JPS6142072Y2 - - Google Patents

Info

Publication number
JPS6142072Y2
JPS6142072Y2 JP1981021056U JP2105681U JPS6142072Y2 JP S6142072 Y2 JPS6142072 Y2 JP S6142072Y2 JP 1981021056 U JP1981021056 U JP 1981021056U JP 2105681 U JP2105681 U JP 2105681U JP S6142072 Y2 JPS6142072 Y2 JP S6142072Y2
Authority
JP
Japan
Prior art keywords
argon
flow path
condenser
crude argon
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1981021056U
Other languages
Japanese (ja)
Other versions
JPS57134596U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1981021056U priority Critical patent/JPS6142072Y2/ja
Publication of JPS57134596U publication Critical patent/JPS57134596U/ja
Application granted granted Critical
Publication of JPS6142072Y2 publication Critical patent/JPS6142072Y2/ja
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/044Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a single pressure main column system only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04624Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using integrated mass and heat exchange, so-called non-adiabatic rectification, e.g. dephlegmator, reflux exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/007Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger combined with mass exchange, i.e. in a so-called dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/04Down-flowing type boiler-condenser, i.e. with evaporation of a falling liquid film
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/32Details on header or distribution passages of heat exchangers, e.g. of reboiler-condenser or plate heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 この考案は空気液化分離装置の粗アルゴン塔用
凝縮器に関するものである。
[Detailed Description of the Invention] This invention relates to a condenser for a crude argon column in an air liquefaction separation device.

従来の粗アルゴン塔用凝縮器は、第1図に示し
た直管式の熱交換部1や第2図に示したプレート
フイン式の熱交換部2を粗アルゴン塔3の上部に
設けられた液化空気溜4中に浸漬し、前記熱交換
部1,2のアルゴン流部5に粗アルゴン塔3の下
部より上昇してくるアルゴン含有ガスを導入し、
該流路5で凝縮させる構造のものが普通である。
このような構造のものにあつては凝縮器で液化空
気を連続して蒸発させているため、液化空気中に
極く微量含有されているアセチレンが液化空気溜
4の液化空気中に徐々に濃縮し、保安上好ましく
ない。このため、アセチレン濃縮防止と溜る液組
成の調節による凝縮器の温度制御のため液化空気
溜4の底部に設けられた液化空気抜液管6より少
量の液化空気を常時抜き出していた。このため余
分な液化空気を凝縮器に供給していることにな
る。また、第2図のプレートフイン式の熱交換部
2や第3図に示したハンプソン式の熱交換部7を
もつた凝縮器では、その構造上粗アルゴン塔3塔
頂に溜る窒素分を充分にパージすることができな
く、前記熱交換部2,7において必要な温度差を
取りにくくなるため、この窒素分とともに相当量
のアルゴンをパージする必要が生じ貴重なアルゴ
ンを無駄にしていた。窒素分のパージの点からす
ると、第1図に示した直管式の熱交換部1を用い
るものは有利となるが、直管式の熱交換部1はプ
レートフイン式熱交換部2やハンプソン式熱交換
部3に比べて形状が大型となり製作工数も多く、
従つて高価になるという欠点を有していた。
A conventional condenser for a crude argon column has a straight tube type heat exchange section 1 shown in FIG. 1 or a plate fin type heat exchange section 2 shown in FIG. 2 installed at the top of a crude argon column 3. It is immersed in the liquefied air reservoir 4, and the argon-containing gas rising from the lower part of the crude argon column 3 is introduced into the argon flow section 5 of the heat exchange sections 1 and 2,
A structure in which condensation occurs in the flow path 5 is common.
With this type of structure, the liquefied air is continuously evaporated in the condenser, so the acetylene contained in the liquefied air in extremely small amounts is gradually concentrated in the liquefied air in the liquefied air reservoir 4. However, this is not desirable from a security standpoint. For this reason, a small amount of liquefied air is constantly drawn out from the liquefied air drain pipe 6 provided at the bottom of the liquefied air reservoir 4 in order to prevent acetylene concentration and to control the temperature of the condenser by adjusting the composition of the collected liquid. This means that excess liquefied air is being supplied to the condenser. In addition, in the condenser having the plate fin type heat exchange section 2 shown in Fig. 2 or the Hampson type heat exchange section 7 shown in Fig. 3, due to its structure, the nitrogen content accumulated at the top of the crude argon column 3 is sufficiently removed. This makes it difficult to obtain the necessary temperature difference between the heat exchange sections 2 and 7, which necessitates purging a considerable amount of argon along with the nitrogen content, wasting valuable argon. From the point of view of purging nitrogen content, it is advantageous to use the straight tube type heat exchange section 1 shown in Fig. Compared to the type heat exchanger 3, the shape is larger and requires more man-hours to manufacture.
Therefore, it has the disadvantage of being expensive.

この考案は上記事情に鑑みてなされたもので、
粗アルゴン塔凝縮器に供給する液化空気量を減少
でき、粗アルゴン塔塔頂に溜まる窒素分を効果的
にパージでき、かつ熱交換温度差を大きくするこ
とができ、よつて小型で安価な粗アルゴン塔用凝
縮器を提供することを目的とし、粗アルゴン塔上
部に液溜を有しないプレートフイン型熱交換部を
設け、この熱交換部の冷媒流路に冷媒を流して該
流路内で気化状態で導出し、アルゴン流路でアル
ゴン含有ガスを凝縮させて粗アルゴン塔上部に返
戻すると共に該流路温端部より窒素濃度の高いガ
スを導出することを特徴とするものである。
This idea was made in view of the above circumstances,
The amount of liquefied air supplied to the crude argon column condenser can be reduced, the nitrogen content accumulated at the top of the crude argon column can be effectively purged, and the heat exchange temperature difference can be increased. The purpose is to provide a condenser for an argon column, and a plate-fin type heat exchange section without a liquid reservoir is provided in the upper part of the crude argon column. The argon-containing gas is discharged in a vaporized state, condensed in an argon flow path, and returned to the upper part of the crude argon column, and a gas with a high nitrogen concentration is discharged from the hot end of the flow path.

以下、図面を参照してこの考案を詳しく説明す
る。
This invention will be explained in detail below with reference to the drawings.

第4図はこの考案の粗アルゴン塔用凝縮器の実
施例を示すもので、粗アルゴン塔10の下部に導
入されたアルゴン含有ガスは精留されつつ該塔1
0内を上昇し、粗アルゴン塔10の塔頂に設けら
れたプレートフイン型の熱交換部をもつた構造で
なる凝縮器11のアルゴン流路12に流入する。
一方、凝縮器11の冷媒流路13には冷媒導入管
14を経て下部精留塔(図示せず)より冷媒とし
て液化空気が供給され、冷媒流路13を流れなが
ら前記アルゴン流路12を流れるアルゴン含有ガ
スと熱交換する。この結果流入液化空気は全量が
気化し、頂部に設けられ、冷媒流路13と連通す
る冷媒導出管15より導出され、上部精溜塔(図
示せず)に返送される。又、液化空気と熱交換し
たアルゴン含有ガスはアルゴン流路12で液化
し、該流路12壁面を流下しながら上昇してくる
アルゴン含有ガスと気液接触した後、粗アルゴン
塔10へ戻され、還流液として該塔10内を流下
する。また、アルゴン流路12の頂部には窒素濃
度の高いガスが留り、該流路12と連通する窒素
パージ管16より系外に抜き出される。こうして
粗アルゴン塔10内で精溜が行なわれ、その結果
管17よりアルゴン濃度95〜98%の粗アルゴンが
抜き出され、次工程に送られる。
FIG. 4 shows an embodiment of the crude argon column condenser of this invention, in which the argon-containing gas introduced into the lower part of the crude argon column 10 is rectified and
0, and flows into the argon flow path 12 of the condenser 11, which has a structure having a plate-fin type heat exchange section provided at the top of the crude argon column 10.
On the other hand, liquefied air is supplied as a refrigerant to the refrigerant flow path 13 of the condenser 11 from a lower rectification column (not shown) via a refrigerant introduction pipe 14, and flows through the argon flow path 12 while flowing through the refrigerant flow path 13. Heat exchange with argon-containing gas. As a result, the entire amount of the inflowing liquefied air is vaporized, led out from the refrigerant outlet pipe 15 provided at the top and communicating with the refrigerant flow path 13, and returned to the upper rectification column (not shown). Further, the argon-containing gas that has exchanged heat with the liquefied air is liquefied in the argon channel 12, comes into gas-liquid contact with the argon-containing gas rising while flowing down the wall surface of the channel 12, and is then returned to the crude argon column 10. , flows down the column 10 as a reflux liquid. Furthermore, gas with a high nitrogen concentration remains at the top of the argon flow path 12 and is extracted from the system through a nitrogen purge pipe 16 communicating with the flow path 12 . In this way, rectification is performed in the crude argon column 10, and as a result, crude argon with an argon concentration of 95 to 98% is extracted from the tube 17 and sent to the next step.

以上のように構成された凝縮器によつて供給さ
れる冷媒液化空気量を調節し、供給冷媒が冷媒流
路13上部で全量気化するようにすることにより
液化空気中に含有されるアセチレンも同時に気化
せしめるのでアセチレンの濃縮が起らない。ま
た、凝縮に必要な量の液化空気だけを供給すれば
よいので精溜塔の精溜効率を上げることができ
る。また、アルゴン流路12内で凝縮した凝縮液
とアルゴン含有ガスとが向流し気液接触するの
で、凝縮器11の頂部より窒素濃度の高いガスを
排出でき、アルゴンのロスを少なくすることがで
きるとともに、熱交換に必要な温度差が取りやす
くなり、小型化できる。さらに、従来の如く冷媒
液溜を設けていないので、液化空気の液深による
温度差減少分を考慮する等の必要がない。なお、
この考案における熱交換態様は第4図に示した構
造のプレートフイン型に限定されず、第2図に示
したプレートフイン型で、冷媒流路側を液溜とせ
ず冷媒を冷媒流路内で完全に気化させる構造のも
のも使用することができる。
By adjusting the amount of refrigerant liquefied air supplied by the condenser configured as described above so that the supplied refrigerant is completely vaporized at the upper part of the refrigerant flow path 13, acetylene contained in the liquefied air is also simultaneously removed. Since it is vaporized, concentration of acetylene does not occur. Further, since it is necessary to supply only the amount of liquefied air necessary for condensation, the rectification efficiency of the rectification column can be increased. In addition, since the condensed liquid condensed in the argon flow path 12 and the argon-containing gas come into counterflow gas-liquid contact, gas with a high nitrogen concentration can be discharged from the top of the condenser 11, and loss of argon can be reduced. At the same time, it becomes easier to take the temperature difference necessary for heat exchange, and the size can be reduced. Furthermore, since no refrigerant reservoir is provided as in the conventional case, there is no need to consider the reduction in temperature difference due to the depth of liquefied air. In addition,
The heat exchange mode in this invention is not limited to the plate-fin type structure shown in Fig. 4, but the plate-fin type shown in Fig. 2, in which the refrigerant is completely absorbed within the refrigerant flow path without forming a liquid reservoir on the refrigerant flow path side. A structure that allows vaporization to occur can also be used.

以上の説明より明らかなように、この考案の粗
アルゴン塔用凝縮器は、液溜を有しないプレート
フイン型熱交換部によつて冷媒を冷媒流路内で完
全気化させるようにしたのでアセチレンの濃縮が
起こらず、従来の如く保安上の問題点がなくな
る。また、凝縮に必要な最少量の冷媒を供給すれ
ばよいので、冷媒として用いられる液化空気量が
減少し、精溜塔の精溜効率が向上し、コスト的に
有利となる。さらに、アルゴン流路温端部より窒
素濃度の高いガスを排出できるので貴重なアルゴ
ンのロスが少なくなり、小型のプレートフイン型
熱交換部で運転できるようになるので、設備費の
低減が可能となるなどのすぐれた利点を有するも
のである。
As is clear from the above explanation, the crude argon column condenser of this invention completely vaporizes the refrigerant within the refrigerant flow path using a plate-fin type heat exchanger that does not have a liquid reservoir. Condensation does not occur, and there are no safety concerns as in the past. Furthermore, since it is only necessary to supply the minimum amount of refrigerant required for condensation, the amount of liquefied air used as a refrigerant is reduced, the rectification efficiency of the rectification column is improved, and it is advantageous in terms of cost. Furthermore, gas with a high nitrogen concentration can be discharged from the hot end of the argon flow path, reducing the loss of valuable argon, and enabling operation with a small plate-fin type heat exchanger, reducing equipment costs. It has excellent advantages such as:

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は従来の粗アルゴン塔用凝
縮器を示す概略構成図で、第1図は直管式熱交換
部を、第2図はプレートフイン式熱交換部を、第
3図はハンプソン式熱交換部を有するものをそれ
ぞれ示す。第4図はこの考案の粗アルゴン塔用凝
縮器の一例を示す概略構成図である。 10……粗アルゴン塔、11……プレートフイ
ン型熱交換部、12……アルゴン流路、13……
冷媒流路。
Figures 1 to 3 are schematic configuration diagrams showing conventional condensers for crude argon columns. Figure 1 shows a straight pipe heat exchange section, Figure 2 shows a plate fin heat exchange section, and Figure 3 shows a plate fin heat exchange section. 1 and 2 respectively indicate those having a Hampson type heat exchange section. FIG. 4 is a schematic diagram showing an example of the crude argon column condenser of this invention. 10... Crude argon column, 11... Plate fin type heat exchange section, 12... Argon channel, 13...
Refrigerant flow path.

Claims (1)

【実用新案登録請求の範囲】 (1) 粗アルゴン塔上部に設けられてなる粗アルゴ
ン塔用凝縮器において、該凝縮器の熱交換部を
アルゴン流路と、冷媒流路とをそれぞれ有する
プレートフイン型に構成し、かつ前記アルゴン
流路の下部を粗アルゴン塔頂部に、又上部を非
凝縮ガス導出管と連通せしめると共に、冷媒流
路の一方を冷媒供給管と、他方を導出管と連通
せしめ、冷媒供給管を介して供給された冷媒が
冷媒流路内で完全気化し導出管より導出するよ
うにしたことを特徴とする粗アルゴン塔用凝縮
器。 (2) 前記粗アルゴン塔頂部よりアルゴン流路を上
昇したアルゴン含有ガスの凝縮液が該流路を流
下して粗アルゴン塔に返戻することを特徴とす
る実用新案登録請求の範囲第1項記載の粗アル
ゴン塔用凝縮器。
[Claims for Utility Model Registration] (1) In a crude argon column condenser provided at the top of the crude argon column, the heat exchange section of the condenser is formed by a plate fin having an argon flow path and a refrigerant flow path. The lower part of the argon flow path is connected to the top of the crude argon column, the upper part is connected to the non-condensed gas outlet pipe, and one of the refrigerant flow paths is connected to the refrigerant supply pipe and the other to the outlet pipe. A condenser for a crude argon column, characterized in that a refrigerant supplied through a refrigerant supply pipe is completely vaporized within a refrigerant flow path and is led out from a discharge pipe. (2) Utility model registration claim 1, characterized in that the condensate of the argon-containing gas that has risen through the argon channel from the top of the crude argon column flows down the channel and is returned to the crude argon column. Condenser for crude argon column.
JP1981021056U 1981-02-17 1981-02-17 Expired JPS6142072Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1981021056U JPS6142072Y2 (en) 1981-02-17 1981-02-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1981021056U JPS6142072Y2 (en) 1981-02-17 1981-02-17

Publications (2)

Publication Number Publication Date
JPS57134596U JPS57134596U (en) 1982-08-21
JPS6142072Y2 true JPS6142072Y2 (en) 1986-11-29

Family

ID=29818944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1981021056U Expired JPS6142072Y2 (en) 1981-02-17 1981-02-17

Country Status (1)

Country Link
JP (1) JPS6142072Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001068A1 (en) * 1995-06-20 1997-01-09 Nippon Sanso Corporation Method and apparatus for separating argon

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4577977B2 (en) * 2000-11-14 2010-11-10 大陽日酸株式会社 Air liquefaction separation method and apparatus
JP4520668B2 (en) * 2001-07-17 2010-08-11 大陽日酸株式会社 Air separation method and apparatus
EP3133361B1 (en) * 2015-08-20 2018-06-13 Linde Aktiengesellschaft Distillation column system and system for the production of oxygen by cryogenic decomposition of air

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068507A (en) * 1973-10-23 1975-06-07
JPS5479007A (en) * 1977-12-05 1979-06-23 Victor Co Of Japan Ltd Music selector of tape recorders

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5068507A (en) * 1973-10-23 1975-06-07
JPS5479007A (en) * 1977-12-05 1979-06-23 Victor Co Of Japan Ltd Music selector of tape recorders

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997001068A1 (en) * 1995-06-20 1997-01-09 Nippon Sanso Corporation Method and apparatus for separating argon

Also Published As

Publication number Publication date
JPS57134596U (en) 1982-08-21

Similar Documents

Publication Publication Date Title
EP0501471B1 (en) Boiling process and a heat exchanger for use in the process
US5438836A (en) Downflow plate and fin heat exchanger for cryogenic rectification
US3992168A (en) Heat exchanger with rectification effect
US6695043B1 (en) Falling-film evaporator and corresponding air distillation plants
JPH05280881A (en) Plate-type indirect heat exchanger
US5699671A (en) Downflow shell and tube reboiler-condenser heat exchanger for cryogenic rectification
US20070028649A1 (en) Cryogenic air separation main condenser system with enhanced boiling and condensing surfaces
EP1262725A2 (en) Cryogenic condensation and vaporization system
US6338384B1 (en) Downflow liquid film type condensation evaporator
JPS6142072Y2 (en)
US7421856B2 (en) Cryogenic air separation with once-through main condenser
US6189338B1 (en) Brazed-plates condenser and its application to double air-distillation columns
US6761213B2 (en) Reboiler/condenser heat exchanger of the bath type
JPH05187769A (en) Method of vaporizing liquid, heat exchanger executing said method and application to duplex type fractionating column type air fractionating facility
US6393864B1 (en) Bath reboiler-condenser consisting of brazed plates and its application to an air distillation plant
JPH0731002B2 (en) Air liquefaction separation device
JP2787594B2 (en) Evaporator
JPH0788924B2 (en) Condensing evaporator
CN108709437A (en) Waste nitrogen heater channel structure and application method
JP4174109B2 (en) Falling liquid film type condensation evaporator and method of using the same
JPS625576Y2 (en)
JPH074774A (en) Absorption type refrigerating machine
JPS6347831Y2 (en)
JPS6014146Y2 (en) horizontal capacitor
JPH05277301A (en) Evaporator and carbon monoxide subzero fractionator using the evaporator