JP2874556B2 - Glass plate with transparent conductive film and touch panel using the same - Google Patents

Glass plate with transparent conductive film and touch panel using the same

Info

Publication number
JP2874556B2
JP2874556B2 JP11827794A JP11827794A JP2874556B2 JP 2874556 B2 JP2874556 B2 JP 2874556B2 JP 11827794 A JP11827794 A JP 11827794A JP 11827794 A JP11827794 A JP 11827794A JP 2874556 B2 JP2874556 B2 JP 2874556B2
Authority
JP
Japan
Prior art keywords
transparent conductive
conductive film
glass plate
thickness
touch panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11827794A
Other languages
Japanese (ja)
Other versions
JPH07315880A (en
Inventor
昌宏 平田
太一 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP11827794A priority Critical patent/JP2874556B2/en
Publication of JPH07315880A publication Critical patent/JPH07315880A/en
Application granted granted Critical
Publication of JP2874556B2 publication Critical patent/JP2874556B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass (AREA)
  • Position Input By Displaying (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION 【産業上の利用分野】[Industrial applications]

【0001】本発明は透明導電性ガラス板およびそれを
用いたタッチパネルに関し、さらに詳述すると可視光の
透過率が高く視認性に優れたタッチパネルを得るのに適
した透明導電膜付きガラス板およびそれを用いたタッチ
パネルに関する。
The present invention relates to a transparent conductive glass plate and a touch panel using the same, and more particularly, to a glass plate with a transparent conductive film suitable for obtaining a touch panel having high visible light transmittance and excellent visibility. And a touch panel using the same.

【従来の技術】[Prior art]

【0002】近年、各種情報処理機器の小型化に伴い、
個人用デジタル情報機器と呼ばれる携帯端末が注目を集
めている。このような携帯端末では、液晶表示体と一体
化して用いられる信号入力のためのタッチパネルの重要
性も増大しており、様々な開発がなされている。タッチ
パネルは表示画面を見ながら、指やペン先等で駆動回路
へ信号を入力するために用いられる。この場合、表示素
子の裏面側の基体に一方の電極が形成されており、これ
に対向するガラスなどの透明基体の表面に形成された透
明導電膜が他方の電極となる。
In recent years, with the miniaturization of various information processing devices,
Portable terminals called personal digital information devices are attracting attention. In such a mobile terminal, the importance of a touch panel for signal input used integrally with a liquid crystal display is increasing, and various developments have been made. The touch panel is used to input a signal to a drive circuit with a finger or a pen point while watching the display screen. In this case, one electrode is formed on the substrate on the back surface side of the display element, and a transparent conductive film formed on the surface of a transparent substrate such as glass facing the electrode is the other electrode.

【0003】かかる透明導電膜には可視光透過率ができ
るだけ高いことと抵抗のリニアリティが要求される。こ
こで抵抗のリニアリティとは、ある起点に対して任意の
点を選んだときの二点間の抵抗値と距離の比例関係の度
合いを表すものである。通常、抵抗値のリニアリティ
は、直線に沿って被膜のシート抵抗を測定し、標準偏差
を平均値で除した百分率で評価される。透明導電膜材料
としては酸化インジウムや酸化錫を主成分とする薄膜が
利用できる。
[0003] Such a transparent conductive film is required to have as high a visible light transmittance as possible and to have a linearity of resistance. Here, the linearity of the resistance indicates the degree of the proportional relationship between the resistance value and the distance between two points when an arbitrary point is selected with respect to a certain starting point. Normally, the linearity of the resistance value is evaluated by measuring the sheet resistance of the coating along a straight line and evaluating the percentage by dividing the standard deviation by the average value. As the transparent conductive film material, a thin film containing indium oxide or tin oxide as a main component can be used.

【0004】携帯端末の性能向上に伴ってタッチパネル
用透明導電膜付きガラスの性能も更に向上させる必要が
生じている。すなわち可視光透過率が高いことは視認性
向上のために必要であり、波長550nmでの透過率が91%
以上であることが望まれている。
As the performance of mobile terminals has improved, the performance of glass with a transparent conductive film for touch panels has also been required to be further improved. That is, high visible light transmittance is necessary for improving visibility, and the transmittance at a wavelength of 550 nm is 91%.
It is hoped that this is the case.

【発明が解決しようとする課題】[Problems to be solved by the invention]

【0005】上記のように、安価でかつ高強度のタッチ
パネル用透明導電膜材料として従来から用いられている
酸化錫ではこれらの要求を満足することができない。透
過率を向上させるためには膜の厚みを薄くすることが必
要であるが、要求特性は理論限界を越えており、かつ、
膜の厚みを薄くすると抵抗値が高くなりすぎるといった
問題が生じる。
As described above, tin oxide which has been conventionally used as an inexpensive and high-strength transparent conductive film material for touch panels cannot satisfy these requirements. In order to improve the transmittance, it is necessary to reduce the thickness of the film, but the required characteristics are beyond the theoretical limit, and,
If the thickness of the film is reduced, there arises a problem that the resistance value becomes too high.

【0006】本発明は、かかる従来技術の問題点に鑑み
なされたものであって、高い可視光透過率、具体的には
91%を越えるタッチパネル用透明導電膜付きガラスおよ
びそれを用いたタッチパネルを提供することを目的とす
る。
The present invention has been made in view of the above-mentioned problems of the prior art, and has a high visible light transmittance, specifically,
An object of the present invention is to provide a glass with a transparent conductive film for a touch panel exceeding 91% and a touch panel using the same.

【課題を解決するための手段】[Means for Solving the Problems]

【0007】本発明は、ガラス板表面にSiO2を主成分と
する薄膜、TiO2を主成分とする薄膜、SnO2を主成分とす
る透明導電膜を順次被覆させた透明導電膜付きガラス板
であって、該SiO2を主成分とする薄膜の厚みを10〜50n
m、該TiO2を主成分とする薄膜の厚みを100〜120nm、該
透明導電膜の厚みを20〜80nmとしたタッチパネル用透明
導電膜付きガラス板である。
The present invention is a glass plate with a transparent conductive film in which a thin film mainly composed of SiO2, a thin film mainly composed of TiO2, and a transparent conductive film mainly composed of SnO2 are sequentially coated on the surface of the glass plate. The thickness of the thin film mainly composed of SiO2 is 10 to 50 n
m, a glass plate with a transparent conductive film for a touch panel, wherein the thickness of the thin film containing TiO2 as a main component is 100 to 120 nm, and the thickness of the transparent conductive film is 20 to 80 nm.

【0008】そして、ガラス板表面に厚みが10〜50nmの
SiO2を主成分とする薄膜、厚みが100〜120nmおTiO2を主
成分とする薄膜、厚みが20〜80nmのSnO2を主成分とする
透明導電膜を順次被覆させた透明導電膜付きガラス板を
第1の基体とし、透明導電性膜が被覆された透明樹脂板
を第2の基体とし、第1の基体と第2の基体が、それぞ
れの基体に被覆された透明導電膜が対向し、かつ、第1
の基体と第2の基体との間に空間が形成されるように接
着されてなるタッチパネルは、表示部の視認性が高いと
いう特徴を有する。
The thickness of the glass plate is 10 to 50 nm.
A glass plate with a transparent conductive film, which is sequentially coated with a thin film mainly composed of SiO2, a thin film mainly composed of 100 to 120 nm and TiO2, and a transparent conductive film mainly composed of SnO2 having a thickness of 20 to 80 nm, A first substrate, a transparent resin plate coated with a transparent conductive film as a second substrate, and the first substrate and the second substrate are opposed to each other by a transparent conductive film coated on each substrate; and First
The touch panel bonded so that a space is formed between the base and the second base has a feature that the visibility of the display unit is high.

【0009】さらに、該透明導電膜付きガラスは、SiO2
を主成分とする薄膜、TiO2を主成分とする薄膜、SnO2を
主成分とする透明導電膜の厚みを上記範囲の中で調整し
て、波長550nmでの透過率が91%以上であり、波長400〜
800nmの領域において一つの極大を有する分光透過率を
有し、かつ、その極大は550nmより短波長側にあるよう
にすることは、視認性の優れたタッチパネルを得る上で
好ましい。
Further, the glass with the transparent conductive film is made of SiO2
By adjusting the thickness of the thin film containing TiO2 as the main component, the thin film containing TiO2 as the main component, and the transparent conductive film containing SnO2 as the main component in the above range, the transmittance at the wavelength of 550 nm is 91% or more. 400 ~
It is preferable to have a spectral transmittance having one maximum in the 800 nm region and to have the maximum on the shorter wavelength side than 550 nm in order to obtain a touch panel with excellent visibility.

【0010】本発明の透明導電膜付きガラスにおいて
は、前記SnO2を主成分とする透明導電膜はハロゲン元素
として塩素のみを含有するものが、電気抵抗を0.5〜1.5
KΩ/□とし、かつ上記SiO2を主成分とする薄膜及びTiO
2を主成分とする薄膜と積層して、得られる透明導電膜
付きガラスの透過率を用いるガラス素板の透過率よりも
高くすることができる。
In the glass with a transparent conductive film of the present invention, the transparent conductive film containing SnO2 as a main component containing only chlorine as a halogen element has an electric resistance of 0.5 to 1.5.
KΩ / □ and the above-mentioned thin film mainly composed of SiO2 and TiO
By laminating with a thin film containing 2 as a main component, the transmittance of the obtained glass with a transparent conductive film can be made higher than the transmittance of a glass base plate using the glass.

【0011】以下、本発明の透明導電膜付きガラスを図
面を参照しながら説明する。図1は、本発明の透明導電
膜付きガラス板の積層構成を示す概念図である。図1に
おいて、(1)は基板ガラス、(2)はSiO2を主成分とする薄
膜、(3)はTiO2を主成分とする薄膜、(4)はSnO2を主成分
とする透明導電膜である。
Hereinafter, the glass with a transparent conductive film of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram showing a laminated structure of a glass plate with a transparent conductive film of the present invention. In FIG. 1, (1) is a substrate glass, (2) is a thin film mainly composed of SiO2, (3) is a thin film mainly composed of TiO2, and (4) is a transparent conductive film mainly composed of SnO2. .

【0012】基板ガラス(1)としては、フロートガラス
など、従来より透明導電膜付きガラスに用いられている
ものが用いられ透明であれば特に限定されない。
As the substrate glass (1), those conventionally used for glass with a transparent conductive film, such as float glass, are used and are not particularly limited as long as they are transparent.

【0013】SiO2を主成分とする薄膜(2)は、アンダー
コートとして設けられるものであり、基体に含まれるナ
トリウム等がSnO2を主成分とする透明導電膜(4)に拡散
してその電気特性に影響を及ぼすことを防止するための
ものである。かかるSiO2を主成分とする膜は、その厚み
によって積層後の透過率が影響されないため、アンダー
コートとしての機能が発現するのに十分な厚みがあれば
よく、10〜50nmの厚みとするのが好ましく、さらに20〜
30nmとするのが好ましい。SiO2を主成分とする膜を形成
する方法としては、生産性の点からSiH4(シラン)とO2
(酸素)を400〜600℃で反応させる常圧CVD法を適用す
ることが好ましい。また、原料中にP(燐)やB(ほう
素)の化合物を混合し、これらの元素を含むSiO2を主成
分とした膜としてもよい。
The thin film (2) containing SiO2 as a main component is provided as an undercoat, and sodium and the like contained in the substrate diffuse into the transparent conductive film (4) containing SnO2 as a main component, and its electrical characteristics are changed. It is intended to prevent the influence on. Such a film containing SiO2 as a main component, since the transmittance after lamination is not affected by its thickness, it is sufficient that the film has a thickness sufficient to exhibit the function as an undercoat, and a thickness of 10 to 50 nm is preferable. Preferred, more preferably 20-
It is preferably 30 nm. As a method of forming a film containing SiO2 as a main component, SiH4 (silane) and O2
It is preferable to apply a normal pressure CVD method in which (oxygen) is reacted at 400 to 600 ° C. Further, a compound of P (phosphorus) or B (boron) may be mixed in the raw material to form a film mainly composed of SiO2 containing these elements.

【0014】TiO2を主成分とする薄膜(3)は、透明導電
膜付きガラス板の透過率を大きくするために設けられる
ものである。TiO2を主成分とする薄膜を形成する手段と
しては、生産性の点からチタン化合物と酸素等の酸化剤
を400〜600℃で反応させる常圧CVD法が好適である。チ
タン化合物としては、チタンテトライソプロポキシド
(Ti[OCH(CH3)2]4)やチタンテトラ-n-ブトキシド(Ti
(OCH2CH2CH2CH3)4)などのアルコキシド、ジ-i-プロポ
キシ・ビス(アセチルアセトナト)チタン(Ti[OCH(CH
3)2]2[OC(CH3)CHCOCH3]2)などのβ-ジケトンキレート
や四塩化チタン(TiCl4)が使用できる。このようにし
て得られるTiO2を主成分とする薄膜の厚みは100〜120nm
とするのが好ましく、105〜115nmとするのが好ましい。
膜厚が100nmよりも薄いと透過率のピークが短波長側に
シフトし波長550nmでの透過率が91%より小さくな
る。膜厚が120nmよりも厚いと、透過率のピークが長波
長側にシフトし、短波長域での透過率が低下するため透
過色が黄色みを帯びるため意匠性が損なわれるため好ま
しくない。
The thin film (3) containing TiO2 as a main component is provided to increase the transmittance of a glass plate with a transparent conductive film. As a means for forming a thin film containing TiO2 as a main component, a normal pressure CVD method in which a titanium compound and an oxidizing agent such as oxygen are reacted at 400 to 600 [deg.] C. is preferable in terms of productivity. Examples of titanium compounds include titanium tetraisopropoxide (Ti [OCH (CH3) 2] 4) and titanium tetra-n-butoxide (Ti
Alkoxides such as (OCH2CH2CH2CH3) 4) and di-i-propoxybis (acetylacetonato) titanium (Ti [OCH (CH
3) β-diketone chelates such as 2] 2 [OC (CH3) CHCOCH3] 2) and titanium tetrachloride (TiCl4) can be used. The thickness of the thin film mainly composed of TiO2 thus obtained is 100 to 120 nm.
Preferably, the thickness is 105 to 115 nm.
If the film thickness is smaller than 100 nm, the peak of the transmittance shifts to the shorter wavelength side, and the transmittance at a wavelength of 550 nm becomes smaller than 91%. If the film thickness is greater than 120 nm, the peak of the transmittance shifts to the long wavelength side, and the transmittance in the short wavelength region decreases, so that the transmitted color becomes yellowish and the design is impaired, which is not preferable.

【0015】SnO2を主成分とする薄膜(4)は、透明導電
膜付きガラスに導電性を付与するために設けられる。Sn
O2を主成分とする透明導電性膜を形成する手段として
は、生産性と膜の電気特性の点から塩素を含む錫化合物
と酸素を400〜600℃で反応させる常圧CVD法が好適であ
る。塩素を含む錫化合物としては、モノブチル錫トリク
ロライド(C4H9SnCl3)や四塩化錫(SnCl4)などが使用
される。また、錫原料中にHFの蒸気やCF3Brなどのフ
ッ素を含む化合物、あるいは五塩化アンチモンを含む化
合物の蒸気を混合し、被膜中に微量のフッ素やアンチモ
ンを添加しても良い。このようにして得られるSnO2を主
成分とする透明導電膜は、20〜80nmに選定されより好ま
しくは40〜80nmに選定される。膜厚が20nmより薄い場合
には抵抗値のリニアリティが5%を越えてしまう。膜厚
が80nmよりも厚い場合には透過率のピークが長波長側に
シフトし、短波長域での透過率が低下するため透明導電
膜付きガラスの透過色が黄色みを帯びるため意匠性が損
なわれ好ましくない。
The thin film (4) containing SnO2 as a main component is provided to impart conductivity to the glass with the transparent conductive film. Sn
As a means for forming a transparent conductive film containing O2 as a main component, a normal pressure CVD method in which a tin compound containing chlorine and oxygen are reacted at 400 to 600 ° C. in terms of productivity and electric characteristics of the film is preferable. . As the tin compound containing chlorine, monobutyltin trichloride (C4H9SnCl3), tin tetrachloride (SnCl4), or the like is used. Further, a vapor of HF or a compound containing fluorine such as CF3Br or a vapor of a compound containing antimony pentachloride may be mixed in the tin raw material, and a small amount of fluorine or antimony may be added to the film. The transparent conductive film containing SnO2 as a main component thus obtained is selected to have a thickness of 20 to 80 nm, more preferably 40 to 80 nm. When the film thickness is smaller than 20 nm, the linearity of the resistance value exceeds 5%. When the film thickness is greater than 80 nm, the transmittance peak shifts to the long wavelength side, and the transmittance in the short wavelength region decreases. It is not preferable because it is spoiled.

【作用】[Action]

【0016】本発明の透明導電膜付きガラス板は、ガラ
ス板表面にSiO2を主成分とする薄膜、TiO2を主成分とす
る薄膜、SnO2を主成分とする透明導電膜を順次所定厚み
範囲に被覆されており、可視光線透過率が高い。したが
ってこのガラス板を用いたタッチパネルは表示部の視認
性に優れている。
In the glass plate with a transparent conductive film of the present invention, a thin film containing SiO2 as a main component, a thin film containing TiO2 as a main component, and a transparent conductive film containing SnO2 as a main component are sequentially coated on a glass plate surface in a predetermined thickness range. And visible light transmittance is high. Therefore, a touch panel using this glass plate has excellent visibility of the display unit.

【実施例】【Example】

【0017】実施例1 大きさが300x300mm、厚みが1.1mmの波長550nmにおける
透過率が92%のフロートガラスを洗浄、乾燥し基板とし
た。この基板を450℃に加熱し、基板表面にSiH4(シラ
ン)、N2(窒素)、O2(酸素)の調整されたガスを供給
して厚みが30nmのSiO2薄膜を形成した。しかる後に基板
を500℃に加熱し、Ti[OCH(CH3)2]4の蒸気、N2、O2の調
整されたガスを供給してSiO2膜表面に厚みが110nmのTiO
2薄膜を形成した。次に基板を500℃に保ったまま、C4H9
SnCl3の蒸気、N2、O2および水蒸気の調整されたガスを
供給してTiO2膜表面に厚みが60nmの塩素含有SnO2膜を形
成した。このようにして得られた積層構造を有する透明
導電膜付きガラスを徐冷し、試料とした。この試料の可
視光透過率を分光光度計により測定した結果を図2に示
す。波長520nmにピークをもち波長550nmでの透過率が93
%であった。また、試料の中央を通り長辺に平行な直線
を11等分した10点でをシート抵抗を測定しリニアリ
ティを評価したところ、抵抗値のリニアリティは2%で
あった。
Example 1 A float glass having a size of 300 × 300 mm, a thickness of 1.1 mm and a transmittance of 92% at a wavelength of 550 nm and a wavelength of 550 nm was washed and dried to obtain a substrate. The substrate was heated to 450 ° C., and a controlled gas of SiH4 (silane), N2 (nitrogen) and O2 (oxygen) was supplied to the substrate surface to form a 30 nm thick SiO2 thin film. Thereafter, the substrate is heated to 500 ° C., and a vapor of Ti [OCH (CH3) 2] 4 and a regulated gas of N2 and O2 are supplied to the surface of the SiO2 film to form a TiO having a thickness of 110 nm.
Two thin films were formed. Next, with the substrate kept at 500 ° C, C4H9
A controlled gas of SnCl3 vapor, N2, O2 and water vapor was supplied to form a 60 nm thick chlorine-containing SnO2 film on the TiO2 film surface. The glass with a transparent conductive film having a laminated structure thus obtained was gradually cooled to obtain a sample. FIG. 2 shows the result of measuring the visible light transmittance of this sample using a spectrophotometer. Peak at 520 nm and transmittance at 550 nm is 93
%Met. The sheet resistance was measured at 10 points obtained by dividing a straight line parallel to the long side through the center of the sample into 11 equal parts, and the linearity was evaluated. As a result, the linearity of the resistance was 2%.

【0018】実施例2 TiO2膜の厚みを120nm、塩素含有SnO2膜の厚みを40nmと
した以外は実施例1と同様に試料を作製した。試料の可
視光透過率を分光光度計により測定したところ、波長54
0nmにピークをもち波長550nmでの透過率が92%であっ
た。また、試料の抵抗値のリニアリティは実施例1と同
じ測定方法で3%であった。
Example 2 A sample was prepared in the same manner as in Example 1 except that the thickness of the TiO2 film was 120 nm and the thickness of the chlorine-containing SnO2 film was 40 nm. The visible light transmittance of the sample was measured with a spectrophotometer.
It had a peak at 0 nm and the transmittance at a wavelength of 550 nm was 92%. The linearity of the resistance value of the sample was 3% by the same measurement method as in Example 1.

【0019】実施例3 TiO2膜の厚みを100nm、塩素含有SnO2膜の厚みを80nmと
した以外は実施例1と同様に試料を作製した。試料の可
視光透過率を分光光度計により測定したところ、波長50
0nmにピークをもち波長550nmでの透過率が91%であっ
た。また、試料の抵抗値のリニアリティは実施例1と同
じ測定方法で3%であった。$ 実施例4 実施例1で作成した透明導電膜付きガラス板の透明導電
膜(5)をストライプ状にパターンニングし、このガラ
スとストライプ状にパターニングしたITO透明導電膜
(8)が被覆されたPETフイルム(7)とを、透明導
電膜が内側にかつストライプの方向が直行するように、
かつガラス板とPETフイルムの間隔が約100μmと
なるようにスペーサー(6)を用いて貼り付けた。透明
導電膜の間に一定の電圧を印加できるようにリード線を
取付け、図3a(リード線は図示してない)に示すよう
な断面構造のタッチパネルとした。このタッチパネルは
図3(b)に示すように指で押厚することにより電極間
の抵抗が変化し、例えば液晶表示セルと重ね合わせて用
いると指の押圧力で制御できる視認性のよい表示素子が
得られた。 比較例1 TiO2膜の厚みを130nm、塩素含有SnO2の厚みを60nmとし
た以外は実施例1と同様に試料を作製した。試料の可視
光透過率を分光光度計により測定したところ、波長560n
mにピークをもち波長550nmでの透過率が90%であった。
この試料の抵抗値のリニアリティは2%であった。
Example 3 A sample was prepared in the same manner as in Example 1 except that the thickness of the TiO2 film was 100 nm and the thickness of the chlorine-containing SnO2 film was 80 nm. When the visible light transmittance of the sample was measured with a spectrophotometer, the wavelength was 50
It had a peak at 0 nm and the transmittance at a wavelength of 550 nm was 91%. The linearity of the resistance value of the sample was 3% by the same measurement method as in Example 1. 4 Example 4 The transparent conductive film (5) of the glass plate with a transparent conductive film prepared in Example 1 was patterned in a stripe shape, and the glass and the ITO transparent conductive film (8) patterned in a stripe shape were coated. The PET film (7) is placed so that the transparent conductive film is on the inside and the direction of the stripe is orthogonal.
In addition, they were attached using a spacer (6) so that the distance between the glass plate and the PET film was about 100 μm. Lead wires were attached so that a constant voltage could be applied between the transparent conductive films, and a touch panel having a cross-sectional structure as shown in FIG. 3A (lead wires are not shown) was obtained. As shown in FIG. 3 (b), this touch panel changes the resistance between the electrodes when pressed with a finger. For example, when the touch panel is used in a state of being superposed on a liquid crystal display cell, the display element can be controlled by the pressing force of the finger and has good visibility. was gotten. Comparative Example 1 A sample was prepared in the same manner as in Example 1 except that the thickness of the TiO2 film was 130 nm and the thickness of the chlorine-containing SnO2 was 60 nm. When the visible light transmittance of the sample was measured with a spectrophotometer, the wavelength was 560n
It had a peak at m and the transmittance at a wavelength of 550 nm was 90%.
The linearity of the resistance value of this sample was 2%.

【0020】比較例2 TiO2膜の厚みを90nm、塩素含有SnO2膜の厚みを80nmとし
た以外は実施例1と同様に試料を作製した。試料の可視
光透過率を分光光度計により測定したところ、波長490n
mにピークをもち波長550nmでの透過率が88%であった。
また、試料の抵抗のリニアリティは1%であった。
Comparative Example 2 A sample was prepared in the same manner as in Example 1, except that the thickness of the TiO2 film was 90 nm and the thickness of the chlorine-containing SnO2 film was 80 nm. When the visible light transmittance of the sample was measured with a spectrophotometer, the wavelength was 490n.
It had a peak at m and the transmittance at a wavelength of 550 nm was 88%.
The linearity of the resistance of the sample was 1%.

【0021】比較例3 大きさが300x300mm、厚みが1.1mmのフロートガラスを洗
浄、乾燥し基板とした。この基板を450℃に加熱し、基
板表面にSiH4、N2、O2の調整されたガスを供給して厚み
が30nmのSiO2薄膜を形成した。しかる後に基板を500℃
に加熱し、C4H9SnCl3の蒸気、N2、O2、HFの蒸気および
水蒸気の調整されたガスを供給してSiO2膜表面に厚みが
25nmのフッ素を含むSnO2薄膜を形成した。このようにし
て得られた、透明導電膜付きガラスを徐冷し、試料とし
た。試料の可視光透過率を分光光度計により測定した結
果を図2に示す。波長550nmでの透過率は90%であっ
た。また、試料の抵抗値はリニアリティは4%であっ
た。 比較例4
Comparative Example 3 A float glass having a size of 300 × 300 mm and a thickness of 1.1 mm was washed and dried to obtain a substrate. The substrate was heated to 450 ° C., and a controlled gas of SiH4, N2, and O2 was supplied to the substrate surface to form a 30-nm-thick SiO2 thin film. After that, the substrate is heated to 500 ℃
And supply a regulated gas of C4H9SnCl3 vapor, N2, O2, HF vapor and water vapor to increase the thickness on the SiO2 film surface.
A SnO2 thin film containing fluorine of 25 nm was formed. The glass with the transparent conductive film thus obtained was gradually cooled to obtain a sample. FIG. 2 shows the result of measuring the visible light transmittance of the sample with a spectrophotometer. The transmittance at a wavelength of 550 nm was 90%. The linearity of the resistance value of the sample was 4%. Comparative Example 4

【発明の効果】【The invention's effect】

【0022】本発明によれば可視光透過率が高く視認性
に優れたタッチパネル用の透明導電膜付きガラスを得る
ことができる。
According to the present invention, it is possible to obtain a glass with a transparent conductive film for a touch panel, which has high visible light transmittance and excellent visibility.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の透明導電膜付きガラスの一部断面図で
ある。
FIG. 1 is a partial cross-sectional view of a glass with a transparent conductive film of the present invention.

【図2】本発明の一実施例の可視透過特性を示す図であ
る。
FIG. 2 is a view showing a visible transmission characteristic of one embodiment of the present invention.

【図3】本発明のタッチパネルの断面図である。FIG. 3 is a sectional view of the touch panel of the present invention.

【符号の説明】[Explanation of symbols]

(1):透明基体 (2):SiO2を主成分とする薄膜 (3):TiO2を主成分とする薄膜 (4):SnO2を主成分とする透明導電膜 (5):(2)、(3)、(4)が順次積層された透明
電極 (6):スペーサー (7):PETフイルム (8):透明導電膜
(1): Transparent substrate (2): Thin film mainly composed of SiO2 (3): Thin film mainly composed of TiO2 (4): Transparent conductive film mainly composed of SnO2 (5): (2), (2) 3) Transparent electrode in which (4) is sequentially laminated (6): Spacer (7): PET film (8): Transparent conductive film

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI B32B 17/06 B32B 17/06 27/06 27/06 G02F 1/133 530 G02F 1/133 530 G06F 3/033 350 G06F 3/033 350A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI B32B 17/06 B32B 17/06 27/06 27/06 G02F 1/133 530 G02F 1/133 530 G06F 3/033 350 G06F 3 / 033 350A

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ガラス板表面にSiO2を主成分とする薄膜、
TiO2を主成分とする薄膜、SnO2を主成分とする透明導電
膜を順次被覆させた透明導電膜付きガラス板であって、
該SiO2を主成分とする薄膜の厚みを10〜50nm、該TiO2を
主成分とする薄膜の厚みを100〜120nm、該透明導電膜の
厚みを20〜80nmとしたタッチパネル用透明導電膜付きガ
ラス板。
1. A thin film containing SiO2 as a main component on a surface of a glass plate.
A thin film containing TiO2 as a main component, a glass plate with a transparent conductive film sequentially coated with a transparent conductive film containing SnO2 as a main component,
A glass plate with a transparent conductive film for a touch panel having a thickness of the thin film containing SiO2 as a main component of 10 to 50 nm, a thickness of the thin film containing TiO2 as a main component of 100 to 120 nm, and a thickness of the transparent conductive film of 20 to 80 nm. .
【請求項2】波長550nmでの透過率が用いるガラス板単
独の透過率よりも高く、波長400〜800nmの領域において
一つの極大を有する分光透過率を有し、かつ、その極大
を550nmより短波長側にあるようにしたことを特徴とす
る請求項1に記載のタッチパネル用透明導電膜付きガラ
ス板。
2. The transmittance at a wavelength of 550 nm is higher than the transmittance of a glass plate used alone, has a spectral transmittance having one maximum in a wavelength range of 400 to 800 nm, and has a maximum shorter than 550 nm. The glass plate with a transparent conductive film for a touch panel according to claim 1, wherein the glass plate is on the wavelength side.
【請求項3】請求項1乃至2のいずれかの項に記載の透
明導電膜付きガラス板を第1の基体とし、透明導電性膜
が被覆された透明樹脂板を第2の基体とし、第1の基体
と第2の基体とが、それぞれの基体に被覆された透明導
電膜が対向し、かつ、第1の基体と第2の基体との間に
空間が形成されるように接着されてなるタッチパネル。
3. A glass plate with a transparent conductive film according to claim 1 as a first base, a transparent resin plate coated with a transparent conductive film as a second base, The first substrate and the second substrate are adhered so that the transparent conductive films coated on the respective substrates face each other and a space is formed between the first substrate and the second substrate. Become a touch panel.
JP11827794A 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same Expired - Fee Related JP2874556B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11827794A JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Publications (2)

Publication Number Publication Date
JPH07315880A JPH07315880A (en) 1995-12-05
JP2874556B2 true JP2874556B2 (en) 1999-03-24

Family

ID=14732677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11827794A Expired - Fee Related JP2874556B2 (en) 1994-05-31 1994-05-31 Glass plate with transparent conductive film and touch panel using the same

Country Status (1)

Country Link
JP (1) JP2874556B2 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3781888B2 (en) * 1998-02-13 2006-05-31 日産自動車株式会社 Hydrophilic substrate and method for producing the same
JP4516657B2 (en) * 1999-06-18 2010-08-04 日本板硝子株式会社 SUBSTRATE FOR PHOTOELECTRIC CONVERSION DEVICE, ITS MANUFACTURING METHOD, AND PHOTOELECTRIC CONVERSION DEVICE USING THE SAME
US7151532B2 (en) 2002-08-09 2006-12-19 3M Innovative Properties Company Multifunctional multilayer optical film
US8264466B2 (en) 2006-03-31 2012-09-11 3M Innovative Properties Company Touch screen having reduced visibility transparent conductor pattern
EP2114839A2 (en) * 2007-01-15 2009-11-11 Saint-Gobain Glass France Glass substrate coated with layers having an improved mechanical strength
JP4957625B2 (en) * 2008-04-04 2012-06-20 旭硝子株式会社 Method for forming transparent substrate
US8454181B2 (en) 2010-08-25 2013-06-04 Ford Global Technologies, Llc Light bar proximity switch
US8575949B2 (en) 2010-08-25 2013-11-05 Ford Global Technologies, Llc Proximity sensor with enhanced activation
US8928336B2 (en) 2011-06-09 2015-01-06 Ford Global Technologies, Llc Proximity switch having sensitivity control and method therefor
US8975903B2 (en) 2011-06-09 2015-03-10 Ford Global Technologies, Llc Proximity switch having learned sensitivity and method therefor
CN102837467B (en) * 2011-06-22 2015-04-08 信义光伏产业(安徽)控股有限公司 Transparent conductive film glass and preparation method thereof
US10004286B2 (en) 2011-08-08 2018-06-26 Ford Global Technologies, Llc Glove having conductive ink and method of interacting with proximity sensor
US9143126B2 (en) 2011-09-22 2015-09-22 Ford Global Technologies, Llc Proximity switch having lockout control for controlling movable panel
US8994228B2 (en) 2011-11-03 2015-03-31 Ford Global Technologies, Llc Proximity switch having wrong touch feedback
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
US8878438B2 (en) 2011-11-04 2014-11-04 Ford Global Technologies, Llc Lamp and proximity switch assembly and method
US9065447B2 (en) 2012-04-11 2015-06-23 Ford Global Technologies, Llc Proximity switch assembly and method having adaptive time delay
US9520875B2 (en) 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9197206B2 (en) 2012-04-11 2015-11-24 Ford Global Technologies, Llc Proximity switch having differential contact surface
US9184745B2 (en) 2012-04-11 2015-11-10 Ford Global Technologies, Llc Proximity switch assembly and method of sensing user input based on signal rate of change
US8933708B2 (en) 2012-04-11 2015-01-13 Ford Global Technologies, Llc Proximity switch assembly and activation method with exploration mode
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US9287864B2 (en) 2012-04-11 2016-03-15 Ford Global Technologies, Llc Proximity switch assembly and calibration method therefor
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9219472B2 (en) 2012-04-11 2015-12-22 Ford Global Technologies, Llc Proximity switch assembly and activation method using rate monitoring
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9136840B2 (en) 2012-05-17 2015-09-15 Ford Global Technologies, Llc Proximity switch assembly having dynamic tuned threshold
US8981602B2 (en) 2012-05-29 2015-03-17 Ford Global Technologies, Llc Proximity switch assembly having non-switch contact and method
US9337832B2 (en) 2012-06-06 2016-05-10 Ford Global Technologies, Llc Proximity switch and method of adjusting sensitivity therefor
US9641172B2 (en) 2012-06-27 2017-05-02 Ford Global Technologies, Llc Proximity switch assembly having varying size electrode fingers
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
US9311204B2 (en) 2013-03-13 2016-04-12 Ford Global Technologies, Llc Proximity interface development system having replicator and method
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration

Also Published As

Publication number Publication date
JPH07315880A (en) 1995-12-05

Similar Documents

Publication Publication Date Title
JP2874556B2 (en) Glass plate with transparent conductive film and touch panel using the same
JPH08138446A (en) Glass plate with transparent conductive film and transparent touch panel using it
TWI233570B (en) Touch panel display apparatus and method of fabricating the same
EP1031111B1 (en) Touch panel
TW201022458A (en) ITO-coated article for use with touch panel display assemblies, and/or method of making the same
US20080018201A1 (en) Touch panel
CN111475055A (en) Touch panel
JP6507311B2 (en) Substrate with transparent conductive layer and liquid crystal panel
TWI559191B (en) Touch apparatus
EP3118728B1 (en) Projected capacitive touch switch panel
CN104238167A (en) Touch liquid crystal panel and manufacturing method thereof
CN108319081B (en) Liquid crystal display panel, preparation method of liquid crystal display panel and display device
JP4376474B2 (en) Transparent conductive film
JP7013544B2 (en) Force sensing module, its manufacturing method, and electronic devices
US20220075468A1 (en) Three-dimensional sensing panel and method of manufacturing the same and electronic apparatus
CN107463298A (en) Capacitive touch screen
JPH08151235A (en) Glass plate having electrically conductive transparent film and transparent touch panel
US10620764B2 (en) Color filter substrate, fabrication method thereof and display panel
CN103207692A (en) Image display system comprising touch panel and manufacturing method of touch panel
CN101477420B (en) Touch control type display panel
TWI747646B (en) Electronic curtain and electronic device
US11493809B2 (en) Electronic curtain and electronic device
CN212302450U (en) Force sensitive sensing module and electronic device
CN208432974U (en) A kind of touch sensing, GG touch screen and electronic product
CN210835496U (en) Low-energy-consumption liquid crystal display screen

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees