to secure a rectified gas concentration commensurate with the gas equilibrium temperature at the top of the tower.

【0015】[0015]

【実施例】以下、本発明の一実施例を図1・図2を用い
て説明する。図1に精溜器、図2に精溜器を用いた吸収
式サイクルの発生・精溜回路を示す。
An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 shows a rectifier, and FIG. 2 shows a circuit for generating and rectifying an absorption cycle using the rectifier.

【0016】図1において、1は塔外径がφ60.5m
m、肉厚がt1.6mmのSUS304からなる精溜塔、
2は精溜ガス取り出し管、Aは分縮部で、外径がφ6m
m、肉厚がt1mmで長さが6.3mのSUS304パイプ
を巻き径φ38mm、ピッチ8mm、巻き数53、巻き長さ
420mmの蛇管式として最下端を封止すると共に蛇管底
部にφ2mmの丸穴とした開口部3を8箇所等間隔に設け
てなる分縮熱交換器4と前記分縮熱交換器4の空隙に充
填された充填材5とからなる。6は空間率95%以上の
デミスターで構成された長さ10mmの空隙、Bは充填材
5が充填された長さ180mmの熱回収部、Cは高温濃溶
液流入管8と希溶液取り出し管9とを備えた気液分離部
である。充填材5には、ヘリパックNo.4(サイズ5
mm、比表面積1700m2/m3、空間率87%)を用い
た。なお、分縮部A及び熱回収部Bの充填材5の保持の
目的で実際には上下にデミスター10を配置している。
なお、希溶液取り出し管9は、精溜塔1の底部より5mm
の高さに開口部を位置させて上方に取り出す構成として
いる。
In FIG. 1, reference numeral 1 denotes an outer diameter of the tower of 60.5 m.
m, a rectification column made of SUS304 having a wall thickness of 1.6 mm,
2 is a collection gas extraction pipe, A is a decompression part, and the outer diameter is φ6m
SUS304 pipe of 6.3 m in length, t1 mm in thickness and 6.3 m in length is wound with a diameter of 38 mm, a pitch of 8 mm, the number of turns is 53, and a winding length of 420 mm. And a filler 5 filled in the gaps of the heat exchanger 4. 6 is a 10 mm long gap made of a demister having a porosity of 95% or more, B is a 180 mm long heat recovery section filled with the filler 5, C is a high temperature concentrated solution inflow pipe 8 and a dilute solution removal pipe 9 And a gas-liquid separation unit comprising: Filler 5 includes Helipak No. 4 (size 5
mm, specific surface area 1700 m 2 / m 3 , porosity 87%). Note that demisters 10 are actually arranged above and below for the purpose of holding the filler 5 in the decompression section A and the heat recovery section B.
The dilute solution take-out pipe 9 is 5 mm from the bottom of the rectification tower 1.
The opening is positioned at the height of the upper part and taken out upward.

【0017】上記構成の精溜器の動作を、図2を用いて
吸収式サイクルとの関係で説明する。溶液ポンプ11に
より、濃溶液の一部は精溜器分縮部Aに送られ、残りは
溶液熱交換器12に送られる。溶液熱交換器12に送ら
れた濃溶液は精溜器希溶液取り出し管9より流出する希
溶液と熱交換し加熱され昇温する。続いて、発生器13
に送られ所定の2相域の温度まで加熱され、精溜器内に
高温濃溶液導入管8を通して流入する。
The operation of the rectifier having the above configuration will be described with reference to FIG. 2 in relation to the absorption cycle. By the solution pump 11, a part of the concentrated solution is sent to the fractionator A, and the rest is sent to the solution heat exchanger 12. The concentrated solution sent to the solution heat exchanger 12 exchanges heat with the dilute solution flowing out of the dilute solution take-out pipe 9 of the rectifier, and is heated and heated. Subsequently, the generator 13
Is heated to the temperature of a predetermined two-phase region, and flows into the rectifier through the high-temperature concentrated solution introducing pipe 8.

【0018】一方、分縮部に送られた濃溶液は、分縮熱
により加熱され蒸気発生温度まで昇温する。そして、蒸
気発生温度で分縮熱交換器4の開口部3より精溜器内に
導入される。こうした濃溶液の一部を精溜器内に導入す
る方法(以下、分岐方式と呼ぶ)は、基本方式に比べて
成績係数COPを高くすることができる。その理由は、
熱回収部Bにおいて、発生器13を経て流入する高温濃
溶液の蒸気が有する熱の一部で、分縮熱交換器4より蒸
気発生温度で精溜器内に流入する濃溶液の一部を加熱し
て低温のガスを発生させる(この過程を熱回収と呼んで
いる)とともに、高温蒸気自体は低温の蒸気となる。こ
うして、所定量の低温の蒸気を発生させることができ
る。こうして、蒸気発生過程における発生器の負担を低
減することができ、その結果COPを高くすることがで
きるのである。なお、熱回収部Bの設計は、分岐して流
入する一部の濃溶液の温度(蒸気発生温度)を還流液温
度とすることにより行われる。
On the other hand, the concentrated solution sent to the condensing section is heated by the heat of condensing and is heated to the steam generation temperature. Then, the steam is introduced into the rectifier through the opening 3 of the partial heat exchanger 4 at the steam generation temperature. Such a method of introducing a part of the concentrated solution into the rectifier (hereinafter referred to as a branching method) can increase the coefficient of performance COP as compared with the basic method. The reason is,
In the heat recovery section B, a part of the heat of the high-temperature concentrated solution flowing through the generator 13 and a part of the concentrated solution flowing into the rectifier at the steam generation temperature from the partial heat exchanger 4 Heating generates low-temperature gas (this process is called heat recovery), and the high-temperature steam itself becomes low-temperature steam. Thus, a predetermined amount of low-temperature steam can be generated. Thus, the burden on the generator during the steam generation process can be reduced, and as a result, the COP can be increased. The heat recovery section B is designed by setting the temperature (steam generation temperature) of a part of the concentrated solution that branches and flows in as the reflux liquid temperature.

【0019】以上述べたように、分岐方式においては、
分縮熱交換器4の下部より濃溶液の一部が精溜器内に流
入するため、精溜器の塔径が細くなるとフラッディング
を起こし易くなる。実施例の塔径では、分縮部Aと熱回
収部Bの間に空隙6を設けることにより、分縮部Aと熱
回収部Bの充填材5を不連続とする事ができて、フラッ
ディングを回避することができ、精溜ガス処理量として
23kg/hを得た。
As described above, in the branching system,
Since a part of the concentrated solution flows into the rectifier from the lower part of the condensing heat exchanger 4, when the tower diameter of the rectifier is small, flooding is likely to occur. In the tower diameter of the embodiment, by providing a gap 6 between the contraction part A and the heat recovery part B, the filler 5 of the contraction part A and the heat recovery part B can be discontinuous, and flooding is performed. Was avoided, and a rectified gas throughput of 23 kg / h was obtained.

【0020】次に、本発明の第二の実施例について、図
3を用いて説明する。図3において、図1と相違する点
は、熱回収部Bに分縮部Aと異なる空隙率の高い充填材
7として、例えばマクマホン(サイズ6mm、比表面積1
590m2/m3、空隙率95.3%)を配置した点にあ
る。熱回収部Bにおいては、精溜ではなく単なる熱交換
プロセスであるので、ヘリパックのような精溜効果の高
い充填材を用いる必要がなく、マクマホンを用いた場合
にはコストを低くすることができる。また、この場合に
は空隙率が高いのでよりフラッディングを生じ難くする
ことができる。
Next, a second embodiment of the present invention will be described with reference to FIG. 3 is different from FIG. 1 in that the heat recovery part B has a high porosity filler 7 different from the shrinkage part A, for example, a McMahon (size 6 mm, specific surface area 1).
(590 m 2 / m 3 , porosity 95.3%). In the heat recovery section B, since it is a mere heat exchange process instead of rectification, there is no need to use a filler having a high rectification effect such as a heli-pack, and the cost can be reduced when a McMahon is used. . Further, in this case, since the porosity is high, flooding can be made more difficult to occur.

【0021】次に、本発明の第三の実施例について、図
4・図5を用いて説明する。図4の実施例は、前述した
第一及び第二の実施例に適用できるもので、精溜器塔頂
部に、塔内部に取り出し口を有する精溜ガス取り出し管
21と、塔壁より内側下方に張り出し少なくとも中央に
塔本体より小さい開口部を有する液跳ね返し板22とを
備えている。その他の構成は、第一及び第二の実施例と
同様である。塔径が細いと塔壁を伝わって液が流出し
て、高圧における精溜温度で得られる精溜ガス濃度以下
に実際は濃度が低くなることを実験で確認している。サ
イクル実験においては、精溜温度が高くても能力面には
さほど影響を与えないが、液を持ち出している事実は、
当実施例によって、ポンプサクションの濃溶液量が十分
確保できることにより明らかである。こうして、ポンプ
サクションにおける濃溶液量を確保することができてポ
ンプ動作を保証できると共に安定した能力出しを行うこ
とができる。また、図5に別の精溜ガス取り出し管23
の実施形態を示した。作用は図4と全く同様である。
Next, a third embodiment of the present invention will be described with reference to FIGS. The embodiment of FIG. 4 is applicable to the first and second embodiments described above. A rectification gas extraction pipe 21 having an extraction port inside the rectifier tower at the top of the rectifier tower and an inner lower portion of the tower wall are provided. And a liquid splash plate 22 having an opening smaller than the tower body at least at the center. Other configurations are the same as those of the first and second embodiments. It has been confirmed by experiments that if the column diameter is small, the liquid flows out along the wall of the column, and the concentration is actually lower than the concentration of the rectified gas obtained at the rectification temperature at high pressure. In the cycle experiment, even if the rectification temperature is high, it does not significantly affect the performance, but the fact that the liquid is taken out is
This is apparent from the fact that a sufficient amount of the concentrated solution of the pump suction can be ensured by this embodiment. In this way, the amount of concentrated solution in the pump suction can be ensured, the pump operation can be guaranteed, and a stable capacity can be obtained. FIG. 5 shows another rectified gas extraction pipe 23.
Has been shown. The operation is exactly the same as in FIG.

【0022】なお、上記実施例において、分縮熱交換器
4を蛇管式としたが、これに限定するものでないことは
言うまでもない。
In the above embodiment, the splitting heat exchanger 4 is of a coiled tube type, but it is needless to say that the present invention is not limited to this.

【0023】[0023]

【発明の効果】以上説明したように、本発明によれば次
のような効果があり、小型で実用的な精溜器を提供でき
る。
As described above, according to the present invention, there are the following effects, and a small and practical rectifier can be provided.

【0024】(1)精溜器の基本構成として分縮部と熱
回収部を有し、かつ分縮部と熱回収部との間に空隙を設
けているので、吸収式サイクルの成績係数を高めること
が出来るとともに小型で安定した精溜性能を保証出来
る。
(1) Since the basic structure of the rectifier has a decompression section and a heat recovery section, and a gap is provided between the decompression section and the heat recovery section, the coefficient of performance of the absorption cycle is reduced. As well as being small, stable and stable rectification performance can be guaranteed.

【0025】(2)熱回収部に分縮部より高い空間率を
有する充填材を充填しているので、より安定した精溜性
能を保証出来る。
(2) Since the heat recovery section is filled with a filler having a higher porosity than the decompression section, more stable rectification performance can be guaranteed.

【0026】(3)塔頂部に改良を加えているので、吸
収式サイクルの安定化を図ることが出来る。
(3) Since the tower top is improved, the absorption cycle can be stabilized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の精溜器の一実施例を示す断面図FIG. 1 is a sectional view showing an embodiment of the rectifier of the present invention.

【図2】同精溜器を用いた吸収式サイクルの発生・精溜
回路図
FIG. 2 is a circuit diagram of generation and rectification of an absorption cycle using the rectifier.

【図3】本発明の精溜器の第二の実施例を示す断面図FIG. 3 is a sectional view showing a second embodiment of the rectifier of the present invention.

【図4】同精溜器の塔頂部を示す断面図FIG. 4 is a sectional view showing the top of the rectifier.

【図5】同精溜器の別の塔頂部を示す断面図FIG. 5 is a sectional view showing another tower top of the rectifier.

【図6】従来の精溜器を示す断面図FIG. 6 is a sectional view showing a conventional rectifier.

【図7】同精溜器を用いた吸収式サイクルの発生・精溜
回路図
FIG. 7 is a circuit diagram of generation and rectification of an absorption cycle using the rectifier.

【符号の説明】[Explanation of symbols]

1 精溜塔 2 精溜ガス取り出し管 3 分縮熱交換器開口部 4 分縮熱交換器 5・7 充填材 6 空隙 8 高温濃溶液流入管 9 希溶液取り出し管 A 分縮部 B 熱回収部 C 気液分離部 DESCRIPTION OF SYMBOLS 1 Rectification tower 2 Rectification gas take-out pipe 3 Partially condensed heat exchanger opening part 4 Partially condensed heat exchanger 5.7 Filler 6 Void 8 High-temperature concentrated solution inflow pipe 9 Dilute solution take-out pipe A Decompression part B Heat recovery part C Gas-liquid separation unit

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】精溜塔内にその上方より、精溜ガス取り出
し管と、下方端に濃溶液の一部を蒸気発生温度で塔内下
方向に流出させる開口部を有する分縮熱交換器ならびに
前記分縮熱交換器の周囲に充填された充填材とからなる
分縮部と、充填材が充填された熱回収部と、高温濃溶液
流入管ならびに希溶液取り出し管とを備えた気液分離部
とを配置し、かつ前記分縮部と熱回収部との間に空隙を
設けてなる精溜器。
1. A fractionating heat exchanger having a rectification gas outlet pipe from above in a rectification tower and an opening at a lower end for allowing a part of the concentrated solution to flow downward in the tower at a steam generation temperature. And a gas-liquid provided with a decompression unit composed of a filler filled around the partial heat exchanger, a heat recovery unit filled with the filler, a high-temperature concentrated solution inflow pipe and a dilute solution removal pipe. A rectifier in which a separation unit is arranged and a gap is provided between the decompression unit and the heat recovery unit.
【請求項2】分縮部に充填された充填材よりも高い空間
率を有する異なる充填材より熱回収部を構成してなる請
求項1記載の精溜器。
2. The rectifier according to claim 1, wherein the heat recovery section is constituted by a different filler having a higher porosity than the filler filled in the decompression section.
【請求項3】塔頂部に、塔内部に取り出し口を有する精
溜ガス取り出し管と、塔壁より内側下方に張り出し少な
くとも中央に塔本体より小さい開口部を有する液跳ね返
し板とを備えた請求項1または請求項2記載の精溜器。
3. A tower according to claim 1, further comprising a rectifying gas outlet pipe having an outlet inside the tower and a liquid splash plate projecting inward and downward from the tower wall and having an opening smaller than the tower body at least at the center. The rectifier according to claim 1 or 2.
JP17851995A 1995-07-14 1995-07-14 Rectifier Expired - Fee Related JP2874598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17851995A JP2874598B2 (en) 1995-07-14 1995-07-14 Rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17851995A JP2874598B2 (en) 1995-07-14 1995-07-14 Rectifier

Publications (2)

Publication Number Publication Date
JPH0926230A JPH0926230A (en) 1997-01-28
JP2874598B2 true JP2874598B2 (en) 1999-03-24

Family

ID=16049902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17851995A Expired - Fee Related JP2874598B2 (en) 1995-07-14 1995-07-14 Rectifier

Country Status (1)

Country Link
JP (1) JP2874598B2 (en)

Also Published As

Publication number Publication date
JPH0926230A (en) 1997-01-28

Similar Documents

Publication Publication Date Title
JP5665022B2 (en) Carbon dioxide gas recovery device
JP2000346566A (en) Absorbing device
JP2874598B2 (en) Rectifier
JP3353101B2 (en) Absorption heat pump
US2329863A (en) Refrigeration
JP2881593B2 (en) Absorption heat pump
US7306653B2 (en) Condensing deaerating vent line for steam generating systems
JPS6142072Y2 (en)
JP2924397B2 (en) Absorption type heat pump device
JP4143210B2 (en) Reboiler
JP3147736B2 (en) Absorption heat pump
JP4740519B2 (en) Multi-column generator for improved ammonia water absorption system
KR100307392B1 (en) The desorber column of ammonia absorption heat pump
KR0147749B1 (en) Regenerator for absorptive airconditioner
KR100262718B1 (en) Solution Heat Regenerator Structure of Ammonia Absorption System
JPS61211673A (en) Cryogenic absorption type refrigerator
JP3161321B2 (en) Absorption heat pump
KR100307640B1 (en) Application of rectifier & bubble pump in compact absorption heat pump
US2797556A (en) Combined generator and liquid heat exchanger unit for absorption refrigeration system
JP2926299B2 (en) Absorption heat pump
KR100314470B1 (en) Rectifier of Absorption Heat Pump Using Ammonia
JP3244356B2 (en) Double effect absorption refrigerator
KR0127530Y1 (en) Concentrator for absorption refrigerating machine
JP3432864B2 (en) Rectification unit for absorption refrigerator
JP2000002472A (en) Absorptive freezer

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees