JPH05194080A - Apparatus for controlling molten liquid level in cz process and controlling method - Google Patents

Apparatus for controlling molten liquid level in cz process and controlling method

Info

Publication number
JPH05194080A
JPH05194080A JP2601392A JP2601392A JPH05194080A JP H05194080 A JPH05194080 A JP H05194080A JP 2601392 A JP2601392 A JP 2601392A JP 2601392 A JP2601392 A JP 2601392A JP H05194080 A JPH05194080 A JP H05194080A
Authority
JP
Japan
Prior art keywords
scanning
command signal
light
crucible
molten liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2601392A
Other languages
Japanese (ja)
Other versions
JP2627696B2 (en
Inventor
Kazuo Ota
一男 大田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP2601392A priority Critical patent/JP2627696B2/en
Publication of JPH05194080A publication Critical patent/JPH05194080A/en
Application granted granted Critical
Publication of JP2627696B2 publication Critical patent/JP2627696B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To provide an apparatus and a method for controlling the molten liquid level in CZ process by detecting the molten liquid level in high accuracy independent of the oscillation of the liquid level and maintaining the position of the liquid level at a definite state relative to a heater. CONSTITUTION:A laser beam from a laser beam oscillator 2 placed above a chamber 1 is converted to a scanning light having a specific frequency and a specific scanning angle with a light scanner 3 and the scanning light is projected to a molten liquid surface 6. The scanning width of the scanning light formed on the molten liquid surface is detected by a CCD camera 7. A controller 8 compares the detected scanning width Lf with a target scanning width L0 and drives a crucible shaft driving servo-motor 12 until the difference falls within a limit range. Since the scanning width is remarkably large compared with the projected light spot diameter used in conventional molten liquid level measuring apparatus, the apparatus is insusceptible to the oscillation of the molten liquid surface to enable the control of the molten liquid level in high accuracy.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、CZ法による単結晶製
造装置に使用する融液レベル制御装置および制御方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a melt level control device and control method for use in a CZ single crystal production apparatus.

【0002】[0002]

【従来の技術】半導体素子の基板となる単結晶をCZ法
によって製造する場合、単結晶の成長に伴ってるつぼ内
の融液レベルが降下するが、良質の単結晶を得るためる
つぼ軸を駆動してるつぼを上昇させ、ヒータに対する融
液レベルの相対的な位置を一定に制御する必要がある。
前記融液レベルの制御に当たり、まず融液レベルを測定
する必要があるが、測定装置として下記のものが知られ
ている。 (1)実開平3−18171に示されるように、融液面
に向けて斜方から検出光を投射し、融液面からの反射光
を受光素子で検出して融液レベルを演算する測定装置。 (2)特開平1−83595に示されるように、基準位
置検出器と融液面との距離を測定後、テレビカメラのイ
メージセンサと融液面との距離が設定値になるようにる
つぼ軸を上下動させる装置。 (3)特開昭60−42294に示されるように、融液
面に垂直に投射した光の反射光強度をホトダイオードで
検出し、その出力が一定になるようにるつぼ軸を制御す
る装置。
2. Description of the Related Art When a single crystal to be a substrate of a semiconductor element is manufactured by the CZ method, the melt level in the crucible drops as the single crystal grows, but the crucible shaft is driven to obtain a good quality single crystal. It is necessary to raise the crucible and control the position of the melt level relative to the heater to be constant.
In controlling the melt level, it is necessary to measure the melt level first, and the following measuring devices are known. (1) As shown in Japanese Utility Model Laid-Open No. 3-18171, a detection light is projected obliquely toward the melt surface, the reflected light from the melt surface is detected by a light-receiving element, and the melt level is calculated. apparatus. (2) As disclosed in JP-A-1-83595, after measuring the distance between the reference position detector and the melt surface, the crucible shaft is set so that the distance between the image sensor of the TV camera and the melt surface becomes a set value. A device for moving up and down. (3) As disclosed in JP-A-60-42294, a device for detecting the reflected light intensity of light projected perpendicularly to the melt surface with a photodiode and controlling the crucible axis so that the output becomes constant.

【0003】[0003]

【発明が解決しようとする課題】るつぼの加熱により融
液面は絶えず振動しているため、融液面に投射した光の
反射光は各方向に散乱する。これに対して上記測定装置
はいずれも直径1mm程度の光束であるため、前記散乱
によって検出精度が低くなり、融液レベルを正確に制御
することが困難である。そこで本発明は上記従来の問題
点に着目し、融液面の振動にかかわらず融液レベルを常
に高精度で検出し、制御することができるようなCZ法
における融液レベル制御装置および制御方法を提供する
ことを目的とする。
Since the melt surface constantly vibrates due to the heating of the crucible, the reflected light of the light projected on the melt surface is scattered in each direction. On the other hand, since all the measuring devices described above have a light flux with a diameter of about 1 mm, the scattering lowers the detection accuracy, and it is difficult to accurately control the melt level. Therefore, the present invention focuses on the above-mentioned conventional problems, and a melt level control device and control method in the CZ method capable of always detecting and controlling the melt level with high accuracy regardless of the vibration of the melt surface. The purpose is to provide.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係るCZ法における融液レベル制御装置
は、CZ法を用いる単結晶製造装置において、コヒーレ
ント光を光走査器により所定周波数、所定走査角の走査
光に変換してチャンバ上方から融液面に投射する光学系
と、前記走査光の融液面における走査幅を検出して制御
部に入力する検出系と、所定のるつぼ位置指令信号を前
記制御部に出力するるつぼ位置指令部と、前記検出系が
検出した走査光の幅と、所定のるつぼ位置指令信号に基
づく走査光の幅の目標値とを比較し、その結果に基づい
てサーボモータ用パワーアンプに駆動速度指令信号を出
力する制御系とを備える構成とし、前記融液レベル制御
装置を用いる場合の融液レベル制御方法は、チャンバ上
方から融液面に投射する走査光の融液面における走査幅
Lf と、るつぼ位置指令部が出力するるつぼ位置指令信
号X0 に基づく走査幅の目標値L0 とを比較し、その差
が制御限界値以下であれば、前記るつぼ位置指令信号X
0 に基づくるつぼ軸昇降用サーボモータの駆動速度指令
信号v0 をサーボモータ用パワーアンプに出力し、その
差が限界値を超えたときは、前記るつぼ位置指令信号X
0 の補正値△Xを演算した上、X0 ±△Xに基づく前記
サーボモータの駆動速度指令信号v1をサーボモータ用
パワーアンプに出力し、前記サーボモータの回転角から
演算したるつぼ位置Xf と前記X0 とを比較して、その
差が限界値以下となるように制御するものとした。
In order to achieve the above object, a melt level control apparatus in the CZ method according to the present invention is a single crystal manufacturing apparatus using the CZ method, in which coherent light is emitted at a predetermined frequency by an optical scanner. An optical system for converting the scanning light of a predetermined scanning angle and projecting it onto the melt surface from above the chamber; a detection system for detecting the scanning width of the scanning light on the melt surface and inputting it to the control unit; and a predetermined crucible. A crucible position command unit that outputs a position command signal to the control unit, the width of the scanning light detected by the detection system, and a target value of the width of the scanning light based on a predetermined crucible position command signal are compared, and the result is obtained. And a control system for outputting a drive speed command signal to a power amplifier for a servomotor based on the above, and the melt level control method using the melt level control device is such that the melt surface is projected from above the chamber onto the melt surface. The scanning width Lf of the scanning light on the melt surface is compared with the target value L0 of the scanning width based on the crucible position command signal X0 output from the crucible position command section. Crucible position command signal X
When the driving speed command signal v0 of the crucible shaft lifting servomotor based on 0 is output to the servomotor power amplifier and the difference exceeds the limit value, the crucible position command signal X
After calculating the correction value ΔX of 0, the servomotor drive speed command signal v1 based on X0 ± ΔX is output to the servomotor power amplifier, and the crucible position Xf calculated from the rotation angle of the servomotor and the X0 was compared and the difference was controlled to be below the limit value.

【0005】[0005]

【作用】上記構成によれば、コヒーレント光を所定周波
数、所定走査角の走査光に変換してチャンバ上方から融
液面に投射することにしたので、融液面には従来の検出
光によって形成されるスポット径に比べて著しく長い光
走査幅を形成することができる。従ってこのような光走
査幅は、るつぼの加熱による融液面の振動の影響を受け
にくくすることができ、融液レベルの測定精度を高める
ことができる。そして、融液面に形成される前記走査光
の走査幅を測定して、この走査幅が常に一定の値を維持
するようにるつぼ軸昇降用サーボモータの駆動を制御す
ることにより、ヒータに対して融液レベルが常に最適位
置になるようにるつぼ位置を制御することが可能とな
る。
According to the above construction, since the coherent light is converted into the scanning light having the predetermined frequency and the predetermined scanning angle and projected onto the melt surface from above the chamber, the melt surface is formed by the conventional detection light. It is possible to form an optical scanning width that is significantly longer than the spot diameter that is generated. Therefore, such an optical scanning width can be made less susceptible to the vibration of the melt surface due to heating of the crucible, and the melt level measurement accuracy can be improved. Then, by measuring the scanning width of the scanning light formed on the melt surface, by controlling the driving of the crucible shaft lifting servomotor so that this scanning width always maintains a constant value, to the heater The crucible position can be controlled so that the melt level is always at the optimum position.

【0006】[0006]

【実施例】以下に本発明に係るCZ法における融液レベ
ル制御装置の実施例について、図面を参照して説明す
る。図1において、チャンバ1の上部外側にコヒーレン
トな検出光を発振するたとえばレーザ光発振器2と、こ
のレーザ光発振器2の下方に所定の揺動角θでかつ所定
の周波数でミラーを駆動する光走査器3とが設けられ、
前記チャンバ1内にベンダーミラー4が設けられてい
る。また、チャンバ1の外壁には光透過窓1aが取着さ
れ、前記レーザ光発振器2から発振されるレーザ光は、
光走査器3と光透過窓1aとを経てベンダーミラー4で
屈折して、るつぼ5内の融液面6に投射される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a melt level control device in the CZ method according to the present invention will be described below with reference to the drawings. In FIG. 1, for example, a laser light oscillator 2 that oscillates coherent detection light outside the upper part of a chamber 1, and an optical scan below the laser light oscillator 2 that drives a mirror at a predetermined swing angle θ and at a predetermined frequency. Is provided with
A bender mirror 4 is provided in the chamber 1. Further, a light transmission window 1a is attached to the outer wall of the chamber 1, and the laser light emitted from the laser light oscillator 2 is
The light is refracted by the bender mirror 4 through the optical scanner 3 and the light transmission window 1a and projected onto the melt surface 6 in the crucible 5.

【0007】前記融液面6に形成される光走査幅を検出
するCCDカメラ7は、チャンバ1に設けられた光透過
窓1bの外側に固着され、CCDカメラ7の出力配線7
aは制御部8に接続されている。なお、るつぼ位置指令
部9の出力配線9aも前記制御部8に接続されている。
制御部8の出力配線8aは、光走査器用パワーアンプ1
0を介して光走査器3に接続され、光走査器3の出力配
線3aは前記パワーアンプ10に接続されている。また
前記制御部8の出力配線8bは、サーボモータ用パワー
アンプ11を介してるつぼ軸昇降用サーボモータ12に
接続され、るつぼ5を昇降するるつぼ軸13は図示しな
い昇降機構を介して前記るつぼ軸昇降用サーボモータ1
2によって昇降する。なお、前記サーボモータ12の回
転角を検出してパルス値に変換するエンコーダの出力配
線12aは、前記制御部8に接続されている。
The CCD camera 7 for detecting the optical scanning width formed on the melt surface 6 is fixed to the outside of the light transmission window 1b provided in the chamber 1, and the output wiring 7 of the CCD camera 7 is provided.
a is connected to the control unit 8. The output wiring 9a of the crucible position command unit 9 is also connected to the control unit 8.
The output wiring 8a of the control unit 8 is the power amplifier 1 for the optical scanner.
0 is connected to the optical scanner 3, and the output wiring 3a of the optical scanner 3 is connected to the power amplifier 10. The output wiring 8b of the control unit 8 is connected to a crucible shaft raising / lowering servomotor 12 via a servomotor power amplifier 11, and a crucible shaft 13 for raising / lowering the crucible 5 is connected to the crucible shaft via an elevator mechanism (not shown). Servo motor for lifting 1
Move up and down by 2. The output wiring 12 a of the encoder that detects the rotation angle of the servo motor 12 and converts it into a pulse value is connected to the control unit 8.

【0008】前記光走査器3とベンダーミラー4とを介
して融液面6に投射される走査レーザ光の、融液面6に
おける光走査幅Lは、図2および図3に示すように融液
面に形成される複数の振動波形にまたがる長いものとな
り、従来の融液レベル測定装置が融液面に形成するスポ
ット径に比べて著しく大きい。また、融液面の振動数2
Hz前後に対して前記走査レーザ光の所定周波数はたと
えば20Hzに設定されている。CCDカメラ7はこの
走査幅Lを検出して制御部8に出力する。
The optical scanning width L on the melt surface 6 of the scanning laser light projected on the melt surface 6 via the optical scanner 3 and the bender mirror 4 is as shown in FIGS. It becomes long over a plurality of vibration waveforms formed on the liquid surface, and is significantly larger than the spot diameter formed on the melt surface by the conventional melt level measuring device. Also, the frequency of the melt surface is 2
The predetermined frequency of the scanning laser light is set to, for example, 20 Hz with respect to about Hz. The CCD camera 7 detects this scanning width L and outputs it to the control unit 8.

【0009】図4は本実施例における融液レベル制御装
置の構成を示すブロック図である。るつぼ位置指令信号
X0 出力手段すなわち図1に示するつぼ位置指令部9が
出力する指令信号X0 は、制御部8内の光走査幅の目標
値L0 設定・記憶手段21に入力され、前記目標走査幅
L0 と実走査幅Lf との差の限界値すなわち制御限界値
△l記憶手段22によって前記限界値△lが記憶され
る。
FIG. 4 is a block diagram showing the structure of the melt level control device in this embodiment. The crucible position command signal X0 output means, that is, the command signal X0 output from the crucible position command section 9 shown in FIG. 1 is input to the target value L0 setting / storing means 21 of the optical scanning width in the control section 8, and the target scanning width is set. A limit value of the difference between L0 and the actual scanning width Lf, that is, the control limit value Δl storage means 22 stores the limit value Δl.

【0010】一方、走査ミラー揺動角θ・周波数ω指令
信号出力手段20から光走査用パワーアンプ10に出力
される指令信号によって、光走査器3の走査ミラーは揺
動角θ、周波数ωで駆動する。そして、ベンダーミラー
4を介して融液面6に投射される走査レーザ光の融液面
6に形成される走査幅Lf は、光走査幅Lf 検出手段す
なわちCCDカメラ7によって検出され、|L0 −Lf
|演算手段23に入力される。この演算結果と前記制御
限界値△l記憶手段22の出力とにより、△lと|L0
−Lf |との比較・判定手段24が△lと|L0 −Lf
|とを比較する。そして|L0 −Lf |が△l以下であ
れば、サーボモータ駆動速度指令信号v0 出力手段25
が、前記X0 に基づくv0 をサーボモータ用パワーアン
プ11に出力し、|L0 −Lf |が△lを超えたとき
は、X0 の補正値±△X演算手段26を経て、サーボモ
ータ駆動速度指令信号v1 出力手段27が、前記X0 ±
△Xに基づくv1 をサーボモータ用パワーアンプ11に
出力する。るつぼ軸昇降用サーボモータ12は、サーボ
モータ用パワーアンプ11によって駆動され、るつぼ軸
13が昇降する。
On the other hand, the scanning mirror swing angle θ and the frequency ω, the command signal output from the command signal output means 20 to the optical scanning power amplifier 10 causes the scanning mirror of the optical scanner 3 to swing at the swing angle θ and the frequency ω. To drive. Then, the scanning width Lf formed on the melt surface 6 of the scanning laser light projected on the melt surface 6 via the bender mirror 4 is detected by the light scanning width Lf detecting means, that is, the CCD camera 7, and | L0 − Lf
| Is input to the calculating means 23. Based on the calculation result and the output of the control limit value Δl storage means 22, Δl and | L0
-Lf │comparison / determination means 24 for Δl and │L 0 -Lf
Compare with |. If | L0-Lf | is less than .DELTA.l, the servo motor drive speed command signal v0 output means 25
Outputs v0 based on X0 to the servomotor power amplifier 11, and when | L0-Lf | exceeds .DELTA.l, the servo motor drive speed command is sent via the correction value. +-.. DELTA.X calculating means 26 of X0. The signal v1 output means 27 uses the X0 ±
V1 based on ΔX is output to the servomotor power amplifier 11. The crucible shaft lifting servomotor 12 is driven by the servomotor power amplifier 11, and the crucible shaft 13 moves up and down.

【0011】また、前記サーボモータ12の回転角を検
出してパルス値に変換するサーボモータ回転角検出手段
すなわちエンコーダ14の出力に基づいて、るつぼ位置
Xf演算手段28がXf を演算し、|X0 −Xf |演算
手段29の演算結果と、るつぼ位置の差の限界値△XL
記憶手段30が出力するX0 とXf との差の限界値△X
L とから、△XL と|X0 −Xf |との比較・判定手段
31で前記両者の比較が行われる。この結果はサーボモ
ータ駆動速度指令信号v0 出力手段25またはサーボモ
ータ駆動速度指令信号v1 出力手段27にフィードバッ
クされる。
Further, the crucible position Xf calculating means 28 calculates Xf on the basis of the output of the servo motor rotation angle detecting means for detecting the rotation angle of the servo motor 12 and converting it into a pulse value, that is, | X0 -Xf | Limit value ΔXL of the difference between the calculation result of the calculation means 29 and the crucible position
Limit value ΔX of the difference between X0 and Xf output by the storage means 30
From L and .DELTA.XL and .vertline.X0 -Xf.vertline., The comparison / determination means 31 compares the two. The result is fed back to the servo motor drive speed command signal v0 output means 25 or the servo motor drive speed command signal v1 output means 27.

【0012】次に、本融液レベル制御装置による融液レ
ベル制御方法について、図5のフローチャートと図1と
を参照して説明する。図5において各ステップの左上に
記載した数字はステップ番号である。まず、ステップ1
でるつぼ位置指令信号X0 が読み込まれ、ステップ2で
前記指令信号X0 に基づく目標走査幅L0 、CCDカメ
ラ7が検出した実走査幅Lf 、前記L0 とLf との差の
制御限界値△lが読み込まれる。ステップ3では、|L
0 −Lf |の演算結果と前記制御限界値△lとを比較す
る。そして、△l≧|L0 −Lf |ならばステップ4に
進み、るつぼ位置指令信号X0 に基づくサーボモータ駆
動速度指令信号v0 をサーボモータ用パワーアンプ11
に出力する。また、ステップ3で△l<|L0 −Lf |
の場合はステップ5に進み、るつぼ位置指令信号X0 を
X0 ±△Xに補正した上、前記X0 ±△Xに基づくサー
ボモータ駆動速度指令信号v1 をサーボモータ用パワー
アンプ11に出力する。
Next, a melt level control method by the melt level control device will be described with reference to the flow chart of FIG. 5 and FIG. The numbers on the upper left of each step in FIG. 5 are step numbers. First, step 1
The crucible position command signal X0 is read, and in step 2, the target scan width L0 based on the command signal X0, the actual scan width Lf detected by the CCD camera 7, and the control limit value Δl of the difference between L0 and Lf are read. Be done. In step 3, | L
The calculation result of 0-Lf | is compared with the control limit value Δl. If Δl ≧ | L0-Lf |
Output to. Also, in step 3, Δl <| L0-Lf |
In the case of 1, the crucible position command signal X0 is corrected to X0 ± ΔX, and the servomotor drive speed command signal v1 based on the X0 ± ΔX is output to the servomotor power amplifier 11.

【0013】ステップ6では、サーボモータ駆動速度指
令信号v0 またはv1 によって変位したるつぼ位置を、
るつぼ軸昇降用サーボモータ12の回転角で検出してエ
ンコーダ14が出力するパルス信号により演算し、るつ
ぼ位置Xf として読み込む。次にステップ7でX0 とX
f との差と、前記差の限界値△XL とを比較する。そし
て△XL ≧|X0 −Xf |ならば、融液レベル判定スタ
ートとなり、ステップ2に戻る。また、△XL <|X0
−Xf |の場合はステップ5に戻る。
In step 6, the crucible position displaced by the servo motor drive speed command signal v0 or v1 is
It is detected by the rotation angle of the crucible shaft elevating / lowering servo motor 12, calculated by the pulse signal output from the encoder 14, and read as the crucible position Xf. Then in step 7, X0 and X
The difference between f and the limit value ΔXL of the difference is compared. If .DELTA.XL.gtoreq..vertline.X0-Xf.vertline., The melt level determination is started and the process returns to step 2. Also, ΔXL <| X0
If -Xf |, return to step 5.

【0014】本実施例ではチャンバ内部上方にベンダー
ミラーを設置したが、これに限るものではなく、ベンダ
ーミラーを含む光学系をチャンバ外部上方に設け、チャ
ンバ上面に設けた光透過窓から走査レーザ光を融液面に
投射する構成としてもよい。
In this embodiment, the bender mirror is installed above the inside of the chamber. However, the present invention is not limited to this. May be projected onto the melt surface.

【0015】[0015]

【発明の効果】以上説明したように本発明によれば、単
結晶製造装置における融液レベルの制御に当たり、コヒ
ーレント光を光走査器により所定周波数、所定走査角の
走査光に変換してチャンバ上方から融液面に投射し、融
液面に形成される前記走査光の走査幅を検出してるつぼ
の昇降を制御する融液レベル制御装置および制御方法と
したので、従来の測定装置と異なり、融液面の振動に影
響されることなく融液レベルを高精度に制御することが
できる。従って、ヒータに対する融液レベルを一定に維
持することが容易にできるようになり、成長結晶内に取
り込まれるOi濃度の変動を低減させることができ、高
品質の単結晶を得ることが可能となる。
As described above, according to the present invention, when controlling the melt level in the single crystal manufacturing apparatus, the coherent light is converted into the scanning light having the predetermined frequency and the predetermined scanning angle by the optical scanner, and the coherent light is emitted above the chamber. From the projection on the melt surface, because it was a melt level control device and control method for controlling the raising and lowering of the crucible by detecting the scanning width of the scanning light formed on the melt surface, unlike conventional measuring devices, The melt level can be controlled with high accuracy without being affected by the vibration of the melt surface. Therefore, it becomes possible to easily maintain the melt level to the heater constant, it is possible to reduce the fluctuation of the Oi concentration taken into the grown crystal, and it is possible to obtain a high-quality single crystal. .

【図面の簡単な説明】[Brief description of drawings]

【図1】融液レベル制御装置の概略構成を示す説明図で
ある。
FIG. 1 is an explanatory diagram showing a schematic configuration of a melt level control device.

【図2】融液面に投射される走査光の側面説明図であ
る。
FIG. 2 is a side view of scanning light projected on the melt surface.

【図3】融液面に形成される光走査幅の平面説明図であ
る。
FIG. 3 is an explanatory plan view of an optical scanning width formed on a melt surface.

【図4】融液レベル制御装置の構成を示すブロック図で
ある。
FIG. 4 is a block diagram showing a configuration of a melt level control device.

【図5】融液レベル制御装置の制御を実行するフローチ
ャートである。
FIG. 5 is a flowchart for executing control of a melt level control device.

【符号の説明】[Explanation of symbols]

1 チャンバ 2 レーザ光発振器 3 光走査器 6 融液面 7 CCDカメラ 8 制御部 9 るつぼ位置指令部 11 サーボモータ用パワーアンプ 12 るつぼ軸昇降用サーボモータ 13 るつぼ軸 1 Chamber 2 Laser Light Oscillator 3 Optical Scanner 6 Melt Surface 7 CCD Camera 8 Control Unit 9 Crucible Position Command Unit 11 Servo Motor Power Amplifier 12 Crucible Axis Lifting Servo Motor 13 Crucible Axis

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 CZ法を用いる単結晶製造装置におい
て、 コヒーレント光を光走査器により所定周波数、所定走査
角の走査光に変換してチャンバ上方から融液面に投射す
る光学系と、 前記走査光の融液面における走査幅を検出して制御部に
入力する検出系と、 所定のるつぼ位置指令信号を前記制御部に出力するるつ
ぼ位置指令部と、 前記検出系が検出した走査光の幅と、所定のるつぼ位置
指令信号に基づく走査光の幅の目標値とを比較し、その
結果に基づいてサーボモータ用パワーアンプに駆動速度
指令信号を出力する制御系とを備えたことを特徴とす
る、CZ法における融液レベル制御装置。
1. An optical system for converting a coherent light into a scanning light having a predetermined frequency and a predetermined scanning angle by an optical scanner, and projecting the coherent light onto a melt surface from above the chamber in a single crystal manufacturing apparatus using the CZ method; A detection system that detects the scanning width of the melt surface of light and inputs it to the control unit, a crucible position command unit that outputs a predetermined crucible position command signal to the control unit, and the width of the scanning light detected by the detection system. And a target value of the width of the scanning light based on a predetermined crucible position command signal, and based on the result, a control system that outputs a drive speed command signal to the power amplifier for the servo motor, A melt level control device for the CZ method.
【請求項2】 チャンバ上方から融液面に投射する走査
光の融液面における走査幅Lf と、るつぼ位置指令部が
出力するるつぼ位置指令信号X0 に基づく走査幅の目標
値L0 とを比較し、その差が制御限界値以下であれば、
前記るつぼ位置指令信号X0 に基づくるつぼ軸昇降用サ
ーボモータの駆動速度指令信号v0 をサーボモータ用パ
ワーアンプに出力し、その差が限界値を超えたときは、
前記るつぼ位置指令信号X0 の補正値△Xを演算した
上、X0 ±△Xに基づく前記サーボモータの駆動速度指
令信号v1 をサーボモータ用パワーアンプに出力し、前
記サーボモータの回転角から演算したるつぼ位置Xf と
前記X0 とを比較して、その差が限界値以下となるよう
に制御することを特徴とする請求項1の融液レベル制御
装置を用いる融液レベル制御方法。
2. A scanning width Lf of the scanning light projected onto the melt surface from above the chamber on the melt surface is compared with a target value L0 of the scan width based on the crucible position command signal X0 output from the crucible position command section. , If the difference is less than the control limit value,
When the driving speed command signal v0 of the crucible shaft lifting servomotor based on the crucible position command signal X0 is output to the servomotor power amplifier and the difference exceeds the limit value,
After calculating the correction value ΔX of the crucible position command signal X0, the driving speed command signal v1 of the servo motor based on X0 ± ΔX is output to the power amplifier for the servo motor and calculated from the rotation angle of the servo motor. 2. The melt level control method using the melt level control apparatus according to claim 1, wherein the crucible position Xf is compared with the X0 and the difference is controlled to be equal to or less than a limit value.
JP2601392A 1992-01-17 1992-01-17 Melt level control device and control method in CZ method Expired - Lifetime JP2627696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2601392A JP2627696B2 (en) 1992-01-17 1992-01-17 Melt level control device and control method in CZ method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2601392A JP2627696B2 (en) 1992-01-17 1992-01-17 Melt level control device and control method in CZ method

Publications (2)

Publication Number Publication Date
JPH05194080A true JPH05194080A (en) 1993-08-03
JP2627696B2 JP2627696B2 (en) 1997-07-09

Family

ID=12181814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2601392A Expired - Lifetime JP2627696B2 (en) 1992-01-17 1992-01-17 Melt level control device and control method in CZ method

Country Status (1)

Country Link
JP (1) JP2627696B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264779A (en) * 1999-03-17 2000-09-26 Komatsu Electronic Metals Co Ltd Melt level detector and detection method
EP1279752A1 (en) * 2000-05-01 2003-01-29 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level
JP2006044972A (en) * 2004-08-03 2006-02-16 Sumco Corp Manufacturing apparatus and method for silicon single crystal and silicon single crystal
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734139B2 (en) 2006-02-27 2011-07-27 Sumco Techxiv株式会社 Position measurement method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264779A (en) * 1999-03-17 2000-09-26 Komatsu Electronic Metals Co Ltd Melt level detector and detection method
EP1162291A1 (en) * 1999-03-17 2001-12-12 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for detecting melt level
EP1162291A4 (en) * 1999-03-17 2008-01-23 Komatsu Denshi Kinzoku Kk Method and apparatus for detecting melt level
JP4616949B2 (en) * 1999-03-17 2011-01-19 Sumco Techxiv株式会社 Melt level detection apparatus and detection method
EP1279752A1 (en) * 2000-05-01 2003-01-29 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level
US6994748B2 (en) 2000-05-01 2006-02-07 Komatsu Denshi Kinzoku Kabushiki Kaisha Method and apparatus for measuring melt level
EP1279752A4 (en) * 2000-05-01 2007-05-30 Komatsu Denshi Kinzoku Kk Method and apparatus for measuring melt level
US10796959B2 (en) 2000-09-13 2020-10-06 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9837315B2 (en) 2000-09-13 2017-12-05 Hamamatsu Photonics K.K. Laser processing method and laser processing apparatus
US9553023B2 (en) 2002-03-12 2017-01-24 Hamamatsu Photonics K.K. Substrate dividing method
US9543256B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9548246B2 (en) 2002-03-12 2017-01-17 Hamamatsu Photonics K.K. Substrate dividing method
US9543207B2 (en) 2002-03-12 2017-01-10 Hamamatsu Photonics K.K. Substrate dividing method
US9711405B2 (en) 2002-03-12 2017-07-18 Hamamatsu Photonics K.K. Substrate dividing method
US9287177B2 (en) 2002-03-12 2016-03-15 Hamamatsu Photonics K.K. Substrate dividing method
US10068801B2 (en) 2002-03-12 2018-09-04 Hamamatsu Photonics K.K. Substrate dividing method
US10622255B2 (en) 2002-03-12 2020-04-14 Hamamatsu Photonics K.K. Substrate dividing method
US11424162B2 (en) 2002-03-12 2022-08-23 Hamamatsu Photonics K.K. Substrate dividing method
JP2006044972A (en) * 2004-08-03 2006-02-16 Sumco Corp Manufacturing apparatus and method for silicon single crystal and silicon single crystal

Also Published As

Publication number Publication date
JP2627696B2 (en) 1997-07-09

Similar Documents

Publication Publication Date Title
US5753171A (en) Method and apparatus for producing a three-dimensional object
US4794263A (en) Apparatus for measuring crystal diameter
US6565650B2 (en) Single crystal pulling apparatus and pulling method
US6994748B2 (en) Method and apparatus for measuring melt level
JP2627696B2 (en) Melt level control device and control method in CZ method
JP2627695B2 (en) Melt level control device and control method in CZ method
JP2816627B2 (en) Melt surface position measurement and control equipment for semiconductor single crystal manufacturing equipment
JP2823035B2 (en) Semiconductor single crystal pulling apparatus and pulling method
EP2321617B1 (en) Method and device for continuously measuring silicon island elevation
JP2844032B2 (en) Melt level controller in CZ method
JP3129571B2 (en) Melt level controller in CZ method
CN115243824B (en) Laser processing device
JPH1147970A (en) Laser welding machine with automatic focusing device
JPH07277879A (en) Apparatus for producing single crystal by cz method and melt level control method
JP3366066B2 (en) Observation depth setting method for crystal defect detection device
JP3455859B2 (en) Inking device
JP2518144Y2 (en) Single crystal column diameter measuring device
JPH07136787A (en) Laser beam welding equipment
KR100649719B1 (en) Apparatus of Focusing Adjustment for Exposer
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPH0625851A (en) Device for controlling thickness of formed film
JPS61238490A (en) Method and apparatus for controlling laser beam processing machine
JPH03285888A (en) Measurement of diameter of single crystal pillar
JP2003215018A (en) Method and apparatus for measuring surface information
JPH04344883A (en) Laser beam machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090418

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20090418

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20100418

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 15