JP2873591B2 - Liquid level indicator - Google Patents

Liquid level indicator

Info

Publication number
JP2873591B2
JP2873591B2 JP1292204A JP29220489A JP2873591B2 JP 2873591 B2 JP2873591 B2 JP 2873591B2 JP 1292204 A JP1292204 A JP 1292204A JP 29220489 A JP29220489 A JP 29220489A JP 2873591 B2 JP2873591 B2 JP 2873591B2
Authority
JP
Japan
Prior art keywords
liquid level
change
liquid
detected
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1292204A
Other languages
Japanese (ja)
Other versions
JPH03154827A (en
Inventor
健一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP1292204A priority Critical patent/JP2873591B2/en
Publication of JPH03154827A publication Critical patent/JPH03154827A/en
Application granted granted Critical
Publication of JP2873591B2 publication Critical patent/JP2873591B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は工業用に利用される液面計に関し、特に非接
触で液面の変化を連続的に検出する液面計に関する。
Description: FIELD OF THE INVENTION The present invention relates to a liquid level gauge used for industrial purposes, and more particularly to a liquid level gauge that continuously detects a change in liquid level without contact.

(従来の技術) 従来の液面計は、接触型と非接触型とに大別され、こ
れらは更にある点に液体が存在するか否かを判別するポ
イントセンサと称される型と液面の変化を連続的に検知
する型とに分類される。このうち非接触で液面の変化を
連続的に検知する液面計としては、(1)液面での光の
反射を利用するもの、(2)液面での超音波の反射を利
用するもの、(3)液体の圧力変化を検出するもの等が
実用化あるいは開発されている。
(Prior Art) Conventional liquid level gauges are roughly classified into a contact type and a non-contact type, and these are further referred to as a type called a point sensor for determining whether or not liquid exists at a certain point, and a liquid level. Are continuously classified. Among them, the liquid level gauges that continuously detect a change in the liquid level in a non-contact manner include (1) those that use the reflection of light on the liquid level, and (2) that use the reflection of ultrasonic waves on the liquid level. And (3) those that detect a change in pressure of a liquid have been put to practical use or developed.

(発明が解決しようとする課題) 第4図は従来の液面での光の反射を利用する液面計の
原理を示す概略図である。光源1および受光器2は液面
3の上方に配置され、液面3で反射された光源1のビー
ムを受光器2で受光するように調整されている。液面3
が3′の位置に変化すると光源1から受光器2に至る光
路が変化するので、受光器2の受光量が減少する。この
減少量から液面の変化を検出する。
(Problems to be Solved by the Invention) FIG. 4 is a schematic diagram showing the principle of a conventional liquid level meter utilizing reflection of light on a liquid surface. The light source 1 and the light receiver 2 are arranged above the liquid surface 3, and are adjusted so that the light receiver 1 receives the beam of the light source 1 reflected on the liquid surface 3. Liquid level 3
Changes to the position 3 ', the optical path from the light source 1 to the light receiver 2 changes, and the amount of light received by the light receiver 2 decreases. The change in the liquid level is detected from the decrease amount.

この液面計では受光量の変化をアナログ的に検出して
いるため、液面の変化を高い精度で検出するためには光
源1及び受光器2を長期に亘り安定化させる必要があ
り、また、液体表面の反射率が変化すると誤差が生ずる
等の欠点がある。
In this liquid level meter, a change in the amount of received light is detected in an analog manner, so that in order to detect a change in the liquid level with high accuracy, the light source 1 and the light receiver 2 need to be stabilized for a long time. However, there is a drawback such that an error occurs when the reflectance of the liquid surface changes.

第5図は従来の液面での超音波の反射を利用する液面
計の原理を示す概略図である。超音波発振器4および受
信器5が液体中に配置され、液面3で反射された超音波
発振器4の超音波を受信器5で受信するように調整され
ている。液面3が3′の位置に変化すると、超音波発振
器4から受信器5に至る経路が短縮され超音波の伝ぱん
時間が短縮する。この伝ぱん時間の変化を検出すること
により液面の変化を検出することができる。
FIG. 5 is a schematic view showing the principle of a conventional liquid level gauge utilizing the reflection of ultrasonic waves at the liquid level. The ultrasonic oscillator 4 and the receiver 5 are arranged in the liquid, and are adjusted so that the ultrasonic wave of the ultrasonic oscillator 4 reflected by the liquid surface 3 is received by the receiver 5. When the liquid level 3 changes to the position 3 ', the path from the ultrasonic oscillator 4 to the receiver 5 is shortened, and the propagation time of the ultrasonic wave is shortened. By detecting a change in the propagation time, a change in the liquid level can be detected.

この方式の液面計では超音波の伝ぱん速度が液体の密
度および温度により変化するため、これが誤差となる欠
点がある。
This type of liquid level gauge has a drawback that the propagation speed of the ultrasonic wave varies depending on the density and temperature of the liquid, which causes an error.

第6図は従来の液体の圧力を利用する液面計の原理を
示す概略図である。圧力センサ6を液体中の定位置、例
えば液体収納容器の底部に配置しておく。そして液面3
が3′の位置に変化するとセンサ6の位置の圧力が減少
するため、この圧力変化をセンサ6で検出し、液面の変
化を検出するものである。なお、液体の外側の気体中の
定位置にも圧力センサ7を配置しておき、センサ6およ
び7の圧力差を検出している。
FIG. 6 is a schematic view showing the principle of a conventional liquid level gauge utilizing the pressure of liquid. The pressure sensor 6 is arranged at a fixed position in the liquid, for example, at the bottom of the liquid container. And liquid level 3
When the pressure changes to the position 3 ', the pressure at the position of the sensor 6 decreases. Therefore, this pressure change is detected by the sensor 6, and the change in the liquid level is detected. The pressure sensor 7 is also arranged at a fixed position in the gas outside the liquid, and the pressure difference between the sensors 6 and 7 is detected.

この方式の液面計は、液体の密度、比重の影響を受け
る欠点がある。
This type of liquid level gauge has a disadvantage that it is affected by the density and specific gravity of the liquid.

本発明は上記の欠点を除去した液面計の提供を目的と
するものである。
An object of the present invention is to provide a liquid level gauge which eliminates the above-mentioned disadvantages.

(課題を解決するための手段) 本発明によれば、平行ビームを送出する光源と、この
光源から送出され、検出すべき液面で反射された平行ビ
ームのスポット中心位置を検出する受光器と、この受光
器により検出された平行ビームのスポット中心位置の変
化から前記液面の変化を算出するデータ処理装置とを備
え、前記光源は2本の平行ビームを送出するように構成
され、前記受光器は検出すべき液面で反射された2本の
平行ビームの各スポット中心位置を検出し、前記データ
処理装置は前記受光器で検出された2本の平行ビームの
各スポット中心位置の中間位置を算出し、この中間位置
の変化から前記液面の変化を算出することを特徴とする
液面計が得られる。
(Means for Solving the Problems) According to the present invention, a light source for transmitting a parallel beam, and a photodetector for detecting a center position of a spot of the parallel beam transmitted from the light source and reflected on a liquid surface to be detected are provided. A data processor for calculating a change in the liquid level from a change in the center position of the spot of the parallel beam detected by the light receiver, wherein the light source is configured to transmit two parallel beams, The detector detects the center position of each spot of the two parallel beams reflected on the liquid surface to be detected, and the data processing device detects the intermediate position of the center position of each spot of the two parallel beams detected by the light receiver. , And a change in the liquid level is calculated from the change in the intermediate position, thereby obtaining a liquid level gauge.

(実施例) 以下、本発明の液面計の実施例を第1図乃至第3図に
より詳細に説明する。
(Embodiment) Hereinafter, an embodiment of the liquid level gauge of the present invention will be described in detail with reference to FIG. 1 to FIG.

第1図は本発明の基礎となる液面計の概略構成図であ
る。図示するように液面3の上方には光源8および受光
器9が配置されている。光源8は、例えばレーザー光の
ように小さなスポット径を有する平行ビーム10を送出す
るものである。また受光器9は、例えば一次元光センサ
あるいは一次元光位置センサ(PSD)のようなビームス
ポットの中心位置を検出可能なものである。液面が3の
位置にあるときは平行ビーム10は液面3上のP点で反射
し、受光器9の受光面上のR点において受光される。液
面が3′の位置に変化すると、平行ビーム10は液面3′
上のT点で反射し、受光器9の受光面上のS点において
受光される。液面の変化は受光器9の出力が供給される
データ処理装置100により後述する演算によって算出さ
れる。
FIG. 1 is a schematic configuration diagram of a liquid level gauge on which the present invention is based. As shown, a light source 8 and a light receiver 9 are arranged above the liquid level 3. The light source 8 emits a parallel beam 10 having a small spot diameter such as a laser beam. The light receiver 9 can detect the center position of a beam spot such as a one-dimensional optical sensor or a one-dimensional optical position sensor (PSD). When the liquid level is at position 3, the parallel beam 10 is reflected at point P on liquid level 3 and received at point R on the light receiving surface of light receiver 9. When the liquid level changes to the position 3 ', the parallel beam 10 is moved to the liquid level 3'.
The light is reflected at the upper T point and is received at the S point on the light receiving surface of the light receiver 9. The change in the liquid level is calculated by a data processing device 100 to which the output of the light receiver 9 is supplied by a calculation described later.

次に、この液面の変化を算出する原理について説明す
る。第1図において液面が3から3′に低下したときの
変化量をΔLとする。角度θで液面3上のP点に入射し
た平行ビーム10は、液面が3′に低下すると液面3′上
のT点に入射し、ここで反射したことと等価になる。こ
のP点とQ点との距離は ▲▼=2ΔLtanθ となる。
Next, the principle of calculating the change in the liquid level will be described. In FIG. 1, the amount of change when the liquid level drops from 3 to 3 'is defined as ΔL. The parallel beam 10 incident on the point P on the liquid surface 3 at the angle θ is incident on the point T on the liquid surface 3 'when the liquid surface drops to 3', which is equivalent to being reflected here. The distance between the point P and the point Q is ▼ = 2ΔLtanθ.

一方、受光器9の入射面は反射ビームに対してほぼ垂
直に設置されているため、液面の3から3′への低下に
より受光器9の入射面上のビームスポットの中心はR点
からS点に移動する。このときR点からS点に至る距離
は ▲▼=▲▼cosθ 、式から ▲▼=2ΔLsinθ となり、R点からS点に至る距離により液面の変化量Δ
Lを求めることができる。
On the other hand, the center of the beam spot on the incident surface of the light receiver 9 is set from the point R due to the drop of the liquid surface from 3 to 3 'because the incident surface of the light receiver 9 is installed substantially perpendicular to the reflected beam. Move to point S. At this time, the distance from the R point to the S point is ▲ ▼ = ▲ ▼ cosθ, and ▲ ▼ = 2ΔLsinθ from the equation, and the change amount of the liquid level Δ is given by the distance from the R point to the S point.
L can be obtained.

実際の液面の測定に際しては、液面が振動することが
あり、液面が常に水平にはならない。このため第1図に
示すように円筒体11により液面の一部を囲うことによ
り、液面の振動を減少できる。
In actual measurement of the liquid level, the liquid level may vibrate, and the liquid level does not always become horizontal. Therefore, by surrounding a part of the liquid surface with the cylindrical body 11 as shown in FIG. 1, vibration of the liquid surface can be reduced.

第2図は水平は液面でなく、曲面をなすような特性を
有する液面の変化を検出するのに適した本発明による液
面計の実施例を示す概略図である。
FIG. 2 is a schematic view showing an embodiment of a liquid level meter according to the present invention suitable for detecting a change in the liquid level having a characteristic of forming a curved surface instead of a horizontal liquid level.

この実施例では、2本の平行ビームA、Bを用い、第
1図の装置と同一の原理で液面を測定する。水平は液面
3を想定するとこの面での反射ビームはA′、B′とな
るが、曲面31面での反射ビームはA′、B′となる。こ
れらの関係から反射ビームA′、B′の受光面(図示せ
ず)上の入射点の中間点は反射ビームA′、B′の受光
面(図示せず)上の入射点の中間点とほぼ一致する。従
って液面の変化量の測定に際しては、受光面上の2本の
反射ビームの中間点の位置の変化を検出し第1図の例と
同様に測定する。
In this embodiment, the liquid level is measured using two parallel beams A and B according to the same principle as the apparatus shown in FIG. Assuming that the liquid surface 3 is horizontal, the reflected beams on this surface are A 'and B', but the reflected beams on the curved surface 31 are A 'and B'. From these relationships, the midpoint between the incident points of the reflected beams A 'and B' on the light receiving surface (not shown) is the same as the midpoint of the incident points of the reflected beams A 'and B' on the light receiving surface (not shown). Almost match. Therefore, when measuring the amount of change in the liquid level, the change in the position of the midpoint between the two reflected beams on the light receiving surface is detected and measured in the same manner as in the example of FIG.

第3図は第2図の場合と同様に、曲面をなす液面計の
参考例を示す概略図である。図において、光源8および
受光器9は液面3に立てられた仮想垂直軸41に対して対
称の位置に配置され、かつ、それぞれの光軸が仮想垂直
軸41と液面3上でほぼ等しい角度θで交わるようにそれ
ぞれの傾きが調整される。液面が3から3′に変化した
場合、光源8および受光器9はそれぞれの光軸が垂直軸
41と液面3′上でほぼ等しい角度θ′で交わるようにそ
れぞれ8′、9′で示すように傾きが調整される。これ
らの傾き調整は図示しない処理装置の制御下で光源8、
受光器9の傾き調整手段により行われる。傾き調整手段
は、光源8、受光器9の駆動部と傾き角検出部とを有
し、傾き角検出部の出力により処理装置が駆動部を制御
する。
FIG. 3 is a schematic diagram showing a reference example of a liquid level gauge having a curved surface as in the case of FIG. In the figure, a light source 8 and a light receiver 9 are arranged at positions symmetrical with respect to a virtual vertical axis 41 set on the liquid surface 3, and their optical axes are substantially equal to the virtual vertical axis 41 on the liquid surface 3. Each inclination is adjusted so as to intersect at the angle θ. When the liquid level changes from 3 to 3 ', the light source 8 and the light receiver 9 have their respective optical axes set to the vertical axis.
The inclination is adjusted as shown by 8 'and 9' so as to intersect with the liquid surface 3 'at substantially the same angle θ'. These inclination adjustments are performed under the control of a processing device (not shown).
This is performed by the inclination adjusting means of the light receiver 9. The tilt adjusting means has a drive unit for the light source 8 and the light receiver 9 and a tilt angle detection unit, and the processing device controls the drive unit based on an output of the tilt angle detection unit.

この傾き調整の一例を説明すると、まず液面が3から
3′に変化したとすると、受光器9は液面3′からの入
射点が液面3の時の入射点と一致するよう傾き角が調整
される。この調整傾き角にもとづいて、今度は光源8の
傾き角が調整される。その結果、ずれた受光器9への入
射点を再び元に戻すように受光器9の傾き角が調整され
る。以下、この制御動作を繰り返して液面3′からの入
射点が液面3の時の入射点と一致し、しかも光源8、受
光器9の光軸が仮想垂直軸41と角度θ′で交わるように
制御される。この実施例では角度θの変化量から液面の
変化量を求めることができる。
An example of this tilt adjustment will be described. First, assuming that the liquid level changes from 3 to 3 ', the light receiver 9 adjusts the tilt angle so that the incident point from the liquid level 3' coincides with the incident point at the liquid level 3. Is adjusted. Based on this adjustment tilt angle, the tilt angle of the light source 8 is adjusted this time. As a result, the tilt angle of the light receiver 9 is adjusted so that the shifted incident point on the light receiver 9 is returned to the original position. Hereinafter, this control operation is repeated so that the incident point from the liquid surface 3 'coincides with the incident point when the liquid surface 3 is at the same time, and the optical axes of the light source 8 and the light receiver 9 intersect with the virtual vertical axis 41 at an angle θ'. Is controlled as follows. In this embodiment, the change amount of the liquid level can be obtained from the change amount of the angle θ.

(発明の効果) 以上説明した本発明の液面計によれば液体表面の反射
率、液体の種類あるいは周囲温度等に影響されること無
く、液面の変化を高い精度で検出することができる。
(Effect of the Invention) According to the liquid level meter of the present invention described above, a change in the liquid level can be detected with high accuracy without being affected by the reflectance of the liquid surface, the type of liquid, the ambient temperature, and the like. .

また、液面の振動あるいは水平でない液面であっても
その変化を測定可能である。
In addition, it is possible to measure the vibration of the liquid surface or the change even when the liquid surface is not horizontal.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の基礎となる液面計の概略構成図、第2
図は本発明の実施例を示す曲面をなす液面の変化を検出
する液面計の概略図、第3図は本発明の参考例を示す液
面形の概略図、第4図乃至第6図は従来の液面計の原理
を示す概略図である。 3、3′……液面、8……光源、9……受光器、10……
平行ビーム、100……データ処理装置。
FIG. 1 is a schematic configuration diagram of a liquid level gauge on which the present invention is based, and FIG.
FIG. 3 is a schematic view of a liquid level gauge for detecting a change in a liquid level forming a curved surface, showing an embodiment of the present invention. FIG. 3 is a schematic view of a liquid level form showing a reference example of the present invention. The figure is a schematic diagram showing the principle of a conventional liquid level gauge. 3, 3 '... liquid level, 8 ... light source, 9 ... light receiver, 10 ...
Parallel beam, 100 ... Data processing device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】平行ビームを送出する光源と、この光源か
ら送出され検出すべき液面で反射された平行ビームのス
ポット中心位置を検出する受光器と、この受光器により
検出された平行ビームのスポット中心位置の変化から前
記液面の変化を算出するデータ処理装置とを備え、前記
光源は2本の平行ビームを送出するように構成され、前
記受光器は検出すべき液面で反射された2本の平行ビー
ムの各スポット中心位置を検出し、前記データ処理装置
は前記受光器で検出された2本の平行ビームの各スポッ
ト中心位置の中間位置を算出し、この中間位置の変化か
ら前記液面の変化を算出することを特徴とする液面計。
1. A light source for transmitting a parallel beam, a photodetector for detecting the center position of the spot of the parallel beam transmitted from the light source and reflected on a liquid surface to be detected, and a light beam of the parallel beam detected by the photodetector. A data processing device for calculating a change in the liquid level from a change in the center position of the spot, wherein the light source is configured to emit two parallel beams, and the light receiver is reflected by the liquid level to be detected. The center position of each spot of the two parallel beams is detected, and the data processing device calculates an intermediate position between the center positions of the spots of the two parallel beams detected by the light receiver, and calculates the intermediate position from the change in the intermediate position. A liquid level gauge, which calculates a change in liquid level.
JP1292204A 1989-11-13 1989-11-13 Liquid level indicator Expired - Lifetime JP2873591B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1292204A JP2873591B2 (en) 1989-11-13 1989-11-13 Liquid level indicator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1292204A JP2873591B2 (en) 1989-11-13 1989-11-13 Liquid level indicator

Publications (2)

Publication Number Publication Date
JPH03154827A JPH03154827A (en) 1991-07-02
JP2873591B2 true JP2873591B2 (en) 1999-03-24

Family

ID=17778876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1292204A Expired - Lifetime JP2873591B2 (en) 1989-11-13 1989-11-13 Liquid level indicator

Country Status (1)

Country Link
JP (1) JP2873591B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS533368A (en) * 1976-06-30 1978-01-13 Mitsubishi Electric Corp Liquid level measurement
JPS5696222A (en) * 1979-12-28 1981-08-04 Fujitsu Ltd Detecting method for fused glass level
JPS58160822A (en) * 1982-03-17 1983-09-24 Fujitsu Ltd Infrared water level meter
JPS61250520A (en) * 1985-04-30 1986-11-07 Hoya Corp Liquid level meter
JPS63243722A (en) * 1987-03-31 1988-10-11 Toshiba Corp Monitor for liquid level in crucible

Also Published As

Publication number Publication date
JPH03154827A (en) 1991-07-02

Similar Documents

Publication Publication Date Title
US5291271A (en) Measurement of transparent container wall thickness
US4773760A (en) Procedure and means for measuring the thickness of a film-like or sheet-like web
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
JP2000337858A (en) Method and apparatus for measurement of thickness or undulation of sheet
JPS60127403A (en) Thickness measuring apparatus
JPH1068635A (en) Optical position detector
JP2009516629A (en) Method and apparatus for inspecting the sidewall profile of a container
US4981353A (en) Position locating apparatus for an underwater moving body
US5513004A (en) Device for interferometric measurements with compensation for tilt and position of measured cylindrical objects
JP2873591B2 (en) Liquid level indicator
JP3117372B2 (en) Ultrasonic distance measuring device
JPH0726821B2 (en) Optical surface contour measuring device
JPH06167327A (en) Measuring method for camber
JP2000258223A (en) Optical liquid level sensor
US5359418A (en) Photometric grinder and lathe gauge
JPS61104202A (en) Optical displacement meter
JPH09505883A (en) Equipment for measuring the dimensions of large objects
JPH02134505A (en) Thickness measuring apparatus
JP2799492B2 (en) Position or length measuring device
JPH0810139B2 (en) Thickness measuring device
WO2024042420A1 (en) Doppler effect based system and method of measuring on-axis of surface movement
JPH0642967A (en) Leveling apparatus
JP3019647B2 (en) Non-contact thickness gauge
JP2755762B2 (en) Remote displacement measuring device
JPS5767810A (en) Measuring device for position of web of wide flange beam