JP2874052B2 - Method for producing porous substrate for battery electrode and electrode using the same - Google Patents

Method for producing porous substrate for battery electrode and electrode using the same

Info

Publication number
JP2874052B2
JP2874052B2 JP2023125A JP2312590A JP2874052B2 JP 2874052 B2 JP2874052 B2 JP 2874052B2 JP 2023125 A JP2023125 A JP 2023125A JP 2312590 A JP2312590 A JP 2312590A JP 2874052 B2 JP2874052 B2 JP 2874052B2
Authority
JP
Japan
Prior art keywords
electrode
substrate
battery electrode
foamed polymer
sponge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2023125A
Other languages
Japanese (ja)
Other versions
JPH03226969A (en
Inventor
基秀 増井
護 青木
信吾 津田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2023125A priority Critical patent/JP2874052B2/en
Publication of JPH03226969A publication Critical patent/JPH03226969A/en
Application granted granted Critical
Publication of JP2874052B2 publication Critical patent/JP2874052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • H01M4/808Foamed, spongy materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5627After-treatment of articles, e.g. for altering the shape by mechanical deformation, e.g. crushing, embossing, stretching
    • B29C44/5654Subdividing foamed articles to obtain particular surface properties, e.g. on multiple modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • H01M6/10Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid with wound or folded electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は電池用電極のスポンジ状金属多孔体基板の製
造法及びそれを用いた電極に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a sponge-like porous metal substrate for a battery electrode, and an electrode using the same.

従来の技術 近年、電池を電源とする各種電子機器、特に携帯用機
器の分野においては、種々の電池が用いられている。そ
の中でも使用範囲が広範であり、かつコストパフォーマ
ンスに優れた円筒型アルカリ蓄電池が主流を占めてい
る。従来、その活物質を保持する基板は、正極では焼結
式、負極では焼結式または穿孔鋼板が一般的に用いられ
てきた。しかしながら、最近の高容量化の取り組みのな
かで活物質保持基体として、その活物質を保持する容積
が大きいスポンジ状金属多孔体基板が用いられている。
2. Description of the Related Art In recent years, various batteries have been used in various electronic devices using batteries as power sources, particularly in the field of portable devices. Among them, cylindrical alkaline storage batteries, which have a wide range of use and are excellent in cost performance, occupy the mainstream. Conventionally, as a substrate holding the active material, a sintered type has been generally used for the positive electrode, and a sintered type or perforated steel plate has been generally used for the negative electrode. However, in recent efforts to increase the capacity, a sponge-like porous metal substrate having a large volume for holding the active material has been used as an active material holding substrate.

発明が解決しようとする課題 前述のように、スポンジ状金属多孔体を基板に用いた
極板については高い容量密度が得られるという利点を有
するが、焼結式基板に比べて金属量が少ないため極板巻
回時の曲げに対する強度が劣るという欠点を有する。そ
れ故スポンジ状金属多孔体を用いた極板を巻回する場合
は、特公昭58−34902号公報に示すようにスポンジ状金
属多孔体を製造工程中のテンションによってできる略防
錘形空間の長径方向と直角方向に巻回し、外周にかかる
伸びに対して余裕をもたせ、巻回時の極板切れを防ぐこ
とが提案されている。しかし、発泡高分子基材製造上の
バラツキから種々の孔形状に対して常に一定の孔形状を
得ることは難しく、また、テンションによって基板に歪
みが残るという問題点を有していた。
Problems to be Solved by the Invention As described above, an electrode plate using a sponge-like porous metal body as a substrate has an advantage that a high capacity density can be obtained, but because the amount of metal is smaller than that of a sintered substrate, There is a drawback that the strength against bending when winding the electrode plate is poor. Therefore, when winding an electrode plate using a sponge-like metal porous body, as shown in JP-B-58-34902, the major diameter of the substantially weight-proof space formed by the tension during the manufacturing process of the sponge-like metal porous body It has been proposed to wind the electrode in a direction perpendicular to the direction to allow a margin for the elongation on the outer periphery and prevent the electrode plate from breaking during winding. However, it has been difficult to always obtain a constant hole shape for various hole shapes due to variations in the production of the foamed polymer base material, and there has been a problem that strain remains on the substrate due to tension.

本発明は従来のこのような問題点を解決し、均一で良
好な極板巻回性をもつ極板を得ることを目的とするもの
である。
SUMMARY OF THE INVENTION An object of the present invention is to solve such a conventional problem and to obtain an electrode plate having uniform and excellent electrode winding properties.

課題を解決するための手段 本発明は前記目的を達成するために、発泡高分子基材
のブロックを、発泡高分子の製造中発生する気泡が主に
抜ける方向を軸としてピーリングし、続く工程によって
スポンジ状金属多孔体基板を得る方法、ならびにこの基
板に活物質を充填した電極であって、この電極は発泡高
分子製造時に気泡が抜ける方向と極板としての巻回の軸
方向とを同一方向にしたことを特徴とする。
Means for Solving the Problems In order to achieve the above object, the present invention peels a block of a foamed polymer base material around an axis in which bubbles generated during the production of a foamed polymer mainly escape, and performs the following steps. A method for obtaining a sponge-like porous metal substrate, and an electrode in which the substrate is filled with an active material, wherein the electrode has the same direction as the direction in which bubbles are released during the production of the foamed polymer and the axial direction of the winding as an electrode plate. It is characterized by the following.

作用 これによれば、ピーリングされた発泡高分子の薄膜の
幅方向に対して、高分子発泡時生成する気泡の抜け方向
が平行でかつ一定となり、薄膜の長尺方向についても孔
形状および大きさにおけるバラツキが少なくなる。この
基板に活物質を充填した電極において、気泡の抜け方向
と巻回の軸方向とを同じにすれば、巻回時の曲げに対し
て電極の強度を保持でき、従って、放電特性に優れた、
バラツキの少ない電池を得ることができる。
According to this, the direction in which bubbles generated at the time of polymer foaming are parallel and constant with respect to the width direction of the peeled foamed polymer thin film, and the pore shape and size also in the long direction of the thin film. The variation in is reduced. In the electrode filled with the active material in this substrate, if the direction in which air bubbles escape and the axial direction of winding are the same, the strength of the electrode against bending during winding can be maintained, and therefore, the discharge characteristics are excellent. ,
A battery with less variation can be obtained.

実施例 以下、本発明の実施例を説明する。Examples Hereinafter, examples of the present invention will be described.

第1図に示す発泡高分子のブロック1において、その
製造過程で発生する気泡が主に抜ける方向(図中a方
向)を見出し、この方向と同方向を軸に発泡高分子ブロ
ックを厚さ1.5mmでピーリングする。ピーリングされた
帯状薄膜2にニッケルを約100g/m2で真空蒸着し、続い
て硫酸ニッケル水溶液中において約500g/m2のニッケル
メッキを施した後、約400℃で発泡高分子基材を燃焼除
去し、さらに水素ガス中において約900℃で還元処理す
ることによってスポンジ状ニッケル多孔体基板を得る。
この基板に、水酸化ニッケル90重量%,コバルト粉末7
重量%,水酸化カドミウム3重量%の混合物に水を加え
て調整した活物質ペーストを充填し、乾燥の後、厚み約
0.8mmになるよう加圧成形する。そして、第2図中Aに
示すように、前記気泡の抜ける方向と平行に幅37mm、直
角に長さ90mmの電極板3を得、これに集電リードを取り
つけ正極板4とする(本発明の製造法A)。比較のため
の製造法Bとして、製造法Aと同様にして得られた電極
から、第2図中Bに示すように、気泡の抜ける方向と直
角に幅37mm、平行に長さ90mmとして正極板を得る。
In the block 1 of the foamed polymer shown in FIG. 1, a direction (a direction in the figure) through which the air bubbles generated in the production process mainly escape is found, and the foamed polymer block having a thickness of 1.5 Peel with mm. Nickel is vacuum-deposited on the peeled strip-shaped thin film 2 at about 100 g / m 2 , followed by nickel plating of about 500 g / m 2 in an aqueous nickel sulfate solution, and then the foamed polymer substrate is burned at about 400 ° C. The sponge-like porous nickel substrate is obtained by removing and subjecting to a reduction treatment at about 900 ° C. in hydrogen gas.
On this substrate, nickel hydroxide 90% by weight, cobalt powder 7
% Of cadmium hydroxide and 3% by weight of water, and filled with an active material paste prepared by adding water.
Press molding to 0.8mm. Then, as shown in FIG. 2A, an electrode plate 3 having a width of 37 mm and a length of 90 mm at right angles is obtained in parallel with the direction in which the air bubbles escape, and a current collecting lead is attached to the electrode plate 3 to form a positive electrode plate 4 (the present invention). Production method A). As a production method B for comparison, from the electrode obtained in the same manner as the production method A, as shown in B in FIG. Get.

次に、第1図a方向に対してこれと直角方向(第1図
中b)を軸として発泡高分子ブロック1をピーリング
し、前記工法と同様にして得られた極板3について、第
3図中Cに示すように、軸に対して平行方向に幅37mm、
直角方向に長さ90mmに加工して正極板とする(比較製造
法C)。
Next, the foamed polymer block 1 is peeled around a direction perpendicular to the direction shown in FIG. 1a (b in FIG. 1) as an axis. As shown in C in the figure, 37 mm in width parallel to the axis,
It is processed into a 90 mm length in the perpendicular direction to obtain a positive electrode plate (Comparative Manufacturing Method C).

さらに、比較製造法Dとして、製造法Cと同様にして
得られた電極から、第3図中Dに示すように、軸に対し
て直角方向に幅37mm、平行方向に長さ90mmに加工して正
極板4を得る。
Further, as a comparative manufacturing method D, as shown in D in FIG. 3, the electrode obtained in the same manner as the manufacturing method C was processed into a width of 37 mm in a direction perpendicular to the axis and a length of 90 mm in a parallel direction. Thus, a positive electrode plate 4 is obtained.

これらの極板を、それぞれ、負極にカドミウム,ナイ
ロン性セパレータと共に巻回し、水酸化カリウムを電解
液として単三型の円筒型ニッケル−カドミウム蓄電池を
得る。
These electrode plates are wound around a negative electrode together with cadmium and nylon separators to obtain an AA cylindrical nickel-cadmium storage battery using potassium hydroxide as an electrolyte.

それぞれの製造方法による電池をそれぞれ20個用意し
て、80mAにて15時間充電した後、800mAで1.0Vまで放電
してその容量を比較した。その結果を第4図に示す。
Twenty batteries were prepared according to the respective manufacturing methods, charged at 80 mA for 15 hours, discharged at 800 mA to 1.0 V, and compared in capacity. The result is shown in FIG.

本発明の製造法Aによる場合、放電容量はすべて800m
Ah以上であり、バラツキも他の製造方法によるものと比
べて少なくなる。
In the case of the production method A of the present invention, the discharge capacity is 800 m
Ah or more, and the variation is smaller than that by other manufacturing methods.

これは、以下の理由によるものと考えられる。 This is considered to be due to the following reasons.

発泡高分子ブロック製造時に生じる気泡は通常、主に
上方に向かって抜けるが、その方向にトンネル状の空洞
を形成する。従って、生成した発泡高分子中にはこの空
洞が多数、ほとんど同一方向で並んだ状態となる。この
方向を軸にピーリングした場合、得られる発泡高分子の
帯において、上記の空洞が幅方向に常にほぼ一定に並ぶ
状態となる。しかしながら、ピーリングの軸を気泡が主
に抜ける方向と直角にすれば、得られる帯に関してその
方向は一定とならず、空洞が様々な角度で切断される形
となってしまう。また、活物質を充填した状態は、この
トンネル状の空洞が活物質に満たされている状態であ
り、この空洞に対して同方向を軸として巻回した場合、
ちょうどこの空洞に添って電極板が巻かれるため、空洞
に詰まった、いわば棒状の活物質が折られることはない
が、空洞に対して直角方向を軸として巻回した場合、棒
状の活物質が折られる方向となるため電極板の著しい亀
裂、あるいは切断という問題を生じる。その結果電池の
放電特性が劣化するものである。
The bubbles generated during the production of the foamed polymer block usually escape mainly upward, but form a tunnel-like cavity in that direction. Therefore, a large number of these cavities are arranged in almost the same direction in the formed foamed polymer. When peeling is performed in this direction as an axis, the above-mentioned cavities are always arranged almost uniformly in the width direction in the obtained band of the foamed polymer. However, if the axis of the peeling is perpendicular to the direction in which the bubbles mainly escape, the direction of the resulting band will not be constant and the cavity will be cut at various angles. The state filled with the active material is a state in which the tunnel-shaped cavity is filled with the active material.
Just because the electrode plate is wound along this cavity, the rod-shaped active material that is clogged in the cavity, so to speak, does not break, but when it is wound around the axis perpendicular to the cavity, the rod-shaped active material becomes Because of the bending direction, a problem of remarkable cracking or cutting of the electrode plate occurs. As a result, the discharge characteristics of the battery deteriorate.

発明の効果 以上説明したように本発明によれば、スポンジ状金属
多孔体の性状におけるバラツキが少なく、活物質を充填
した電極は巻回特性にも優れているため、放電特性に優
れかつ、バラツキの少ない電極を提供できるものであ
る。
Effects of the Invention As described above, according to the present invention, there is little variation in the properties of the sponge-like metal porous body, and the electrode filled with the active material also has excellent winding characteristics, and thus has excellent discharge characteristics and variation. It is possible to provide an electrode having a small number of electrodes.

【図面の簡単な説明】[Brief description of the drawings]

第1図は発泡高分子のブロック及びその製造時に発生す
る気泡の抜ける方向とピーリング方向との関係を示す
図、第2図は本発明の製造法A及び比較製造法Bによる
正極板を示す図、第3図は比較製造法C及びDによる正
極板を示す図、第4図は各製造法による電池の放電特性
比較を示した図である。
FIG. 1 is a diagram showing the relationship between the direction of peeling and the peeling direction of bubbles generated during the production of a block of foamed polymer and its production, and FIG. 2 is a diagram showing a positive electrode plate according to production method A and comparative production method B of the present invention. FIG. 3 is a diagram showing positive electrode plates according to comparative manufacturing methods C and D, and FIG. 4 is a diagram showing a comparison of discharge characteristics of batteries by each manufacturing method.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01M 4/80 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) H01M 4/80

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】発泡高分子のブロックを薄膜状に切り出
(ピーリング)し、これに蒸着,メッキ,塗布等の手段
を単一あるいは併用して導電性被膜を形成した後、発泡
高分子を燃焼除去し、続いて還元することによって電池
電極用の三次元構造のスポンジ状金属多孔体基板を製造
する工程において、前記ピーリング方向を、基材である
発泡高分子製造時に発生する気泡が主に抜ける方向を軸
としてピーリングした薄膜状高分子を用いてスポンジ状
金属多孔体基板を得ることを特徴とする電池用電極の多
孔体基板の製造方法。
1. A block of foamed polymer is cut out (peeled) into a thin film, and a conductive film is formed thereon by means of vapor deposition, plating, coating or the like singly or in combination. In the step of producing a sponge-like porous metal substrate having a three-dimensional structure for a battery electrode by burning and removing and subsequently reducing, the peeling direction is mainly changed by bubbles generated during the production of a foamed polymer as a base material. A method for producing a porous substrate for a battery electrode, comprising obtaining a sponge-like porous metal substrate using a thin-film polymer peeled about an exit direction as an axis.
【請求項2】請求項1に記載の多孔体基板に活物質を充
填した電極であり、前記気泡が抜ける方向と極板巻回の
軸方向とが同方向である電池用電極。
2. A battery electrode according to claim 1, wherein the porous substrate is filled with an active material, wherein the direction in which the air bubbles escape is the same as the axial direction of the electrode plate winding.
JP2023125A 1990-01-31 1990-01-31 Method for producing porous substrate for battery electrode and electrode using the same Expired - Lifetime JP2874052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023125A JP2874052B2 (en) 1990-01-31 1990-01-31 Method for producing porous substrate for battery electrode and electrode using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2023125A JP2874052B2 (en) 1990-01-31 1990-01-31 Method for producing porous substrate for battery electrode and electrode using the same

Publications (2)

Publication Number Publication Date
JPH03226969A JPH03226969A (en) 1991-10-07
JP2874052B2 true JP2874052B2 (en) 1999-03-24

Family

ID=12101796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023125A Expired - Lifetime JP2874052B2 (en) 1990-01-31 1990-01-31 Method for producing porous substrate for battery electrode and electrode using the same

Country Status (1)

Country Link
JP (1) JP2874052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000000345A1 (en) * 1998-06-29 2000-01-06 Eltech Systems Corporation Production of a porous foam product for battery electrodes
US7074455B2 (en) 2002-08-01 2006-07-11 Matsushita Electric Industrial Co., Ltd. Method of manufacturing porous metal plates and electrodes for alkaline storage batteries

Also Published As

Publication number Publication date
JPH03226969A (en) 1991-10-07

Similar Documents

Publication Publication Date Title
EP3416220B1 (en) Secondary battery anode comprising lithium metal layer having micropattern and protective layer thereof, and method for producing same
CN111403678A (en) Three-dimensional flexible metal cathode and preparation method thereof
JPH1021928A (en) Electrode material for secondary battery
JP2874052B2 (en) Method for producing porous substrate for battery electrode and electrode using the same
JPS6142377B2 (en)
JP2002184411A (en) Negative electrode collector for nonaqueous battery and its manufacturing method and negative electrode for nonaqueous battery
JP2008041347A (en) Negative electrode for lithium ion secondary battery, and method for manufacturing the same
JPH10188994A (en) Alkaline storage battery
CN219610483U (en) Bipolar plate and nickel-hydrogen battery based on bipolar plate
JP3182225B2 (en) Method for producing cadmium negative electrode for alkaline storage battery
JP2002184409A (en) Negative electrode collector for nickel hydrogen battery, its manufacturing method, and negative electrode for nickel hydrogen battery
KR102209357B1 (en) How to create grid surface protrusions of lead-acid batteries using press die corrosion
JP3187882B2 (en) Method for manufacturing alkaline storage battery and method for manufacturing nickel plate for alkaline storage battery
JPH10112326A (en) Electrode for alkaline secondary battery
JP3015455B2 (en) Electrode plate for battery
JPH0410181B2 (en)
JPH08329936A (en) Secondary battery and electrode preparation that is used forthis
JP3043108B2 (en) Method for producing non-sintered cadmium electrode plate for alkaline storage battery
JPS60258854A (en) Method of manufacturing paste type cadmium negative pole
CN116404120A (en) Bipolar plate, nickel-hydrogen battery based on bipolar plate and production process
JPH0963573A (en) Manufacture of hydrogen storage alloy electrode
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JP2558587B2 (en) Negative electrode for nickel-hydrogen secondary battery
JPS60250556A (en) Production of nickel-cadmium storage battery
JP2003068291A (en) Formation method for gas tight nickel - hydrogen storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 12