JPS61250520A - Liquid level meter - Google Patents

Liquid level meter

Info

Publication number
JPS61250520A
JPS61250520A JP60091092A JP9109285A JPS61250520A JP S61250520 A JPS61250520 A JP S61250520A JP 60091092 A JP60091092 A JP 60091092A JP 9109285 A JP9109285 A JP 9109285A JP S61250520 A JPS61250520 A JP S61250520A
Authority
JP
Japan
Prior art keywords
laser
liquid level
angle
irradiation
level meter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60091092A
Other languages
Japanese (ja)
Inventor
Kenichi Hashimoto
橋本 憲一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP60091092A priority Critical patent/JPS61250520A/en
Publication of JPS61250520A publication Critical patent/JPS61250520A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To obtain the titled level meter reduced in heat loss, by mutually arranging a laser irradiation part and a laser receiving part so as to provide a definite distance therebetween and making the irradiation angle of the laser irradiation part variable to detect an angle. CONSTITUTION:The laser beam 5 of a laser irradiation part 11 is allowed to be incident to a reference surface 13 to be reflected at a point P0 and the reflected beam 16 thereof is received by a laser receiving part 12. The laser beam 17 of the laser irradiation part 11 is allowed to be incident to a falling surface 14 in the same way to be reflected at a point P1 and the reflected beam 18 thereof is received by the laser receiving part 12. Herein, the displacement (h) from the reference surface 13 to the falling surface 14 represented by formula (wherein h is the distance from the point P formed by connecting the leading end part of the laser irradiation part 11 and that of the laser receiving part 12 to the molten glass falling liquid surface 14, h0 is the distance from the point P to the reference liquid surface 13, d is each of the distances from the point P to the laser irradiation part 11 and the laser receiving part 12 and theta is the angle formed by laser beam and the falling surface). Because d and h0 are determined by a setting condition, the displacement (h) is calculated by detecting the irradiation angle theta.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光を用いた液面レベル計に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a liquid level meter using laser light.

この液面レベル計は、熔融ガラス、熔融メッキ等の熔融
液面の変位を検出するときに利用され、熔融ガラスにつ
いては、ガラス熔融炉(具体的には熔融槽、作業槽、フ
ォアハース、貯留検算)や、るつぼ窯等に設置される。
This liquid level meter is used to detect the displacement of the molten liquid level of molten glass, molten plating, etc. ) or installed in a crucible kiln, etc.

(従来の技術) 一般にクリスタル食器等ガラス食器の製造においては、
ガラス熔融炉等において熔融されたガラス素地を成形す
る為に種々の人的あるいは機械的手段が取られる。るつ
ぼ窯の場合には、ガラス素地を吹製棹の先に巻き取って
成形するが、採取したゴブの量に応じて徐々に熔融ガラ
ス液面は降下する。この巻き取り工程にロボットを使う
場合には、吹製棹を降ろす角度を設定する為に熔融ガラ
ス液面レベルを測定する必要がある。また、非連続的生
産や、製品重量の異なる製品を多種生産する場合等、引
上mが刻々変化する生産に対して連続溶融炉を用いる場
合には、一時的に熔融ガラスを貯める機構であるガラス
貯留槽が必要となるが、このとき貯留槽の熔融ガラス液
面レベルの高低にかかわらず、ガラス溶融炉から貯留槽
の熔融ガラス液面レベルを測定する必要がある。
(Prior art) Generally, in the production of glass tableware such as crystal tableware,
Various manual or mechanical means are used to shape the glass substrate melted in a glass melting furnace or the like. In the case of a crucible kiln, the glass base is wound up onto the tip of a blowing rod and shaped, and the level of the molten glass gradually falls depending on the amount of gobs collected. When using a robot for this winding process, it is necessary to measure the level of the molten glass in order to set the angle at which the blowing rod is lowered. In addition, when using a continuous melting furnace for discontinuous production or production where the pulling m changes from moment to moment, such as when producing a wide variety of products with different product weights, a mechanism for temporarily storing molten glass is required. A glass storage tank is required, but at this time, it is necessary to measure the molten glass liquid level in the storage tank from the glass melting furnace, regardless of the level of the molten glass liquid level in the storage tank.

この様に非連続もしくは不規則な生産で、大きなガラス
液面の変動を伴う成形作業に供される液面計は、接触式
と非接触式の液面レベル計がある。
There are contact type and non-contact type liquid level gauges used in such discontinuous or irregular production and molding operations that involve large fluctuations in the glass liquid level.

接触式液面レベル計は、検出端が熔融ガラス液面に対し
て断続的に0N−OFFを繰り返しながら、熔融ガラス
液面の変位を検出するものであるが、熔融ガラスが検出
端に付着したままになることがあり、それがために誤動
作し易い問題があった。次に、非接触式の液面レベル計
としては、特公昭55−51024号公報に開示されて
いる。これは、第4図に示すように、液面上方に照射角
θを固定したレーザ照射部1を設置し、この照射部1よ
り照射されたレーザ光2は、液面3がら液面4に降下し
たとき、それぞれの液面3及び4で反射された反射光5
及び6をレーザ受光部7及び8にて検出される。しかし
、反射光5及び6の光路を確保するた〔発明が解決しよ
うとする問題点〕 〔問題点を解決するための手段〕 本発明は、上記目的を達成するために成されたものであ
り、熔融液面の上方にレーザ照射部とし一ザ受光部を設
置し、このレーザ照射部から照射したレーザ光が、熔融
液面に対して照射角θで入射して、反射した反射光をレ
ーザ受光部にて受光するときの照射角θより、熔融液面
の変位を検出する液面レベル計であって、レーザ照射部
とレーザ受光部とが、互いに一定の距離に設置され、か
つレーザ照射部の照射角θを可変とすることを特徴とす
る液面レベル計である。
A contact type liquid level meter detects the displacement of the molten glass liquid level by intermittently repeating 0N-OFF on the detection end with respect to the molten glass liquid level, but if the molten glass adheres to the detection end. There was a problem that this could cause the device to malfunction. Next, a non-contact type liquid level meter is disclosed in Japanese Patent Publication No. 55-51024. As shown in FIG. 4, a laser irradiation section 1 with a fixed irradiation angle θ is installed above the liquid surface, and the laser beam 2 irradiated from this irradiation section 1 is directed from the liquid surface 3 to the liquid surface 4. When descending, reflected light 5 reflected from each liquid level 3 and 4
and 6 are detected by the laser light receiving sections 7 and 8. However, in order to secure the optical path of the reflected lights 5 and 6, [Problem to be solved by the invention] [Means for solving the problem] The present invention has been made to achieve the above object. A laser light receiving part is installed as a laser irradiation part above the melt surface, and the laser light irradiated from this laser irradiation part is incident on the melt surface at an irradiation angle θ, and the reflected light is reflected by the laser beam. A liquid level meter that detects the displacement of the molten liquid surface from the irradiation angle θ when light is received by the light receiving part, the laser irradiation part and the laser receiving part are installed at a fixed distance from each other, and the laser irradiation part This liquid level meter is characterized in that the irradiation angle θ of the part is variable.

(実施例〕 以下、本発明の実施例について詳細に説明する。(Example〕 Examples of the present invention will be described in detail below.

第1図は本発明の概念図である。本発明の液面レベル計
は、照射角可変のレーザ照射部11とレーザ受光部12
が、熔融ガラス液面13上に距離2dを置いて設置され
ている。初期の熔融ガラス液面である基準面13よりh
だけ降下した熔融ガラス液面である降下面14の事例に
ついて説明する。基準面13に対してレーザ照射部11
のレーザ光15が点P。
FIG. 1 is a conceptual diagram of the present invention. The liquid level meter of the present invention includes a laser irradiation section 11 with a variable irradiation angle and a laser light receiving section 12.
is placed above the molten glass surface 13 at a distance of 2d. h from the reference surface 13 which is the initial molten glass liquid level.
An example of the descending surface 14, which is the molten glass liquid level that has descended by a certain amount, will be described. Laser irradiation unit 11 on reference plane 13
The laser beam 15 is at point P.

で反射し、その反射光16がレーザ受光部12で受光さ
れる。そして降下面14に対しても同様にレーザ照射部
11のレーザ光17が点P1で反射し、その反射光18
がレーザ受光部12で受光される。
The reflected light 16 is received by the laser light receiving section 12. Similarly, the laser beam 17 of the laser irradiation unit 11 is reflected on the descending surface 14 at the point P1, and the reflected light 18
is received by the laser light receiving section 12.

そこで、基準面13から降下面14までの変位りは、1
=fi1−h。
Therefore, the displacement from the reference surface 13 to the descent surface 14 is 1
=fi1-h.

=d−tanθ−ho −−−(1) の関係が成立し、dとhoが設置条件により定まること
から、結局、上記変位りは照射角θを検出することによ
り求められる。照射角θの検出手段は、磁気抵抗素子を
用いたポテンショメータ、シャフト・エンコーダ、回転
型差動変圧器、パルスジェネレータ、歪ゲージを用いた
角度センサ等であって、角度を測定できるものであれば
、どの様な種類でも良い。
= d-tan θ-ho --- (1) Since the following relationship holds true and d and ho are determined by the installation conditions, the above displacement can be determined by detecting the irradiation angle θ. The means for detecting the irradiation angle θ may be a potentiometer using a magnetoresistive element, a shaft encoder, a rotary differential transformer, a pulse generator, an angle sensor using a strain gauge, etc., as long as it can measure the angle. , any type is fine.

第2図は、第1図に示した通り基準面13がら降下面1
4まで降下した場合にレーザ照射部11がらのレーザ光
17が降下面14で反射して、反射光18がレーザ受光
部12で受光される実施例図である。本例では、熔融ガ
ラス貯留槽9の断面が、内寸法168゜1lllIlの
正方形状であって、レーザ光17が熔融ガラス液面14
のほぼ中央部分に、後述するように28°±5°の角度
で照射して入射・反射している。レ−ザ照射部11とレ
ーザ受光部12は、液面14の1方にあって照射側及び
受光側の開口部10の外側近傍(50n+m)に設置さ
れている。
FIG. 2 shows the descending surface 1 from the reference surface 13 as shown in FIG.
4 is an embodiment diagram in which the laser beam 17 from the laser irradiation section 11 is reflected by the descending surface 14 and the reflected light 18 is received by the laser light receiving section 12 when the laser beam 17 descends to 4. In this example, the cross section of the molten glass storage tank 9 is square with an internal dimension of 168°1llllIl, and the laser beam 17 is directed to the molten glass liquid surface 14.
The light is irradiated and reflected at an angle of 28°±5° approximately at the center of the area, as will be described later. The laser irradiation section 11 and the laser light receiving section 12 are located on one side of the liquid level 14 and near the outer side (50n+m) of the opening 10 on the irradiation side and the light receiving side.

第3図は、本実施例のレーザ照射部11の構造図である
。アルミニウム製の直方体のブロック19は、シャフト
20を介して減速器21に直結されている。
FIG. 3 is a structural diagram of the laser irradiation section 11 of this embodiment. A rectangular parallelepiped block 19 made of aluminum is directly connected to a speed reducer 21 via a shaft 20.

He−Neレーザを使用したレーザ発振器22は、シャ
フト取付面23に対して平行で、底面に対して28゜の
角度でブロック19の内部に取付けられており、矢印3
1の向きにレーザ光を照射する。磁気抵抗素子を用いた
ポテンショメータ(角度センサ)24は、ブロック19
の上面に対して垂直に挿入され、ブロック19の内部に
取付けられている。可逆転モータ25は、減速器21を
介してブロック19を矢印26゜26′の向きに正逆転
させる。マイクロ・スイッチ27、27’の検出端28
.28’ はブロック19が矢印26゜26′の向きで
±5°回転した時に、シャフト20に垂直に取付けられ
ているドッグ29も同様に連動して回転し、このドッグ
29に接触するように取付けられている。こうしてブロ
ック19が、矢印26の向きに5°回転した時、ドッグ
29がマイクロ・スイッチ27の検出端28に接触し、
可逆転モータ25がコントロール回路30を通して回転
方向を反転する。
A laser oscillator 22 using a He-Ne laser is mounted inside the block 19 parallel to the shaft mounting surface 23 and at an angle of 28 degrees to the bottom surface, as shown by arrow 3.
Laser light is irradiated in one direction. A potentiometer (angle sensor) 24 using a magnetoresistive element is connected to a block 19.
It is inserted perpendicularly to the top surface of the block 19 and is attached inside the block 19. The reversible motor 25 rotates the block 19 forward and reverse in the directions of arrows 26° and 26' via the decelerator 21. Detection end 28 of micro switch 27, 27'
.. 28' is attached so that when the block 19 rotates ±5 degrees in the direction of arrows 26 and 26', the dog 29 attached perpendicularly to the shaft 20 similarly rotates and comes into contact with this dog 29. It is being When the block 19 is thus rotated by 5 degrees in the direction of the arrow 26, the dog 29 contacts the detection end 28 of the micro switch 27,
The reversible motor 25 reverses its direction of rotation through the control circuit 30.

ブロック19が、矢印26′の方向に回転を始め、−5
°まで回転した時に同様にマイクロ・スイッチ21′の
検出端28′ がドッグ29に接触して再度、可逆転モ
ータ25の回転方向を反転する。こうしてブロック19
は、±5°の範囲で常に正逆転を繰り返し、水平面に対
して28°土5°の角度範囲でレーザ光を走査する。こ
の間、角度センサ24は、第2図においてブロック19
の回転角度に応じた角度信号33を常に角度信号転送部
32に送っている。
Block 19 begins to rotate in the direction of arrow 26' and -5
When the motor 25 rotates up to 50°, the detection end 28' of the micro switch 21' similarly contacts the dog 29, and the direction of rotation of the reversible motor 25 is reversed again. Thus block 19
constantly repeats forward and reverse rotation within a range of ±5°, and scans the laser beam within an angular range of 28° and 5° with respect to the horizontal plane. During this time, the angle sensor 24 is connected to block 19 in FIG.
An angle signal 33 corresponding to the rotation angle of is constantly sent to the angle signal transfer section 32.

第2図において、角度信号転送部32は、28°±5°
の角度範囲でレーザ光を走査しているレーザ照射部11
からの角度信号33とホトダイオードを内蔵したレーザ
受光部12からの受光信号34とが供給されており、受
光信号34によりトリガーがかかり、角度信号33がサ
ンプリングされ、次の受光信号によりトリガーがかかる
までの間、角度信号33がホールドされ、このホールド
された角度信号35を溶融炉の計装制御システムへ送る
装置である。
In FIG. 2, the angle signal transfer unit 32 is 28°±5°.
The laser irradiation unit 11 scans the laser beam in the angular range of
An angle signal 33 from the laser and a light reception signal 34 from the laser light receiving section 12 which has a built-in photodiode are supplied, and the light reception signal 34 is triggered, the angle signal 33 is sampled, and the signal remains until the next light reception signal triggers. During this period, the angle signal 33 is held, and this device sends the held angle signal 35 to the instrumentation control system of the melting furnace.

なお、計装制御システムでは、ホールドされた角度信号
35をA/D変換し、予め計装制御システム内に用意し
たデータテーブルによって照射角θを求め、前記(1)
式により変位りを算出する。この変位りに基づいて、ガ
ラス貯留槽前段に設置されたバルブをコントロールする
ことにより、ガラス熔融炉からガラス貯留槽に流入する
熔融ガラスもlを一定としている。
In addition, in the instrumentation control system, the held angle signal 35 is A/D converted, and the irradiation angle θ is determined from a data table prepared in advance in the instrumentation control system, and
Calculate the displacement using the formula. By controlling a valve installed upstream of the glass storage tank based on this displacement, l of the molten glass flowing from the glass melting furnace into the glass storage tank is kept constant.

熔融ガラス貯留槽の受光側の間口部10の大きさLは、
液面レベルの最大変位が200mmに対して従来少なく
とも400IIllllも必要であったのに対して、本
例によれば、15mm (計算上では12nv)まで小
さくすることができる。
The size L of the frontage 10 on the light receiving side of the molten glass storage tank is:
For a maximum displacement of the liquid level of 200 mm, conventionally at least 400 IIllll was required, but according to this example, it can be reduced to 15 mm (calculated 12 nv).

また、レーザ受光部12を1個使用するだけで、液面レ
ベル計を実現することができる。
Moreover, a liquid level meter can be realized by using only one laser light receiving section 12.

上記実施例では、熔融ガラス貯留槽に適用したが、その
他にガラス熔融槽、フォアハース等のガラス熔融炉や熔
融メッキ槽等にも適用してもよい。
In the above embodiment, the present invention is applied to a molten glass storage tank, but it may also be applied to a glass melting tank, a glass melting furnace such as a forehearth, a molten plating tank, etc.

また、レーザ発振器は、He−Cd、 Ar、にr等の
気体レーザや、Nd : YAG 、 Ndガラス等の
固体レーザや半導体レーザ等を使用してもよい。レーザ
受光部は、ホトトランジスタ、ホトサイリスタ、光導電
素子等の受光素子を内蔵したものを使用してもよい。
Furthermore, the laser oscillator may be a gas laser such as He-Cd, Ar, or Ni-R, or a solid state laser or semiconductor laser such as Nd:YAG or Nd glass. The laser light receiving section may include a built-in light receiving element such as a phototransistor, a photothyristor, or a photoconductive element.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の液面レベル計は、レーザ照射部の
照射角を可変として再度検出していることから、従来の
投光角度固定の液面レベル計に比べ、レーザ光受光側の
開口部の大きさを著しく小さくすることが可能で、熱損
失を防止し、更に脈理の発生を防止することから、ガラ
ス素地品質を向上させることができ、また更にレーザ受
光部を1個使用して実現でき、その経済的効果は多大で
ある。
As described above, the liquid level meter of the present invention detects the beam again by changing the irradiation angle of the laser irradiation part, so compared to the conventional liquid level meter with a fixed projection angle, the liquid level meter of the present invention has an opening on the laser beam receiving side. It is possible to significantly reduce the size of the laser receiving section, prevent heat loss, and prevent the formation of striae, improving the quality of the glass substrate. It can be realized by using this method, and its economic effects are significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による液面レベル計を示す概念図、第2
図は本発明の一実施例を示す図、第3図はレーザ照射部
を示す構造図、及び第4図は従来の液面レベル計を示す
構造図である。 1.11・・・レーザ照射部、7,8.12・・・レー
ザ受光部、3,13・・・熔融ガラス液面(基準面)、
4.14・・・熔融ガラス液面(降下面)、9・・・熔
融ガラス貯留槽、10・・・間口部、21・・・減速器
、22・・・レーザ発振器、24・・・角度センサ、2
5・・・可逆転モータ、27.27’  ・・・マイク
ロ・スイッチ、28.28’  ・・・検出端、29・
・・ドッグ、30・・・コントロール回路、32・・・
角度信号転送部、33・・・角度信号、34・・・受光
信号、35・・・ホールドされた角度信号第1図 第2図
Figure 1 is a conceptual diagram showing a liquid level meter according to the present invention, Figure 2 is a conceptual diagram showing a liquid level meter according to the present invention.
FIG. 3 is a structural diagram showing an embodiment of the present invention, FIG. 3 is a structural diagram showing a laser irradiation section, and FIG. 4 is a structural diagram showing a conventional liquid level meter. 1.11... Laser irradiation section, 7, 8.12... Laser receiving section, 3, 13... Molten glass liquid level (reference surface),
4.14... Molten glass liquid level (descending surface), 9... Molten glass storage tank, 10... Frontage section, 21... Decelerator, 22... Laser oscillator, 24... Angle sensor, 2
5...Reversible motor, 27.27'...Micro switch, 28.28'...Detection end, 29.
...Dog, 30...Control circuit, 32...
Angle signal transfer unit, 33...Angle signal, 34...Light reception signal, 35...Holded angle signal Fig. 1 Fig. 2

Claims (3)

【特許請求の範囲】[Claims] (1)熔融液面の上方にレーザ照射部とレーザ受光部を
設置し、前記レーザ照射部から照射したレーザ照射光が
前記熔融液面に対して照射角θで入射して反射する反射
光を前記レーザ受光部で受光することにより、前記熔融
液面の変位を検出する液面レベル計において、前記レー
ザ照射部と前記レーザ受光部とが互いに一定の距離に設
置され、かつ前記レーザ照射部の照射角θを可変とし角
度を検出することを特徴とする液面レベル計。
(1) A laser irradiation part and a laser reception part are installed above the melt surface, and the laser irradiation light emitted from the laser irradiation part is incident on the melt surface at an irradiation angle θ, and the reflected light is detected. In the liquid level meter that detects the displacement of the molten liquid surface by receiving light at the laser receiving section, the laser irradiating section and the laser receiving section are installed at a certain distance from each other, and the laser irradiating section A liquid level meter characterized by variable irradiation angle θ and angle detection.
(2)レーザ照射部とレーザ受光部とが熔融液面から互
いに等しい距離に設置されていることを特徴とする特許
請求の範囲第(1)項記載の液面レベル計。
(2) The liquid level meter according to claim (1), wherein the laser irradiation part and the laser light receiving part are installed at equal distances from the melt surface.
(3)熔融液面が熔融ガラス液面であることを特徴とす
る特許請求の範囲第(1)項又は第(2)項記載の液面
レベル計。
(3) A liquid level meter according to claim (1) or (2), wherein the molten liquid level is a molten glass liquid level.
JP60091092A 1985-04-30 1985-04-30 Liquid level meter Pending JPS61250520A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60091092A JPS61250520A (en) 1985-04-30 1985-04-30 Liquid level meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091092A JPS61250520A (en) 1985-04-30 1985-04-30 Liquid level meter

Publications (1)

Publication Number Publication Date
JPS61250520A true JPS61250520A (en) 1986-11-07

Family

ID=14016877

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091092A Pending JPS61250520A (en) 1985-04-30 1985-04-30 Liquid level meter

Country Status (1)

Country Link
JP (1) JPS61250520A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031532U (en) * 1989-05-25 1991-01-09
JPH03154827A (en) * 1989-11-13 1991-07-02 Sumitomo Heavy Ind Ltd Liquid gage
CN103464694A (en) * 2013-08-29 2013-12-25 西安理工大学 Liquid level detecting device for casting of magnesium alloy and detecting method of liquid level detecting device for casting of magnesium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127773U (en) * 1975-04-12 1976-10-15
JPS56100316A (en) * 1980-01-16 1981-08-12 Hirakawa Denki Kk Liquid level indicator for molten glass

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51127773U (en) * 1975-04-12 1976-10-15
JPS56100316A (en) * 1980-01-16 1981-08-12 Hirakawa Denki Kk Liquid level indicator for molten glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH031532U (en) * 1989-05-25 1991-01-09
JPH03154827A (en) * 1989-11-13 1991-07-02 Sumitomo Heavy Ind Ltd Liquid gage
CN103464694A (en) * 2013-08-29 2013-12-25 西安理工大学 Liquid level detecting device for casting of magnesium alloy and detecting method of liquid level detecting device for casting of magnesium alloy

Similar Documents

Publication Publication Date Title
CN109164840A (en) A kind of tank level control system and method
US4708482A (en) Method and apparatus for measuring wear in the lining of refractory furnaces
CN1939638B (en) Display method for laser irradiations state and display system of laser irradiation state
JPS61250520A (en) Liquid level meter
CN113320924B (en) Belt longitudinal tearing detection device based on single line laser radar
CN112264982B (en) Automatic length measuring and scribing device and method for plate blank
CN108393556A (en) A kind of method of laser measurement slab scale
US4226278A (en) Automatic molten metal surface level control system for continuous casting machines
US5054539A (en) Process and apparatus for the manufacture of axially symmetrical bodies
EP0905094A1 (en) Synthetic silica glass manufacturing apparatus
CN206467327U (en) Polycrystalline silicon ingot or purifying furnace solid liquid interface measuring mechanism
CN201852618U (en) Device for detecting liquid level of fused silicon by adopting laser curved mirror
JP2816627B2 (en) Melt surface position measurement and control equipment for semiconductor single crystal manufacturing equipment
JPH07108323A (en) Marking device
US4401452A (en) Method of and apparatus for controlling the breakage of glass fibers
CN102506732A (en) Online detection system and detection method for cylindrical ingots in spray forming
US4339402A (en) Batch pelletizing: a means for measuring pellet size during the forming process
CN112683361A (en) Be applied to liquid level detection device's a lot of measuring mechanism
GB1532604A (en) Method and apparatus for manufacturing hollow and solid ingots
CN114644297A (en) Obstacle avoidance early warning method for tower crane
JPH0797014B2 (en) Center line deviation measuring device
JP4075191B2 (en) Shape measuring apparatus and shape measuring method
JPH05194080A (en) Apparatus for controlling molten liquid level in cz process and controlling method
KR20000045563A (en) Method and device for welding of welding material formed with corrugation
CN1445479A (en) On-line monitoring system for multiple parallelled rotary kiln